
For CIT Students, Mr. MR, CIT

Evolution of C

For CIT Students, Mr. MR, CIT

General Purpose High Level Language

Supports Programming
Constructs

Variable, Loops
Conditionals & more

+
Platform Portability

Current
Infrastructure

Specific

Not Portable

Ex: Java, C#

For CIT Students, Mr. MR, CIT

C Influenced New Languages

By C’s SYNTAX or DESIGN or both

What type of Language is C? C++ : Object Oriented Language with CLASSes

C# : Object Oriented (Syntax influenced by C)

Objective C : Object Oriented & Message Passing

Languages look similar Syntactically? PHP Java Javascript

Languages include standard Libraries? Python Ruby

Languages written in C? Perl Tcl Lua

 Procedural Language

What

For CIT Students, Mr. MR, CIT

Compare C & C#

For CIT Students, Mr. MR, CIT

Compare C & Java

For CIT Students, Mr. MR, CIT

Advantages Using C

C has Access to MEMORY & is FAST

C - Designed Linux OS

C - Parts of MAC OS & Windows

Modern Operating Systems

Development of Applications for Various Platforms (C Compilers)

Cross Platform & Fast

Apps Run Faster than most Interpreted Languages

Developed GIT - Best Source Control System (C Compilers) for many Platforms

For CIT Students, Mr. MR, CIT

Advantages Using C

Works FAST

Good for Systems with Limited Resources

Programmers have Direct Access to the MEMORY

Widely Available C Compilers

C Code in 1000s of Micro Controllers - One Language for any micro device
(IoT - Airplane to Washing M/c, Rasberry Pi, Arduino)

For CIT Students, Mr. MR, CIT

For CIT Students, Mr. MR, CIT

Rasberry Pi Arduino

Microprocessor
Clock speed: 1.2 GHz

Code with Python

Microcontroller (Not full-computer)
Clock speed: 16 MHz

Interface Sensors, LEDs & Motors

For CIT Students, Mr. MR, CIT

Programming in C

Need 2 things:

Compiler : GCC (GNU Compiler Collection)

Editor: Atom, Visual Studio Code, Turbo C

https://atom.io/
https://code.visualstudio.com/download

For CIT Students, Mr. MR, CIT

Data Types in C

Basic data types

Derived types

Using Type Casting and Type Qualifiers

Using time, date, and localization

C program using Basic and Derived types

For CIT Students, Mr. MR, CIT

Data Types in C

For CIT Students, Mr. MR, CIT

Data Types in C
Integer
- signed and unsigned
- short and long
- Fixed-width integer types
- #include <stdint.h>
- #include <inttypes.h>
(added in C99)

Char
- char, unsigned char, signed char
- A = 65, Z = 90
- Relies on the ASCII table

Boolean
- Added in the C99 standard
- #include <stdbool.h>

Bit
- unsigned int age : 7;

Enumeration

Void

For CIT Students, Mr. MR, CIT

Data Types in C

For CIT Students, Mr. MR, CIT

Type 32 bit size 64 bit size

char 1 byte 1 byte

short 2 bytes 2 bytes

int 4 bytes 4 bytes

long 4 bytes 8 bytes

Long long 8 bytes 8 bytes

float 4 bytes 4 bytes

double 8 bytes 8 bytes

Long double 16 bytes 16 bytes

Data Types in C

For CIT Students, Mr. MR, CIT

For CIT Students, Mr. MR, CIT

Predefined - Data Types in C

For CIT Students, Mr. MR, CIT

Predefined - Data Types in C

For CIT Students, Mr. MR, CIT

Printing & Reading Integer Types

For CIT Students, Mr. MR, CIT

Fixed Width Integer Types
Enables integer types with specific sizes

For program portability & same behavior in different systems
Header files: <inttypes.h> and <stdint.h> header.

For CIT Students, Mr. MR, CIT

Floating Types

For CIT Students, Mr. MR, CIT

Complex Types

header: #include<complex.h>

For CIT Students, Mr. MR, CIT

Derived Data Types - Arrays

Collection of same type values
Represented by single name

Index to select individual members

Array of Dimension 100, Index 0-99
Multi-dimensional array with N Dimensions

int arr[5][4]
int arr[100][5][3]

For CIT Students, Mr. MR, CIT

Derived Data Types - Pointers

Points to address of another variable;
Declare a pointer of corresponding data type

before assigning an address.

For CIT Students, Mr. MR, CIT

Derived Data Types - Function

For CIT Students, Mr. MR, CIT

User Defined Data Types - Structure

Collection of members (variables) of
possibly different types into a single

user defined type

For CIT Students, Mr. MR, CIT

User Defined Data Types - Union
Collection of members (variables) of possibly different types into
a single user defined type; Stored in same memory location.

For CIT Students, Mr. MR, CIT

Compare Data Types - char

wchar_t is a wide character: The increased datatype size
allows for the use of larger coded character sets.
Width is compiler specific (not portable).

http://en.wikipedia.org/wiki/Character_encoding

For CIT Students, Mr. MR, CIT

Compare Data Types - int

For CIT Students, Mr. MR, CIT

Compare Data Types - signed integers

For CIT Students, Mr. MR, CIT

Compare Data Types - floating point

For CIT Students, Mr. MR, CIT

Summary Data Types

For CIT Students, Mr. MR, CIT

STRONG vs WEAK

STATIC vs DYNAMIC

For CIT Students, Mr. MR, CIT

Languages: Static vs Dynamic, Weak vs Strong

Static vs. Dynamic Declaration of data types.
Static typed languages require explicit definition of variable,
parameter, return value.
Dynamic languages can infer, or at least try to guess, the type
that we’re using.

Strong vs. Weak defines - Operations between data types.
Strongly typed languages will not allow you to add a float to an
integer, without you converting it first, even though they are both
numbers.
Weak language will try its best to accomodate what the
programmer is asking and perform these operations.

No best option in choosing static vs. dynamic or strong vs. weak

For CIT Students, Mr. MR, CIT

Type Casting / Conversion
Process of converting one data type into another

For CIT Students, Mr. MR, CIT

Type Casting / Conversion
Process of converting one data type into another

Type Casting

Type Conversion

For CIT Students, Mr. MR, CIT

Type Casting / Conversion
Implicit: Automatic conversion by compiler

Explicit: Manually by type casting operator ()

For CIT Students, Mr. MR, CIT

Implicit Type Casting / Conversion
// Implicit Type Conversion

#include<stdio.h>

int main() {

// create a double variable

double value = 7520.17;

printf("Double Value: %.2lf\n",

value);

// convert double value to integer

int number = value;

printf("Integer Value: %d", number);

return 0;

}

// Implicit Type Conversion

#include<stdio.h>

int main() {

// character variable

char letter = 'A';

printf("Character Value: %c\n",

letter);

//Assign char value to int variable

int number = letter;

printf("Integer Value: %d", number);

return 0;

}

For CIT Students, Mr. MR, CIT

Implicit Type Casting / Conversion
// Implicit Type Conversion of numeric types

#include <stdbool.h>

#include <stdio.h>

int main(void)

{// Variables Declarations & Initializations

 bool b = true;

 char c = 'A';

 float f = 100.5;

 int i = 100;

 short s = 77;

 //Statements with implicit conversion

 printf("Implicit conversion\n");

 printf("bool + char is char: %c\n", b + c);

 printf("int * short is int: %d\n", i * s);

 printf("float * char is float:%f\n", f * c);

 // bool promoted to char

 c = c + b;

 // char promoted to float

 f = f + c;

 b = false;

 // float demoted to bool

 b = -f;

 printf("After promotion / demotion: \n");

 printf("char + true: %c\n", c);

 printf("float + char: %f\n", f);

 printf("bool = -float:%d\n", b);

 return 0;

 }

For CIT Students, Mr. MR, CIT

Explicit Type Casting / Conversion
//Explicit type conversion

#include<stdio.h>

int main() {

// create an integer variable

int numb = 97;

printf("Integer Value: %d\n", numb);

// (char) converts number to char

char alpha = (char) numb;

printf("Character Value: %c", alpha);

return 0;

}

//Explicit type conversion

#include<stdio.h>

int main() {

// create an integer variable

int numb = 35;

printf("Integer Value: %d\n", numb);

// explicit type conversion

double value = (double) numb;

printf("Double Value: %.2lf", value);

return 0;

}

For CIT Students, Mr. MR, CIT

Type Casting / Conversion
Possible data loss during type casting (demoting)

Data loss

long double to double type

No data loss

char is converted to int

LATER!

Pointer type conversion

For CIT Students, Mr. MR, CIT

Storage Classes in C

For CIT Students, Mr. MR, CIT

Storage Classes: auto, static
//Storage classes auto & static

#include<stdio.h>

void display_count()

{ auto int k = 0; //prints 1 1 1

 //static int k = 0; //prints 1 2 3

 k = k + 1;

 printf("\n %d",k);

}

void main() {

int j;

for(int j=1;j<=3;j++)

 display_count();

getch();

}

//Storage classes auto

#include<stdio.h>

#include<conio.h>

void main() {

auto int a=50;

{ //local block

 auto int a = 10;

 printf(" %d",a); //prints 10

}

printf(" %d",a); //prints 50

getch();

}

For CIT Students, Mr. MR, CIT

Storage Classes: register
//Storage class register

#include<stdio.h>

#include<conio.h>

void main() {

//memory in CPU register

//faster execution but loads CPU

register int x=50, y=10, result;

result = x/y;

printf(" %d",result);

getch();

}

For CIT Students, Mr. MR, CIT

Storage Classes: extern
//Storage class extern parent;

//a header file

#include<stdio.h>

int pass_marks = 65;

void verify(int m)

{

 if (m>=pass_marks)

 printf("Passed! Marks %d > Pass

%d",m,pass_marks);

 else

 printf("Failed! Marks %d < Pass

%d",m,pass_marks);

}

//Storage class extern child

#include<stdio.h>

#include

"E:\Courses\C\C-PS\c…parent.c"

extern void verify(int m);

int main(){

extern int pass_marks;

int marks = 70;

verify(marks);

return 0;

}

He
ad
er
 F
il
e

Pr
og
ra
m

For CIT Students, Mr. MR, CIT

Volatile type in C
volatile int flag;

int volatile flag;

int main (){
 int flag=0;
 flag++;
}

int main (){
 volatile int flag=0;
 flag++;
}

Declaration

NO
 C
PU
 O
pt
im
iz
at
io
n

NO
 M
em
 t
o
Re
gi
st
er
s

CP
U
Op
ti
mi
za
ti
on

Me
m
to
 R
eg
is
te
rs

Applications:

Global Variables

Multi Threaded Apps

Interrupt routines

For CIT Students, Mr. MR, CIT

Preprocessor Directives in C

For CIT Students, Mr. MR, CIT

Preprocessor Directives in C
Directive Function

#include Includes a header file in the source program

#define Defines Macro substitution

#undef Undefines Macro

#ifdef Tests for a Macro definition

#ifndef Checks whether a Macro is defined or not

#if Checks a compile time condition

#elif Checks another compile time condition

#else Specifies alternative when #if condition fails

#endif Specifies end of #if

For CIT Students, Mr. MR, CIT

Demo Programs - Preprocessor Directives in C

For CIT Students, Mr. MR, CIT

Operators in C

For CIT Students, Mr. MR, CIT

. individual members of struct & union

-> pointer to an object in C++

* pointer to a variable

& returns address of a variable

() cast operator - converts one data type to another
sizeof finds size in bytes

Other Operators in C

For CIT Students, Mr. MR, CIT

Demo c_operator1.c

Operators in C

For CIT Students, Mr. MR, CIT

What is the difference between prefix and postfix operators
in C?

Q&As on Operators in C

Prefix – first adds or subtracts 1 and then assigns the
resultant value to the variable. ++a and - -a.

Postfix – first assigns the value to the variable, then adds or
subtracts 1, and then assigns the resultant value.

For CIT Students, Mr. MR, CIT

#include<stdio.h>
Int main() {

int x;
x = 2;

printf(“%d\n”, x);
printf(“%d\n”, x++);
printf(“%d\n\n”, x);

x = 2;
printf(“%d\n”, x);
printf(“%d\n”, ++x);
printf(“%d\n”, x);

return 0;
}

Q&As on Operators in C

A. 2 2 3 2 3 3
B. 2 3 3 2 2 3

C. 3 2 3 3 3 2

D. 3 3 2 3 2 2

For CIT Students, Mr. MR, CIT

#include<stdio.h>
Int main() {

int x;
x = 2;

printf(“%d\n”, x);
printf(“%d\n”, x++);
printf(“%d\n\n”, x);

x = 2;
printf(“%d\n”, x);
printf(“%d\n”, ++x);
printf(“%d\n”, x);

return 0;
}

Q&As on Operators in C

A. 2 2 3 2 3 3
B. 2 3 3 2 2 3

C. 3 2 3 3 3 2

D. 3 3 2 3 2 2

For CIT Students, Mr. MR, CIT

int a = 10;

int b = a++%5;

What will be the value of a
and b after we execute the
code?

Q&As on Operators in C

A. a is 10, and b is 1.

B. a is 10, and b is 0.

C. a is 11, and b is 0.

D. a is 11, and b is 1.

For CIT Students, Mr. MR, CIT

int a = 10;

int b = a++%5;

What will be the value of a
and b after we execute the
code?

Q&As on Operators in C

A. a is 10, and b is 1.

B. a is 10, and b is 0.

C. a is 11, and b is 0.

D. a is 11, and b is 1.

For CIT Students, Mr. MR, CIT

int a = 10;

int b = ++a%5;

What will be the value of a
and b after we execute the
code?

Q&As on Operators in C

A. a is 10, and b is 1.

B. a is 10, and b is 0.

C. a is 11, and b is 0.

D. a is 11, and b is 1.

For CIT Students, Mr. MR, CIT

int a = 10;

int b = ++a%5;

What will be the value of a
and b after we execute the
code?

Q&As on Operators in C

A. a is 10, and b is 1.

B. a is 10, and b is 0.

C. a is 11, and b is 0.

D. a is 11, and b is 1.

For CIT Students, Mr. MR, CIT

Truth Table - Bitwise Operators

a b a & b a | b a ^ b ~a

1 1 1 1 0 0

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

For CIT Students, Mr. MR, CIT

>> Right Shift - Bitwise Operators in C

For CIT Students, Mr. MR, CIT

/*Output: The right shift will be 0: 10

 The right shift will be 1: 5 */

#include <stdio.h>

int main() {

int a = 10; // 1010 binary equivalent

int b = 0;

for(b;b<2;b++)

 printf("Right shift will be %d: %d\n", b, a>>b);
return 0;

}

Formula: a / 2b

For CIT Students, Mr. MR, CIT

>> Left Shift - Bitwise Operators in C

For CIT Students, Mr. MR, CIT

>> Left Shift - Bitwise Operators in C
/* Left Shift - Bitwise Operator */

#include<stdio.h>

int main() {

int a = 28; // 11100

int b = 0;

for(b;b<=3;++b)

 printf("Left shift by %d: %d\n", b, a<<b);

 //x<<y, Formula: x*(2 pow y)

return 0;

}

Left shift by 0: 28

Left shift by 1: 56

Left shift by 2: 112

Left shift by 3: 224

For CIT Students, Mr. MR, CIT

1. What would be the result obtained by using a right shift
operator on 23 >> 2?

A. 6

B. 1

C. Undefined

D. 13

Q&A - Bitwise Operators in C

For CIT Students, Mr. MR, CIT

1. What would be the result obtained by using a right shift
operator on 23 >> 2?

A. 6

B. 1

C. Undefined

D. 13

Q&A - Bitwise Operators in C

23 / 2² = 23 / 4 = 6
(closest integer).

For CIT Students, Mr. MR, CIT

What would be the result obtained by using a right shift
operator on 128 >> 5?

A. 120

B. 4

C. 11

D. Undefined

Q&A - Bitwise Operators in C

For CIT Students, Mr. MR, CIT

What would be the result obtained by using a right shift
operator on 128 >> 5?

A. 120

B. 4

C. 11

D. Undefined

Q&A - Bitwise Operators in C

128 >> 5 = 4, i.e,
128 / 25 = 128 / 32
= 4

For CIT Students, Mr. MR, CIT

What would be the result obtained by using a right shift
operator on 64 >> 3?

A. 60

B. 12

C. Undefined

D. 8

Q&A - Bitwise Operators in C

For CIT Students, Mr. MR, CIT

What would be the result obtained by using a right shift
operator on 64 >> 3?

A. 60

B. 12

C. Undefined

D. 8

Q&A - Bitwise Operators in C

64 >> 3 = 4, i.e,
64 / 23 = 64 / 8 = 8

For CIT Students, Mr. MR, CIT

Can we use the right shift operator with the negative
numbers?
No. the right shift operator only works with the positive
integers.

We must not use a negative number.

When either of the operands is negative, the result obtained
will be undefined.

Q&A - Bitwise Operators in C

For CIT Students, Mr. MR, CIT

Operators in C

Precedence
(Order of Execution)

BEDMAS
(Bracket, Exponent, Div, Mult, Add, Sub)

PEMDAS
(Parenthesis, Exponent, Mult, Div, Add, Sub)

For CIT Students, Mr. MR, CIT

Variables in C

For CIT Students, Mr. MR, CIT

Rules for Identifiers - Variables in C
● Case sensitive

● First character: Alphabetic or Underscore

● NO Space, NO Hyphen, No Special character

● First 63 characters are significant

● Cannot duplicate a Keyword

For CIT Students, Mr. MR, CIT

For CIT Students, Mr. MR, CIT

For CIT Students, Mr. MR, CIT

Control characters

For CIT Students, Mr. MR, CIT

EscapeControl characters

For CIT Students, Mr. MR, CIT

For CIT Students, Mr. MR, CIT

For CIT Students, Mr. MR, CIT

For CIT Students, Mr. MR, CIT

For CIT Students, Mr. MR, CIT

