
For CIT Students, Mr. MR, CIT

Qs in C Section 1

For CIT Students, Mr. MR, CIT

What is the range of values that can be stored by int datatype
in C?

A. -(2^31) to (2^31) - 1

B. -256 to 255

C. -(2^63) to (2^63) - 1

D. 0 to (2^31) - 1

For CIT Students, Mr. MR, CIT

What is the range of values that can be stored by int datatype
in C?

A. -(2^31) to (2^31) - 1 Formula -2n to +2n - 1 (for Signed)

B. -256 to 255

C. -(2^63) to (2^63) - 1

D. 0 to (2^31) - 1

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>
int main() {

int a = 3, b = 5;
int t = a;
a = b;
b = t;
printf("%d %d", a, b);
return 0;

}

A. 3 5

B. 3 3

C. 5 5

D. 5 3

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>
int main() {

int a = 3, b = 5;
int t = a;
a = b;
b = t;
printf("%d %d", a, b);
return 0;

}

A. 3 5

B. 3 3

C. 5 5

D. 5 3

For CIT Students, Mr. MR, CIT

What is the output of the following code snippet?

int main() {
int sum = 2 + 4 / 2 + 6 * 2;
printf("%d", sum);
return 0;

}
A. 2

B. 15

C. 16

D. 18

Following the BEDMAS (BODMAS) rule
B - Brackets
E - Exponent (or O - Of Power / Root)
D, M - Division, Multiplication (L to R)
A, S - Addition, Subtraction (L to R)

For CIT Students, Mr. MR, CIT

Which of the following is not a storage class specifier in C?

A. volatile

B. extern

C. typedef

D. static

For CIT Students, Mr. MR, CIT

Which of the following is not a storage class specifier in C?

A. volatile

B. extern

C. typedef

D. static

CPU Optimization
Normal variable values get transferred to
CPU Registers (L1, L2, L3 Cache)

Volatile tells CPU not to Optimize
Because the value of variable does change
frequently

For CIT Students, Mr. MR, CIT

Which of the following is the proper syntax for declaring

macros in C?

A. #define long long ll

B. #define ll long long

C. #define ll

D. #define long long

For CIT Students, Mr. MR, CIT

Which of the following is the proper syntax for declaring

macros in C?

A. #define long long ll

B. #define ll long long

C. #define ll

D. #define long long

To declare a variable x of long long
type: (not recommended)

#define ll long long

int main ()
{
ll x;
return 0;
}

For CIT Students, Mr. MR, CIT

What is the size of the int data type (in bytes) in C?

A. 4

B. 8

C. 2

D. 1

For CIT Students, Mr. MR, CIT

What is the size of the int data type (in bytes) in C?

A. 4

B. 8

C. 2

D. 1

For CIT Students, Mr. MR, CIT

Which of the following are not standard header files in C?

A. stdio.h

B. stdlib.h

C. conio.h

D. None of the above.

For CIT Students, Mr. MR, CIT

Which of the following are not standard header files in C?

A. stdio.h

B. stdlib.h

C. conio.h

D. None of the above.

All these header files are valid
in C.

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>

void solve() {

 printf("%d %d %d", (076), (28), (0x87));

}

int main() {

 solve();

return 0;

}

A. 76 28 87

B. 076 28 0x87

C. 62 28 135

D. 0 0 0

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>

void solve() {

 printf("%d %d %d", (076), (28), (0x87));

}

int main() {

 solve();

return 0;

}

A. 76 28 87

B. 076 28 0x87

C. 62 28 135

D. 0 0 0

Octal Decimal Hexadecimal

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>
void solve() {
 int x = 1, y = 2;
printf(x>y? "Greater": x==y? "Equal" : "Lesser");
}

int main() {
 solve();

return 0;
}

A. Greater

B. Lesser

C. Equal

D. None of the above.

E.

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>
void solve() {
 int x = 1, y = 2;
printf(x>y? "Greater": x==y? "Equal" : "Lesser");
}

int main() {
 solve();

return 0;
}

A. Greater

B. Lesser

C. Equal

D. None of the above.

Using Ternary Operator ? :

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>
int main() {
 printf("%d ", 9 / 2);
 printf("%f", 9.0 / 2);
return 0;
}

A. 4 4.5000

B. 4 4.000

C. 4.5000 4.5000

D. 4 4

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>
int main() {
 printf("%d ", 9 / 2);
 printf("%f", 9.0 / 2);
return 0;
}

A. 4 4.5000

B. 4 4.000

C. 4.5000 4.5000

D. 4 4

Implicitly converts to Integer & Float respectively

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>
#define VAL 5
int getInput() {
 return VAL;
}

int main() {
 const int x = getInput();
 printf("%d", x);
return 0;
}

A. 5

B. Garbage Value

C. Compilation Error

D. 0

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>
#define VAL 5
int getInput() {
 return VAL;
}

int main() {
 const int x = getInput();
 printf("%d", x);
return 0;
}

A. 5

B. Garbage Value

C. Compilation Error

D. 0

For CIT Students, Mr. MR, CIT

What will be the output of the following

code snippet?

#include <stdio.h>

void solve(int x) {

 if(x == 0) {

 printf("%d ", x); return; }

 printf("%d ", x);

 solve(x - 1);

 printf("%d ", x);

}

A. 3 2 1 0 1 2 3

B. 3 2 1 0

C. 0 1 2 3

D. None of the above

int main() {

 if(x == 0) {

 printf("%d ", x);

return 0;

}

For CIT Students, Mr. MR, CIT

What will be the output of the following

code snippet?

#include <stdio.h>

void solve(int x) {

 if(x == 0) {

 printf("%d ", x); return; }

 printf("%d ", x);

 solve(x - 1);

 printf("%d ", x);

}

A. 3 2 1 0 1 2 3

B. 3 2 1 0

C. 0 1 2 3

D. None of the above

int main() {

 if(x == 0) {

 printf("%d ", x);

return 0;

}

First all the print functions before the
recursive call gets executed and
then all the print functions after the recursive
calls get executed. Ex: smilar to
STACK data structure LIFO

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>

struct School {

 int age, rollNo;

};

int main() {

 struct School sc;

 sc.age = 19; sc.rollNo = 82;

 printf("%d %d", sc.age, sc.rollNo);

return 0; }

A. 19 82

B. Compilation Error

C. 82 19

D. None of the above.

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>

struct School {

 int age, rollNo;

};

int main() {

 struct School sc;

 sc.age = 19; sc.rollNo = 82;

 printf("%d %d", sc.age, sc.rollNo);

return 0; }

A. 19 82

B. Compilation Error

C. 82 19

D. None of the above.

For CIT Students, Mr. MR, CIT

Which of the following is not true about structs in C?

A. No Data Hiding.

B. Functions are allowed inside structs.

C. Constructors are not allowed inside structs.

D. Cannot have static members in the struct body.

For CIT Students, Mr. MR, CIT

Which of the following is not true about structs in C?

A. No Data Hiding.

B. Functions are allowed inside structs.

C. Constructors are not allowed inside structs.

D. Cannot have static members in the struct body.

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?
#include <stdio.h>
struct School {
 int age, rollNo;
};
void solve() {
 struct School sc;
 sc.age = 19;
 sc.rollNo = 82;
 printf("%d", (int)sizeof(sc));
}
int main() {
 solve();

return 0;
}

1. 1
2. 4
3. 8
4. 16

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?
#include <stdio.h>
struct School {
 int age, rollNo;
};
void solve() {
 struct School sc;
 sc.age = 19;
 sc.rollNo = 82;
 printf("%d", (int)sizeof(sc));
}
int main() {
 solve();

return 0;
}

1. 1
2. 4
3. 8
4. 16

sum of the sizes of its individual
variables.

With 2 integer types,
the size is 4 + 4 = 8bytes.

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>
union School {
 int age, rollNo;
 double marks;
};
int main() {
 union School sc;
 sc.age = 19;
 sc.rollNo = 82;
 sc.marks = 19.04;
 printf("%d", (int)sizeof(sc));

return 0;
}

1. 4

2. 8

3. 16

4. 12

For CIT Students, Mr. MR, CIT

What will be the output of the following code snippet?

#include <stdio.h>
union School {
 int age, rollNo;
 double marks;
};
int main() {
 union School sc;
 sc.age = 19;
 sc.rollNo = 82;
 sc.marks = 19.04;
 printf("%d", (int)sizeof(sc));

return 0;
}

1. 4

2. 8

3. 16

4. 12

The size of a Union is equal to the
size of the largest variable which
is a part of it.
Here the variable is double which
of size 8 bytes.

