
1

FACQ TCS Level1 Coding Solutions

New Process for TCS Advanced Coding Round
➢ You will be given 2 coding questions.
➢ 1st coding question at Easy Level - 15 mins
➢ 2nd coding question at Moderate to High Level - 30 mins
➢ Cut off - 1 Question must be solved completely

Note: The new pattern does not have Command Line programming.

Your choice of programming languages is:
★ C
★ C++
★ Java
★ Python
★ Perl

Note: The Python tool takes a long time to compile compared to the C compiler. Your
time is at its essence. Hence, you would be better off choosing C over Python in your
coding test. However, you may choose Python if your skill level in it is better than C.

FACQ - Frequently Asked Coding Questions: TCS Advanced Coding
● Level-1: Easy to Medium Complexity
● Level-2: Medium to Hard Complexity

You will be given a separate set of programs with source codes for each level. This
PDF covers Level-1. I highly recommend you use your foundational Knowledge and
Practice these on a C compiler. WARNING: Just looking over the source codes doesn’t
help you crack this section. You will be better off if you: Understand, Type, Compile,
and Test with data!

Level-1 Set-1 : Easy to Medium complexity

Topic Frequency

1 HCF/GCD of numbers (Highest Common Factor or
Greatest Common Divisor)

66

2 LCM of 2 numbers (Lowest Common Factor) 51

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

2

3 Average of 2 numbers 39

4 Reversal of numbers 20

5 Swap numbers 20

6 Series & Factorial 20

7 Reverse a String Sentence 14

8 Both LCM and HCF of numbers 10

9 Greatest among 10 numbers

10 Fibonacci series

11 Decimal to Binary

12 Binary to Decimal

13 Decimal to Octal

14 Binary to Octal

15 Palindrome

16 Prime number

17 Leap Year

18 Sum of digits of a number

19 Square Root without using Square Root function

20 Armstrong Number

21 Area of a Triangle

22 Area of a Circle

23 Concatenate 2 Strings

24 Odd-Even Number

25 Reverse a Number

Scenario-based questions Refer to “FACQ
TCS Level2
Coding” document

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

3

Program to Find GCD of two Numbers

The HCF or GCD of two integers is the largest integer that can exactly divide both
numbers (without a remainder).
There are many ways to find the greatest common divisor in C programming.

GCD Using for loop and if Statement

#include <stdio.h>
int main()
{

int n1, n2, i, gcd;

printf("Enter two integers: ");
scanf("%d %d", &n1, &n2);

for(i=1; i <= n1 && i <= n2; ++i)
{

// Checks if i is factor of both integers
if(n1%i==0 && n2%i==0)

gcd = i;
}

printf("G.C.D of %d and %d is %d", n1, n2, gcd);

return 0;
}

In this program, two integers entered by the user are stored in variable n1 and n2.Then,

for loop is iterated until i is less than n1 and n2.

In each iteration, if both n1 and n2 are exactly divisible by i, the value of i is assigned to

gcd.

When the for loop is completed, the greatest common divisor of two numbers is stored

in variable gcd.

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

4

GCD Using while loop and if...else Statement

#include <stdio.h>
int main()
{

int n1, n2;

printf("Enter two positive integers: ");
scanf("%d %d",&n1,&n2);

while(n1!=n2)
{

if(n1 > n2)
n1 -= n2;

else
n2 -= n1;

}
printf("GCD = %d",n1);

return 0;
}

Output

Enter two positive integers: 81
153
GCD = 9

This is a better way to find the GCD. In this method, the smaller integer is subtracted

from the larger integer, and the result is assigned to the variable holding the larger

integer. This process is continued until n1 and n2 are equal.

The above two programs work as intended only if the user enters positive integers.

Here's a little modification of the second example to find the GCD for both positive and

negative integers.

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

5

GCD for both positive and negative numbers

#include <stdio.h>
int main()
{

int n1, n2;

printf("Enter two integers: ");
scanf("%d %d",&n1,&n2);

// if user enters negative number, sign of the number is changed to positive
n1 = (n1 > 0) ? n1 : -n1;
n2 = (n2 > 0) ? n2 : -n2;

while(n1!=n2)
{

if(n1 > n2)
n1 -= n2;

else
n2 -= n1;

}
printf("GCD = %d",n1);

return 0;
}

Output

Enter two integers: 81
-153
GCD = 9

C Program to Find LCM of two Numbers

The LCM of two integers n1 and n2 is the smallest positive integer that is perfectly
divisible by both n1 and n2 (without a remainder). For example, the LCM of 72 and 120
is 360.

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

6

#include <stdio.h>
int main() {

int n1, n2, max;
printf("Enter two positive integers: ");
scanf("%d %d", &n1, &n2);

// maximum number between n1 and n2 is stored in max
max = (n1 > n2) ? n1 : n2;

while (1) {
if (max % n1 == 0 && max % n2 == 0) {

printf("The LCM of %d and %d is %d.", n1, n2, max);
break;

}
++max;

}
return 0;

}

Output

Enter two positive integers: 72
120
The LCM of 72 and 120 is 360.

In this program, the integers entered by the user are stored in variable n1 and n2

respectively. The largest number among n1 and n2 is stored in max. The LCM of two

numbers cannot be less than max.

The LCM of two numbers can also be found using the formula:
LCM = (num1*num2)/GCD

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

7

Program to find the average of numbers using function

In this program, we have created a user defined function average() for the calculation of
average. The numbers entered by user are passed to this function during function call.

#include <stdio.h>
float average(int a, int b){

return (float)(a+b)/2;
}
int main()
{

int num1, num2;
float avg;

printf("Enter first number: ");
scanf("%d",&num1);
printf("Enter second number: ");
scanf("%d",&num2);

avg = average(num1, num2);

//%.2f is used for displaying output upto two decimal places
printf("Average of %d and %d is: %.2f",num1,num2,avg);

return 0;
}

Output:

Enter first number: 20
Enter second number: 13
Average of 20 and 13 is: 16.50

Program to reverse a number

#include <stdio.h>

int main() {

int n, reverse = 0, remainder;

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

8

printf("Enter an integer: ");
scanf("%d", &n);

while (n != 0) {
remainder = n % 10;
reverse = reverse * 10 + remainder;
n /= 10;

}

printf("Reversed number = %d", reverse);

return 0;
}

Output

Enter an integer: 2345
Reversed number = 5432

This program takes integer input from the user. Then the while loop is used until n != 0

is false (0).

In each iteration of the loop, the remainder when n is divided by 10 is calculated and the

value of n is reduced by 10 times.

Inside the loop, the reversed number is computed using:

reverse = reverse * 10 + remainder;

Let us see how the while loop works when n = 2345.

n n != 0 remainder reverse

2345 true 5 0 * 10 + 5 = 5

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

9

234 true 4 5 * 10 + 4 = 54

23 true 3 54 * 10 + 3 = 543

2 true 2 543 * 10 + 2 = 5432

0 false - Loop terminates.

Finally, the reverse variable (which contains the reversed number) is printed on the

screen.

Program to swap two numbers - Swap Numbers Using Temporary Variable
#include<stdio.h>
int main() {
double first, second, temp;
printf("Enter first number: ");
scanf("%lf", &first);
printf("Enter second number: ");
scanf("%lf", &second);

// value of first is assigned to temp
temp = first;

// value of second is assigned to first
first = second;

// value of temp (initial value of first) is assigned to second
second = temp;

// %.2lf displays number up to 2 decimal points
printf("\nAfter swapping, first number = %.2lf\n", first);
printf("After swapping, second number = %.2lf", second);
return 0;

}

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

10

Output
Enter first number: 1.20
Enter second number: 2.45

After swapping, first number = 2.45
After swapping, second number = 1.20

In the above program, the temp variable is assigned the value of the first variable.
Then, the value of the first variable is assigned to the second variable.
Finally, the temp (which holds the initial value of first) is assigned to second. This completes the
swapping process.

Swap Numbers Without Using Temporary Variables

#include <stdio.h>
int main() {
double a, b;
printf("Enter a: ");
scanf("%lf", &a);
printf("Enter b: ");
scanf("%lf", &b);

// swapping

// a = (initial_a - initial_b)
a = a - b;

// b = (initial_a - initial_b) + initial_b = initial_a
b = a + b;

// a = initial_a - (initial_a - initial_b) = initial_b
a = b - a;

// %.2lf displays numbers up to 2 decimal places
printf("After swapping, a = %.2lf\n", a);
printf("After swapping, b = %.2lf", b);

return 0;
}

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

11

Output
Enter a: 10.25
Enter b: -12.5
After swapping, a = -12.50
After swapping, b = 10.25

Program to Find Factorial of a Number

In this example, you will learn to calculate the factorial of a number entered by the user.
The factorial of a positive number n is given by:
factorial of n (n!) = 1 * 2 * 3 * 4....n

The factorial of a negative number doesn't exist. And, the factorial of 0 is 1.

#include <stdio.h>
int main() {

int n, i;
unsigned long long fact = 1;
printf("Enter an integer: ");
scanf("%d", &n);

// shows error if the user enters a negative integer
if (n < 0)

printf("Error! Factorial of a negative number doesn't exist.");
else {

for (i = 1; i <= n; ++i) {
fact *= i;

}
printf("Factorial of %d = %llu", n, fact);

}

return 0;
}

Output
Enter an integer: 10
Factorial of 10 = 3628800

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

12

This program takes a positive integer from the user and computes the factorial using for
loop.
Since the factorial of a number may be very large, the type of factorial variable is
declared as unsigned long long.
If the user enters a negative number, the program displays a custom error message.

Factorial of a number using recursion.

#include<stdio.h>
long int multiplyNumbers(int n);
int main() {

int n;
printf("Enter a positive integer: ");
scanf("%d",&n);
printf("Factorial of %d = %ld", n, multiplyNumbers(n));
return 0;

}

long int multiplyNumbers(int n) {
if (n>=1)

return n*multiplyNumbers(n-1);
else

return 1;
}

Output
Enter a positive integer: 6
Factorial of 6 = 720

Suppose the user entered 6.
Initially, multiplyNumbers() is called from main() with 6 passed as an argument.
Then, 5 is passed to multiplyNumbers() from the same function (recursive call). In each
recursive call, the value of argument n is decreased by 1.

When the value of n is less than 1, there is no recursive call and the factorial is returned
ultimately to the main() function.

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

13

Program to Reverse a Sentence Using Recursion

Take a sentence from the user and reverse it using recursion.

#include <stdio.h>
void reverseSentence();
int main() {

printf("Enter a sentence: ");
reverseSentence();
return 0;

}

void reverseSentence() {
char c;
scanf("%c", &c);
if (c != '\n') {

reverseSentence();
printf("%c", c);

}
}

Output
Enter a sentence: margorp emosewa
awesome program

This program first prints Enter a sentence: . Then, the reverseSentence() function is
called.

This function stores the first letter entered by the user in c. If the variable is any
character other than \n (newline), reverseSentence() is called again.

This process goes on until the user hits enter.

When the user hits enter, the reverseSentence() function starts printing characters from
last.

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

14

Program to find both HCF and LCM

The code below finds the highest common factor and least common multiple of two
integers. HCF is also known as greatest common divisor(GCD) or greatest common
factor(gcf).

​
​ #include <stdio.h>
​ int main() {
​ int a, b, x, y, t, gcd, lcm;
​ printf("Enter two integers\n");
​ scanf("%d%d", &x, &y);
​ a = x;
​ b = y;
​ while (b != 0) {
​ t = b;
​ b = a % b;
​ a = t;
​ }
​ gcd = a;
​ lcm = (x*y)/gcd;
​ printf("Greatest common divisor of %d and %d = %d\n", x, y, gcd);
​ printf("Least common multiple of %d and %d = %d\n", x, y, lcm);
​ return 0;
​ }

Program to find hcf and lcm using recursion
​
​ #include <stdio.h>
​ long gcd(long, long);
​ int main() {
​ long x, y, hcf, lcm;
​ printf("Enter two integers\n");
​ scanf("%ld%ld", &x, &y);
​ hcf = gcd(x, y);
​ lcm = (x*y)/hcf;
​ printf("Greatest common divisor of %ld and %ld = %ld\n", x, y, hcf);
​ printf("Least common multiple of %ld and %ld = %ld\n", x, y, lcm);
​ return 0;
​ }
​ long gcd(long a, long b) {

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

15

​ if (b == 0) {
​ return a;
​ } else {
​ return gcd(b, a % b);
​ }
​ }

Program to find Greatest among 10 numbers

#include <stdio.h>
int main() {
int a[10];
int i;
int greatest;
printf("Enter ten values:");
//Store 10 numbers in an array
for (i = 0; i < 10; i++) {

scanf("%d", &a[i]);
}
//Assume that a[0] is greatest
greatest = a[0];
for (i = 0; i < 10; i++) {

if (a[i] > greatest) {
greatest = a[i];

}
}
printf("
Greatest of ten numbers is %d", greatest);
return 0;

}

Program to display Fibonacci series within a range

#include<stdio.h>
void fibonacciSeries(int range)
{

int a=0, b=1, c;
while (a<=range)

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

16

{
printf("%d\t", a);
c = a+b;
a = b;
b = c;

}
}

int main()
{

int range;

printf("Enter range: ");
scanf("%d", &range);

printf("The fibonacci series is: \n");

fibonacciSeries(range);

return 0;
}

Program to convert Decimal to Binary
C Code: L1_tcs11_decimal2binary.c

//Convert decimal to binary

#include<stdio.h>

int main()

{

//for initialize a variables

long number, dec_num, rem, base = 1, bin = 0, count = 0;

//To insert a number

printf("Insert a decimal num \n");

scanf("%ld", &number);

dec_num = number;

while(number > 0)

{

rem = number % 2;

/* To count no.of 1s */

if (rem == 1)

{

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

17

count++;

}

bin = bin + rem * base;

//number/=2;

number = number / 2;

base = base * 10;

}

//display

printf("Input num is = %d\n", dec_num);

printf("Its binary equivalent is = %ld\n", bin);

printf("Num of 1's in the binary num is = %d\n", count);

return 0;

}

Output:
Insert a decimal num
12
Input num is = 12
Its binary equivalent is = 1100
Num of 1's in the binary num is = 2

/** C program to convert the given Binary number into Decimal**/

#include<stdio.h>

int main()

{

int num, binary_val, decimal_val = 0, base = 1, rem;

printf("Insert a binary num (1s and 0s) \n");

scanf("%d", &num); /* maximum five digits */

binary_val = num;

while (num > 0)

{

rem = num % 10;

decimal_val = decimal_val + rem * base;

//num/=10;

num = num / 10 ;

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

18

//base*=2;

base = base * 2;

}

//display binary number

printf("The Binary num is = %d \n", binary_val);

//display decimal number

printf("Its decimal equivalent is = %d \n", decimal_val);

return 0;

}

Output:
Insert a binary num (1s and 0s)
11101
The Binary num is = 11101
Its decimal equivalent is = 29

/** C program to convert the given Decimal number into Octal **/

#include<stdio.h>

int main()

{

//Variable initialization

long dec_num, rem, quotient;

int i, j, octalno[100];

//Taking input from user

printf("Enter a decimal number : ");

//Storing the value in dec_num variable

scanf("%ld",&dec_num);

quotient = dec_num;

i=1;

//Storing the octal value in octalno[] array

while (quotient!=0)

{

octalno[i++]=quotient%8;

quotient=quotient/8;

}

//Printing the octalno [] in reverse order

printf("\nThe Octal of %ld is:",dec_num);

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

19

for (j=i-1;j>0;j--)

//display it

printf ("%d", octalno[j]);

return 0;

}

Output:

Enter a decimal number : 15

The Octal of 15 is:17

/*
* C Program to Convert Binary to Octal

Problem Solution

1. Take a binary number as input.

2. Divide the binary number into groups of 3 bits. For each group of 3 bits, multiply each bit with
the power of 2 and add them consecutively.

3. Combine the result of all groups to get the output.

Program Explanation
1. Take a binary number as input and store it in the variable binarynum.
2. Obtain the remainder and quotient of the input number by dividing it by 10.
3. Multiply the obtained remainder with variable j and increment the variable octalnum with this
value.
4. Increment the variable j by 2 and override the variable binarynum with the quotient obtained.
5. Repeat the steps 2-4 until the variable binarynum becomes zero.
6. Print the variable octalnum as output.

*/

#include <stdio.h>

int main()

{

long int binarynum, octalnum = 0, j = 1, remainder;

printf("Enter the value for binary number: ");

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

20

scanf("%ld", &binarynum);

while (binarynum != 0)

{

remainder = binarynum % 10;

octalnum = octalnum + remainder * j;

j = j * 2;

binarynum = binarynum / 10;

}

printf("Equivalent octal value: %lo", octalnum);

return 0;

}

Output:
Enter the value for binary number: 1101
Equivalent octal value: 15

/*

C program to check a given string is Palindrome.
C program to read a string and check if it's a palindrome,

without using library functions. Display the result.

Problem Description

This program accepts a string and checks whether a given string is

palindrome.

Problem Solution

1. Take a string as input and store it in the array.

2. Reverse the string and store it in another array.

3. Compare both the arrays.

*/

#include <stdio.h>

#include <string.h>

void main()

{

char string[25], reverse_string[25] = {'\0'};

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

21

int i, length = 0, flag = 0;

fflush(stdin);

printf("Enter a string \n");

gets(string);

/* keep going through each character of the string till its end */

for (i = 0; string[i] != '\0'; i++)

{

length++;

}

for (i = length - 1; i >= 0; i--)

{

reverse_string[length - i - 1] = string[i];

}

/*

* Compare the input string and its reverse. If both are equal

* then the input string is palindrome.

*/

for (i = 0; i < length; i++)

{

if (reverse_string[i] == string[i])

flag = 1;

else

flag = 0;

}

if (flag == 1)

printf("%s is a palindrome \n", string);

else

printf("%s is not a palindrome \n", string);

}

Output:
Enter a string
PalinnilaP
PalinnilaP is a palindrome
Enter a string
hello
hello is not a palindrome

/*

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

22

Prime Number in C: A prime number is a natural number that is greater
than 1 and is only divisible by 1 and itself. In other words, no number

except the number itself, and 1 can divide a prime number.

Example: 2, 3, 5, 7, 11, 13, 17, 19 …., etc.

Problem Description

Write a C program to check if a given number is Prime number. If the

number is Prime, then display it is a prime number else display it is not

a prime number.

Problem Solution

1. Take a number as input.

2. Check if the number is divisible by any of the natural numbers starting

from 2.

3. If it is, then it is not a prime number. Otherwise, it is a prime

number.

4. Exit.

Optimized Approach:

Instead of iterating a loop from 2 to N/2, we will iterate through all the

numbers starting from 2 to sqrt(N).

The reason for choosing sqrt(N) is that the factor of a number is always

present between 2 to sqrt(N) and if we find a factor then we simply need

to stop the iteration and print it is not a prime number else it is a

prime number.

Examples:

N=36, we need to iterate the loop from 2 to 6(sqrt(36)). If we divide the

number 36 by 2, we will get remainder equal to 0 which means 36 has a

factor other than 1 and 36. Therefore, our output will be “36 is not a

prime number”.

N=53, sqrt(53) = 7. So, our loop will iterate from 2 to 7. If we divide

the number 53 by any of these numbers (2,3,4,5,6,7) we will not get

remainder equal to 0. Therefore our output will be “53 is a prime number”.

Time Complexity: O(sqrt(n))

The above program for checking whether a number is prime or not has a

time complexity of O(sqrt(n)) as the loop runs from 2 to sqrt(n),

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

23

where n is the number given as input.

Space Complexity: O(1)

In this program we are not initializing any array or other data types that

takes lot of storage. We are just initializing the variable.

Therefore, our space complexity is constant, i.e. O(1).

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void main()

{

int num, j, flag;

printf("Enter a number \n");

scanf("%d", &num);

if (num <= 1)

{

printf("%d is not a prime numbers \n", num);

exit(1);

}

flag = 0;

// To check prime number

for (j = 2; j <= sqrt(num); j++)

{

if ((num % j) == 0)

{

flag = 1;

break;

}

}

if (flag == 0)

printf("%d is a prime number \n", num);

else

printf("%d is not a prime number \n", num);

}

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

24

Output:
Enter a number
53
53 is a prime number

Enter a number
45
45 is not a prime number

/*

Leap Year in C: A year is a Leap Year if it satisfies the following

conditions:

The year is exactly divisible by 400 (such as 2000,2400) or,

The year is exactly divisible by 4 (such as 2008, 2012, 2016) and not a

multiple of 100 (such as 1900, 2100, 2200).

Problem Description

Write a C Program to check whether a given year is a leap year or not.

Problem Solution

1. Take a year as input.

2. Check whether a given year is divisible by 400.

3. Check whether a given year is divisible by 100.

4. Check whether a given year is divisible by 4.

5. If the condition at step 2 and 4 becomes true, then the year is a leap

year.

6. If the condition at step 3 becomes true, then the year is not a leap

year.

Program Explanation

1. Take a year as input and store it in the variable year.

2. Using a single if, else statement check, if the year is completely

divisible by 400 or the year is completely divisible by 4 as well as not

divisible by 100.

3. If the above condition is true then print it is a leap year.

4. If the condition becomes false, then the year is not a leap year and

print the same.

Example:

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

25

Consider a year, 2200. Divide it by 400, we see that the remainder

obtained is not 0.

Therefore, we print “It is not a leap year”.

Time Complexity: O(1)

The above program for checking Leap Year has a time complexity of O(1) as

we use only

if else condition and no loops.

Space Complexity: O(1)

In the above program, space complexity is O(1) as no extra variable has

been taken

to store the values in the memory. All the variables initialized takes a

constant O(1)

space.

*/

/*

* C program to find whether a given year is leap year or not

*/

#include<stdio.h>

void main()

{

int year;

printf("Enter a year \n");

scanf("%d", &year);

if (((year % 400) == 0)||(((year%4)==0)&&(year%100)!=0))

printf("%d is a leap year \n", year);

else

printf("%d is not a leap year \n", year);

}

/*

Program Output

Enter a year

2012

2012 is a leap year

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

26

Enter a year

2009

2009 is not a leap year

Enter a year

2200

2200 is not a leap year

*/

/*

C program to find sum of digits of a number using recursion.

Problem Description

This C program finds the sum of digits of a number using recursion.

Problem Solution

The following C program, using recursion, finds the sum of its digits.

*/

#include <stdio.h>

int sum (int a);

int main()

{

int num, result;

printf("Enter the number: ");

scanf("%d", &num);

result = sum(num);

printf("Sum of digits in %d is %d\n", num, result);

return 0;

}

int sum (int num)

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

27

{

if (num != 0)

{

return (num % 10 + sum (num / 10));

}

else

{

return 0;

}

}

Output:
Enter the number: 123
Sum of digits in 123 is 6

/*

Find square root without using sqrt math function
*/

/*

//Using sqrt function

#include <stdio.h>

#include <math.h>

int main () {

/// 2.000000

printf("Square root of %lf is %lf\n", 4.0, sqrt(4.0));

/// 2.236068

printf("Square root of %lf is %lf\n", 5.0, sqrt(5.0));

return(0);

}

*/

//Without using sqrt function

#include<stdio.h>

void main()

{

int number;

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

28

float temp, sqrt;

printf("Provide the number: \n");

scanf("%d", &number);

// store the half of the given number e.g from 256 => 128

sqrt = number / 2;

temp = 0;

// Iterate until sqrt is different of temp, that is updated on the

loop

while(sqrt != temp){

// initially 0, is updated with the initial value of 128

// (on second iteration = 65)

// and so on

temp = sqrt;

// Then, replace values (256 / 128 + 128) / 2 = 65

// (on second iteration 34.46923076923077)

// and so on

sqrt = (number/temp + temp) / 2;

}

printf("The square root of '%d' is '%f'", number, sqrt);

}

Output:
Provide the number:
81
The square root of '81' is '9.000000'

/*

Check if a 3-digit number is an Armstrong Number

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

29

In this approach, we will only check whether a 3-digit number entered by

the user

is an Armstrong number or not.

Armstrong numbers are 0, 1, 153, 370, 371, 407, etc.

Examples

If the entered number is 371, then 371 = 3*3*3 + 7*7*7 + 1*1*1 = 27 + 343

+ 1 = 371.

Since the sum of the cubes of every digit is equal to 371, the output will

be

“The given number is an Armstrong number.”

If the entered number is 150, then 150 = 1*1*1 + 5*5*5 + 0*0*0 = 1 + 125 +

0 = 126.

Since the sum of the cubes of every digit is not equal to 150, the output

will be

“The given number is not an Armstrong number”

*/

#include <stdio.h>

#include <math.h> // header file for pow() function

void main()

{

int number, sum = 0, rem = 0, cube = 0, temp;

printf ("Enter a number:");

scanf("%d", &number);

temp = number;

while (number != 0) // loop will continue until the number is not 0.

{

rem = number % 10; // This will generate last digit of the

number.

cube = pow(rem, 3); // The power of last digit will be calculated

here.

sum = sum + cube;

number = number / 10; // Now our least significant bit of the

number be removed.

}

if (sum == temp)

printf ("The given number is an Armstrong number");

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

30

else

printf ("The given number is not an Armstrong number");

}

Output:
Enter a number:231
The given number is not an Armstrong number

Enter a number:407
The given number is an Armstrong number

Program Explanation
In this C program, we are reading the integer value using ‘number’ variable. An
Armstrong number is an n-digit base b number, such that the sum of its digits raised to
the power n is the number itself. Hence, 371 because 33 + 73 + 13 = 27 + 343 + 1 =
371.

Using while loop checks the value of ‘number’ variable is not equal to 0. If the condition
is true, execute the iteration of the loop. The ‘rem’ variable is used to compute the
modulus of the value of ‘number’ variable by 10 and ‘cube’ variable is used to compute
the cube of the value of ‘rem’ variable using pow().

Then ‘sum’ variable is used to compute the summation of the value of ‘sum’ variable
with the value of ‘cube’ variable. The If-else condition statement is used to check both
the value of ‘sum’ variable and the value of ‘temp’ variable are equal. If the condition is
true, then it will print Armstrong number. Otherwise, it will execute the else condition
statement and print not Armstrong number.

Time Complexity: O(log(n))

The above program for checking whether a number is Armstrong or not has a time
complexity of O(log(n)) as the while loop runs for log(n) times because at each iteration
the number is divided by 10, where n is the number given as input.

Space Complexity: O(1)

In the above program, space complexity is O(1) as no extra variable is taken to store
the value. All the variables initialized takes constant O(1) space.

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

31

/*

Check if N-digit number is an Armstrong Number
Check whether any N-digit number entered by the user is an Armstrong

number or not.

Examples

If the entered number is 1634, then 1634 = 14 + 64 + 34 + 44 = 1 + 1296 +

81 + 256 = 1634.

Since the sum of the cubes of every digit is equal to 1634, the output

will be

“The given number is an Armstrong number.”

If the entered number is 1600, then 1600 = 14 + 64 + 04 + 04 = 1 + 1296 +

0 + 0 = 1297.

Since the sum of the cubes of every digit is not equal to 1600, the output

will be

“The given number is not an Armstrong number”

Program/Source Code:

*/

#include <stdio.h>

#include <math.h> // header file for pow() function

void main()

{

int number, sum = 0, rem = 0, cube = 0, temp;

printf ("Enter a number:");

scanf("%d", &number);

temp = number;

while (number != 0) // loop will continue until the number is not 0.

{

rem = number % 10; // This will generate last digit of the

number.

cube = pow(rem, 3); // The power of last digit will be calculated

here.

sum = sum + cube;

number = number / 10; // Now our least significant bit of the

number be removed.

}

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

32

if (sum == temp)

printf ("The given number is an Armstrong number");

else

printf ("The given number is not an Armstrong number");

}

/*

Program Explanation

In our earlier program, we were only finding if a 3-digit number is

Armstrong or

not whereas in this approach we can check if a number is Armstrong or not

irrespective

of the count of digits in that given number.

The approach of this method is to calculate the power of each digit but

instead of

passing ‘3’ in the power section we need to pass the count of digits ‘n’.

The first while loop is calculating count of digits in the number and the

second

while loop is for finding the sum of the power of each digit and for

checking whether

the number is Armstrong or not.

Time Complexity: O(log(n))

O(log(n)) + O(log(n)) = O(log(n))

The above program for checking whether a number is Armstrong or not has a

time

complexity of O(log(n)) as both the while loop runs for log(n) times

because at

each iteration the number is divided by 10, where n is the number given as

input.

Space Complexity: O(1)

In the above program, space complexity is O(1) as no extra variable is

taken to

store the value. All the variables initialized takes constant O(1) space.

Program Output

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

33

Enter a number: 1634

The given number is an Armstrong number

Enter a number: 1600

The given number is not an Armstrong number

*/

/*

C Program to find area of a triangle given it’s three sides.

Problem Solution

The formula or algorithm used is:

Area = sqrt(s(s – a)(s – b)(s – c)),

where s = (a + b + c) / 2 or perimeter / 2. and a, b & c are the sides of

triangle.

*/

#include <stdio.h>

#include <math.h>

void main()

{

int s, a, b, c, area;

printf("Enter lengths of 3 sides of s triangle (a, b & c) :\n");

scanf("%d %d %d", &a, &b, &c);

/* compute s */

s = (a + b + c) / 2;

area = sqrt(s * (s - a) * (s - b) * (s - c));

printf("Area of a triangle = %d \n", area);

}

Output:
Enter lengths of 3 sides of s triangle (a, b & c) :

3 5 4

Area of a triangle = 6

/*

Program Explanation

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

34

In this C program, library function defined in <math.h> header file is

used to

compute mathematical functions. We are reading the three sides of a

triangle using

‘a’, ‘b’, ‘c’ integer variables. To find the area of a triangle,

the following formula is used.

Area = sqrt (s * (s – a) * (s – b) * (s – c))

*/

/*

C program to find the area of a circle using the given radius.

Problem Solution

Step 1: Start the program

Step 2: Input the value of radius (float value).

Step 3: Calculate area using formula pi*(r2)

Step 4: Print area of circle

Step 5: End the Program

Area of circle is defined as pi*r*r where pi is a constant whose value

is (22/7 or 3.142) and r is the radius of a circle.

Formula to calculate the area of circle is: Area = pi*r*r

Example:

If the radius of a circle is 20, then its area would be

3.142*15*15 = 706.95 approx.

*/

#include <stdio.h>

#include <math.h>

#define PI 3.142

void main()

{

float radius, area;

printf("Enter the radius of a circle \n");

scanf("%f", &radius);

area = PI * pow(radius, 2);

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

35

printf("Area of a circle = %5.2f\n", area);

}

Output:

Enter the radius of a circle

5

Area of a circle = 78.55

/*

Program Explanation

In this C program, library function defined in <math.h> header file is

used

to compute mathematical functions. We are reading the radius of a circle

using

‘radius’ variable. To find the area of a circle, the following formula is

used.

Area = PI * pow (radius, 2)

Time Complexity: O(1)

In the above program there are no iterative statements, so time complexity

is O(1).

Space Complexity: O(1)

Since no auxiliary space is required, space complexity is O(1).

*/

/*

C program to read two strings and concatenate them, without using

library functions. Display the concatenated string.

Problem Description

This program takes two strings as input and concatenate them.

Problem Solution

1. Take two strings as input and store them in two different arrays.

2. Find the position of the last element of the first array and from that

position keep on adding the elements of the second array.

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

36

3. Exit.

*/

#include <stdio.h>

#include <string.h>

void main()

{

char string1[20], string2[20];

int i, j, pos;

/* Initialize the string to NULL values */

memset(string1, 0, 20);

memset(string2, 0, 20);

printf("Enter the first string : ");

scanf("%s", string1);

printf("Enter the second string: ");

scanf("%s", string2);

printf("First string = %s\n", string1);

printf("Second string = %s\n", string2);

/* Concate the second string to the end of the first string */

for (i = 0; string1[i] != '\0'; i++)

{

/* null statement: simply traversing the string1 */

;

}

pos = i;

for (j = 0; string2[j] != '\0'; i++)

{

string1[i] = string2[j++];

}

/* set the last character of string1 to NULL */

string1[i] = '\0';

printf("Concatenated string = %s\n", string1);

}

Output:
Enter the first string : Procedural

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

37

Enter the second string: Language

First string = Procedural

Second string = Language

Concatenated string = ProceduralLanguage

/*

Program Explanation

1. Take two strings as input and store them in the arrays string1 and

string2 respectively.

2. Using for loop find the position of the last element of the array

string1[]. Store that position in the variable pos.

3. Using another for loop add the elements of the array string2[] into the

array string1[] starting from the obtained position.

4. Print the array string1[] as output.

*/

/*

C program to check whether a given integer is odd or even.

Problem Description

The program takes the given integer and checks whether the integer is odd

or even.

Problem Solution

1. Take the integer to be checked as input.

2. Find the remainder of the integer by dividing it by 2.

3. Use if,else statement to check whether the remainder is equal to zero

or not.

4. Print the output and exit.

*/

#include <stdio.h>

void main()

{

int ival, remainder;

printf("Enter an integer : ");

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

38

scanf("%d", &ival);

remainder = ival % 2;

if (remainder == 0)

printf("%d is an even integer\n", ival);

else

printf("%d is an odd integer\n", ival);

}

Output:
Enter an integer : 7

7 is an odd integer

Enter an integer : 6

6 is an even integer

/*

Program Explanation

1. User must first enter the integer to be checked which is stored in the

variable ival.

2. Find the remainder of the integer by dividing the variable ival by

integer 2 and the value is stored in the variable remainder.

3. Use if,else statement to check whether the value of the variable

remainder is equal to zero or not.

4. If it is equal to zero, then print the output as “the integer is an

even integer”.

5. If it is not equal to zero, then print the output as “the integer is an

odd integer”.

*/

//Reverse a number
#include<stdio.h>

int main()

{

//Initialization of variables where rev='reverse=0'

int number, rev = 0,store, left;

//input a numbers for user

printf("Enter the number\n");

scanf("%d", &number);

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

39

store= number;

//use this loop for check true condition

while (number > 0)

{

//left is for remider are left

left= number%10;

//for reverse of no.

rev = rev * 10 + left;

//number /= 10;

number=number/10;

}

//To show the user value

printf("Given number = %d\n",store);

//after reverse show numbers

printf("Its reverse is = %d\n", rev);

return 0;

}

Output:
Enter the number
123
Given number = 123
Its reverse is = 321

FACQ TCS Level1 Set1 Coding Solutions, Compiled by Mr. MR, CIT

For C
IT

 S
tu

dents
, A

st.P
ro

f.
M

R

