PY Unit-l Part-1 Study Material V1

Python Unit-l

Introduction: Introduction to Python, Program Development Cycle, Input, Processing, and Output,
Displaying Output with the Print Function, Comments, Variables, Reading Input from the Keyboard,
Performing Calculations, Operators. Type conversions, Expressions, and More about Data Output.

Data Types and Expressions, Strings Assignment, and Comments, Numeric Data Types and
Character Sets, Using functions and Modules.

Introduction to Python

What is a computer programming language?
Computer programming languages do communicate and provide instructions to computers. These

programming languages can represent data (like numbers, text or images, etc.) and also provide a
way to represent instructions that manipulate or work with that data.

What is Python?
Python is a high-level, interpreted computer programming language known for its simplicity,
readability, and versatility.

Python is
e Interpreted (bytecode-compiled) language,
e High-level language,
e Dynamic Object-Oriented Programming language.
e also supports Structural programming and Functional programming

Benefits of Python compared to other languages are,
Easy to learn like English,

Flexible syntax (125,000+ libraries available)
Open-source language that’s free to use,

Easy to customize as per your need.

Python is used to develop
e Software applications (desktop),
e Web applications,
e Mobile apps and
e Complex Scientific & Numerical applications
o Artificial Intelligence & Machine learning

Leadertain.com 1

PY Unit-l Part-1 Study Material V1

o Task automation,
o Data science,
o Data analysis,

o Data visualization.

Python is a great choice for:

Web and Internet development (e.g., Django and Pyramid frameworks, Flask and Bottle
micro-frameworks)

Scientific and numeric computing (e.g., SciPy — a collection of packages for the purposes of
mathematics, science, and engineering; Ipython — an interactive shell that features editing and
recording of work sessions)

Education (it's a brilliant language for teaching programming!)

Desktop GUIs (e.g., wxWidgets, Kivy, Qt)

Software Development (build control, management, and testing — Scons, Buildbot, Apache Gump,
Roundup, Trac)

Business applications (ERP and e-commerce systems — Odoo, Tryton)

Games (e.g., Battlefield series, Sid Meier’s Civilization 1V...), websites and services (e.g.,
Dropbox, UBER, Pinterest, BuzzFeed...)

https://pythoninstitute.org/about-python

History of Python

The Python programming language was invented by Guido Van Rossum in the year 1989. Python
is a successor to the ABC programming language. The first version of Python was released into
the market on 20th Feb 1991, later it was released with different versions.

S. No. Version Release Date
1 Python 1.0 Jan 1994
2 Python 2.0 Oct 2000
3 Python 3.0 Dec 2008
4 Python 3.10 Oct 2021
5 Python 3.11 Oct 2022
6 Python 3.11.2 Feb 2023

Leadertain.com 2

PY Unit-l Part-1 Study Material V1

What are the Features of Python?

Some of the Main Features of Python are:

1.

2.

10.

1.

Simple and easy to learn: Python has a clean and simple syntax, which makes it easy to
read and write as it uses Indentation instead of curly braces.

Interpreted: An interpreter executes Python code line by line, eliminating the need for
compiling and linking the code.

a. Python gives the output till the line of the program is correct. Whenever it finds any
error in the line, it stops running and generates an error statement.

b. This makes Python an efficient language for prototyping and testing.

c. IDLE (Interactive Development Environment) is an interpreter that comes with
Python. It follows the REPL (Read Evaluate Print Loop) structure just like in
Node.js. IDLE executes and displays the output of one line of Python code at a
time.

Platform independent: Python code can be executed on various operating systems,
including Windows, Linux, Unix, and macOS, without any modifications.
Object-Oriented: Python is an object-oriented programming language that supports
Inheritance, Encapsulation, and Polymorphism. Python also supports Procedural
programming and Functional programming.

Dynamically typed: Python is a dynamically typed language. We do not need to specify
data types for variables.

a. The Python interpreter determines the data types of the variables at runtime based
on the values in an expression.

Extensive standard library: Python comes with a large standard library with many
packages and modules for various tasks such as file I/O, networking, regular expressions,
and more.

a. Programmers can save time and effort using these pre-built Python functions.

b. PyPl.org (Python Package Index) is a repository of many packages.

c. PIP is a package manager tool used to install additional packages that are not part
of the Python standard library in our PC from the PyPI repository.

Open Source and Free: Python is an open-source programming language. You can
download it for free from the python.org site. The Python users community constantly
contributes to improving Python.

High-level language: Python provides high-level data types such as Lists, Tuples, Sets,
and Dictionaries, that allow developers to write code that is more concise and expressive.
Interactive mode: Python provides an interactive mode where code can be entered and
executed immediately, making it ideal for exploratory programming and testing.

Easy integration: Python can be easily integrated with other languages such as C, C++,
and Java, which makes it an ideal language for building complex applications that require
multiple programming languages.

Graphical User Interface (GUI) Support: Using Python, we can create GUI (Graphical
User Interfaces). We can use Tkinter (tk), PyQt, wxPython, or Pyside packages for GUI
application development.

Leadertain.com 3

PY Unit-l Part-1 Study Material V1

Program Development Life Cycle

Program development is the process of creating application programs using a variety of
computer "languages,"” such as Java, Python, and C++.

The program (or software) development life cycle (PDLC) consists of the following 6 stages.

1. Define & Analyze Problem: In this stage, understand the problem and clearly define how
to solve it. This includes identifying the inputs, outputs, and desired behavior of the
program.

2. Design the Plan: Design the algorithms, data structures, and tools that will be used to
implement the program. This is a visual diagram of the flow containing the program. This
step will help you break down the problem.

3. Coding: In this stage, the planned design is executed and the code is written. This involves
translating the algorithm into Python code.

4. Testing & Debugging: Once the code has been written, it is tested to ensure that it works
correctly. This includes identifying and fixing any bugs or errors that are found.

5. Production Deployment: Once the code has been tested and verified, it is deployed to
production. This involves making the program available to users.

6. Maintenance: After the program has been deployed, it may need to be updated or
modified over time to fix bugs, add new features, or improve performance. This involves
ongoing maintenance and support of the program.

Understand
the problem
Maintain the Plan the
program logic
Put the program Write the
into production code
Test the Translate the
program | code

Leadertain.com 4

PY Unit-l Part-1 Study Material V1

Input, Processing, and Output in Python

In Python, Input, Processing, and Output are fundamental concepts of programming.

e Input refers to receiving data from the user or from an external source and bringing it into
the program for processing.

e Processing refers to manipulating the input data to produce a desired output. This may
involve performing calculations, executing conditional statements, and using loops to iterate
through data.

e Output refers to the result of the processing step, which is then presented to the user or
saved for later use.

In Python, you can use built-in functions to perform these steps.

e input() function is used to take input from the user,

e print() function is used to display output to the user.

e int() function is used to convert string integer input into a numeric integer to be used in

calculations.

e float() function is used to convert a string float input into a numeric float to be used in
calculations.

e str() function is used to convert a numeric number to a string for concatenation and
printing.

An example program in Python demonstrates Input, Processing, and Output:

#input section
name=input ("Enter name : ")

age=int (input ("Enter age : "))

#iprocessing section
year = str((2023-age)+100)

#output section
print("Hi " + name + ", You are " + str(age) + " years old.")

print("You will be 100 in the year "+year)

Output:

Enter name : Nitin

Enter age : 20

Hi Nitin, You are 20 years old.
You will be 100 in the year2103

Explanation:
e the input step takes two pieces of data from the user: name and age.
e the processing step calculates the year to find when the user will be 100 years old.
e finally, the output step displays a personalized message to the user with their name and the
calculated year.

Leadertain.com 5

PY Unit-l Part-1 Study Material V1

Python Interpreter

The Python Interpreter is a software that translates python code into machine language and
executes it line by line.

g \L : 1. Lexing Interpreting
{ @)
@)

Source Code
hello.py

—

rtm%om
2. Parsing Intermediate

Code Object(s)

3. Compiling [—— "> 4.Virtual Machine |:> Running Code

Compiled Machine code
Bytecode
hello.pyc

Lexer breaks the line of code into tokens (ex: variables, values)

2. Parser generates a relationship among those tokens (ex: var=value). This is called an AST
(Abstract Syntax Tree)

3. Compiler converts AST into Intermediate Code Object(s) that is one level higher than
machine code.

4. PVM - Python Virtual Machine interprets each code object into machine code for
execution.

You can run Python code in two modes.
1. Python Interactive mode
2. Python Script mode (Development mode)

1. Python Interactive mode

->
->
->

Python interpreter waits for you to enter a command.
When you type the command, the Python interpreter executes the command,
Then it waits again for the next command.

Python interpreter in interactive mode is commonly known as Python Shell/REPL.
REPL is an interactive mode in Python to communicate with your computer.
The term “REPL” is an acronym for Read, Evaluate, Print, and Loop

QR =

Read the user input (reads Python commands).

Evaluate your code (processes Python commands).

Print any results (displays the results).

Loop back to step 1 (goes back to reread the Python command).

A. Python Interactive Shell in command prompt

>
>
>

Leadertain.com

Open the command prompt on Windows and the terminal window on mac

Type python or py and press enter

A Python Prompt comprising of three greater-than symbols >>> appears, as shown
below.

Start typing Python commands and see results

PY Unit-l Part-1 Study Material V1

B8 Command Prompt - python — O *
ion 10.0.19045.
. B11 rights r

on win3Z2

;right”,

print ("Engineering at CIT")
eering at CIT

B. Python Interactive Shell in IDE such as IDLE: (Recommended)
> Open the IDLE application.
> A Python Prompt comprising of three greater-than symbols >>> appears, as shown
below.
> Start typing Python commands and see results

@ |DLE Shell 3.11.2 = O >

Fle Edit 5hell Debug Options Window Help

Python 3.11.2 (tags/v3.11.2:878ead1, Feb 7 2023, 16:38:35) [MSC v.1934
64 bit (AMD64)] on win32
Type "help”, "copyright”, "credits"” or "license()" for more information.
>>>
>>> print("Engineering at CIT")
Engineering at CIT
>>> |

2, Python Script mode (Development mode)
In This mode,
- Write a Python script (or program) - Open the python shell (IDLE), Go to File/New
File, and Write a Python program,
-> Save it as a separate file with an extension .py and
- then Run the Python file.

A |DLE Shell 3.11.1
|
File Edit Shell Debug Options Window Help

New File Cirl+N 13.11.1:a7a450f, Dec 6 2022, 19:.

Spens Ctrl+O tht", "credits" or "license ()" fo:
| Open Module.. Alt+M
Recent Files »

Madiile Browser Alt+C

Leadertain.com 7

PY Unit-l Part-1 Study Material V1

A *progl.py - C\Courses\Python 22-23\code\prog1.py (3.11.1)*

File Edit Format Run Options Window Help

7

2/ print ("Welcom to Python")

3|print ("Engineering at CIT","I-I1 Sem")
4

5

Similar to IDLE, the following are some of Python‘'s commonly used IDEs:
e MS Visual Studio, Jupiter, Pycharm, Eclipse,
e PyDev, Komodo, NetBeans IDE for Python,
e PythonWin and others

Displaying Output with the Print Function
In Python, the print() function is used to display output on the console or terminal.

Syntax of the print() function:

print (*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

e objects are the values to be printed. You can pass multiple objects separated by commas,
and they will be printed with a space between them by default.

e sep parameter specifies the separator between the objects. By default, it is a space
character.

e end parameter specifies the character that should be printed at the end of the output. By
default, it is a newline character.

o file parameter specifies the file object to which the output will be printed. By default, it is the
standard output (sys.stdout).

e flush parameter specifies whether the output stream should be forcibly flushed after
printing. By default, it is False.

Examples of using the print() function:
1. Printing a string:

print ("Hello CIT")

Output:
Hello CIT

Leadertain.com 8

PY Unit-l Part-1 Study Material V1

2. Printing a variable:

college="CIT"

print ("Our college is", college

Output:
Our college is CIT

3. Printing a number:

sem = 2
age = 20
print("We are in",sem,'"nd semester")

print ("We are",age,'"years old")

Output:
We are in 2 nd semester
We are 20 years old

4. Printing multiple items separated by a separator:

print("CO","DLD","DS","Math","Python", sep=', ')

Output:
CO, DLD, DS, Math, Python

5. Printing with format():
a. Syntax: .format(var0O,varl...)
b. Value specifier: {}
C. Each pair of {}s represents a value of the variable specified in

the format() function.
d. The sequence of variables in format() function must match the

sequence of {} in quotes

name = "Varsha"
age = 19

print("My name is {} and I am {} years old.".format (name,bage))

Output:
My name is Varsha and | am 19 years old.

Leadertain.com 9

PY Unit-l Part-1 Study Material V1

6. Printing with format() using position index:
a. Syntax: .format(varO,varl...)
b. Value specifier: {variable posi#}
C. {variable pos#} represents the value of the variable specified
in that position in the format(varO, varl, var2, ...) function.
d. The position of variables in format() function starts with 0 and

increments by 1

name = "Varsha"
age = 19
grade = 'A'

print("{0} has grade {2}. {0} is {1} years old.".format (name,age,grade))

Output:
Varsha has grade A. Varsha is 19 years old.

7. Printing with f string

a. for F means formatted string literals that are more readable and faster. (>= 3.6).

b. To create an f-string, prefix the string with letter “f".

c. These f strings contain replacement fields in curly braces {}

d. The for F in front of strings tell Python to look at the values, expressions, or
instances inside {} and substitute them with the variables' values or results if they
exist.

e. Formatted strings are expressions evaluated at run time (while other string literals
always have a constant value).

#Examplel: Basic fstrings

namel = “Divya”

name2 = “Nitin”

cash1=5000

cash2=7000

total_cash = cashl + cash2

#print in format method-2: Better one
print(f"Cash from {namel} = {cashl}")
print (f"Cash from {name2} = {cash2}")
print (f"Total amount = {total_cash}")

Output:

Cash from Nitin = 100
Cash from Naveen = 200
Total amount = 300

Leadertain.com 10

PY Unit-l Part-1 Study Material V1

#Example2: f string for precision, datetime and number conversion

import decimal

import datetime

precision: nested fields, output: 12.35
width = 12

precision = 4

value = decimal.Decimal ("12.3456789")
print(f'"result: {value: {width}. {precision}}")
print (f"result: {value: {2}.{5}}")

date format specifier, output: March 27, 2017
today = datetime.datetime (year=2023, month=3, day=17)
print (£f"{today:%B %d, %Y}")

hex integer format specifier, output: 0x400
number = 1024
print (f" {number:#0x}")

These are just some examples of how to use the print() function in Python. You can customize the
output by using different arguments and formatting options.

Describe Comments in Python
You can use both single-line and multi-line comments in Python.
1. Single-line comments start with #. Anything written after the # symbol will be ignored by
the Python interpreter and treated as a comment.

2. Multi-line comments are enclosed in triple quotes (or). Anything written within
the triple quotes will be ignored by the Python interpreter and treated as a comment.

Example:
veAeviy Multi line comment or DocString

Title: Find and report grades
Author: Lakshmi

Date from: 01-01-2020 to: 31-12-22
Version: 2.5

Corrections: Line number - 45, Function - calc()

mwrwn

Leadertain.com 11

PY Unit-l Part-1 Study Material V1

#Single line comment

#Perform processing

print("..... ") #End of line comment

#Generate Report

What are the Reserved Keywords in Python?
Keywords are the reserved names in python.
Each keyword has a fixed meaning.
They are case-sensitive.
We cannot use them as identifiers such as variable, function or class names.

Following are 35 reserved keywords and 3 reserved soft keywords.

False break finally lambda while
True class for nonlocal with

None continue from not yield

and def global or

as del if pass Soft Keywords

assert elif import raise match
async else in return case

await except is try _

Note: Soft keywords are context sensitive. They are used in special programming such as pattern
matching.

#List reserved keywords in Python
import keyword

print (keyword.kwlist)

print (keyword.softkwlist)

Output:

['False', 'None', 'True', 'and', 'as', 'assert',K 'async',6 'await',
'break', 'class', 'continue', 'def', 'del', 'elif', 'else',6 'except',
'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is',
'lambda’', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try',
'while', 'with', 'yield']

Leadertain.com 12

PY Unit-l Part-1 Study Material V1

>>> help ("keywords")

Output:
Here is a list of the Python keywords. Enter any keyword to get more help.
False class from or

None continue global pass

True def if raise

and del import return

as elif in try

assert else is while

async except lambda with

await finally nonlocal yield

break for not

>>> help ("if")

The "if"* statement

kkkkkkkkkkkkkkkkkk

The "if" statement is used for conditional execution:

if_stmt ::= "if* assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else" ":" suite]

What are Identifiers and Rules for Creating ldentifiers in Python?

In Python, an identifier is a name used to identify a variable, function, class, or other objects. Here

are the rules for creating identifiers in Python:
1. The name can only contain letters (a to z, A to Z), digits (0 to 9), and underscores (_).

2. The first character must be a letter or an underscore. It cannot be a digit.

3. Identifiers are case-sensitive. For example, "myVar" and "myvar" are two different
identifiers.

4. Special symbols or whitespace in between the identifier are NOT allowed. However, the
only underscore (_) symbol is allowed.

5. You cannot use reserved words as an identifier.
The name should be of a reasonable length. A good identifier is one that describes the
purpose of the variable, function, or class it represents.

7. Avoid using single-character names, except for temporary variables.

13

Leadertain.com

PY Unit-l Part-1 Study Material V1

Valid Identifiers:

bonus (It contains only lowercase alphabets)

total_sum (It contains only ' ' as a special character)
_salary (It starts with an underscore ' ')

area_ (Contains lowercase alphabets and an underscore)
num1 (Here, the numeric digit comes at the end)

num_2 (It starts with lowercase and ends with a digit)

Invalid Identifiers:

5salary (it begins with a digit)

@width (starts with a special character other than' ")
int (itis a keyword)

m n (contains a blank space)

m+n (contains a special character)

Explain Variables in Python

In Python, a variable is a name that refers to a value or object in memory. It is used to store
data so that it can be referenced and manipulated later in the program.

Variables are used to store values of different data types such as numbers, strings, lists,
tuples, and dictionaries.

Variables in Python are dynamically typed. It means we don't need to specify the data type
of a variable when we create it. Python automatically determines the data type of a variable
based on the value we assign to it.

Python variables are case-sensitive.

Variables must be assigned a value before being referenced.

The interpreter allocates memory on the basis of the data type of a variable.

The data type of a variable can change during runtime if a new value of a different data
type is assigned to it.

For example,
o x = "Avinash”, Python automatically makes x as a string variable,
o y =10, Python automatically makes y as an integer variable

Variables in Python can have various data types, including

Integer (int): A whole number, like 3 or -5

Float (float): A decimal number, like 3.14 or -0.5

Boolean (bool): A value that is either True or False

String (str): A sequence of characters, like "hello world" or "42"

Sequences, Sets or Mapping (list, tuple, set, dict)

Leadertain.com 14

Variables can be used
e to assigning values,

in expressions,

[]
e to pass as arguments to functions, and
[

in control structures like loops & conditional statements.

Scope of variables

PY Unit-l Part-1 Study Material V1

A variable's scope is basically the lifespan of that variable. The 2 scopes are
e Global scope variables can be used throughout the entire program

e Local scope variables can only be accessed within the function or module in which they are

defined

Property Global Variable Local Variable

Definition Global variables are declared Local variables are declared
outside the functions within the functions

Keyword global None required

Scope Accessible throughout the code | Accessible inside the

function

Lifetime Throughout the program Only during the function
execution execution

Storage Stored in a fixed location Stored on the stack

selected by the compiler

Parameter Passing

Parameter passing is not
necessary

Parameter passing is
necessary

Changes in a variable
value

Changes in a global variable are
reflected throughout the
program

Changes in a local variable
don't affect other functions
of the program

Example:
global pi=3.14

def area():
r = 10
print (pi*r*r)

area()

#Global variable

#Local wvariable

Leadertain.com

PY Unit-l Part-1 Study Material V1

How to read input from the Keyboard in Python?
You can read input from the keyboard in Python using the built-in input() function. The input()
function reads a line of text from the keyboard and returns it as a string. Here's an example:
Example:
Prompt the user to enter college name
college = input() #or
college = input("Enter college name: ")
Print a greeting message
print("l am at " + name + "!"

Here, the input() function prompts the user to enter college name. The string "Enter college name:
" is passed as an argument to the input() function, which displays it as a prompt to the user. The
user's input is then stored in the college variable.

You can use the input() function to read any text input such as numbers, sentences, or even whole
paragraphs. Note: The input() function always returns a string. So, you must convert the input to
numeric data type using functions like int() or float() to perform numerical operations on it.

What is Type Conversion in Python? Demonstrate the conversion functions in a program.

Type conversion in Python refers to the process of casting or converting a value from one data
type to another data type. Python provides the following built-in functions to perform an explicit
type conversion or type casting.

Type Conversion Function Description

int() converts a value to an integer data type.

float() converts a value to a floating-point data type

str() converts a value to a string data type

bool() converts a value to a Boolean data type (True or False)
list() converts a value to a list data type

tuple() converts a value to a tuple data type

set() converts a value to a set data type

dict() converts a value to a dictionary data type

Leadertain.com 16

Example code
converting string to integer

str num = "100"
int num = int(str_num)

print (int_num) # output: 100

converting integer to string
int_num = 200
str num = str(int_num)

print(str_num) # output: "200"

converting string to float
str num = "3.14"
float num = float(str_num)

print(float num) # output: 3.14

converting float to integer
float num = 3.14
int_num = int(float_ num)

print(int_num) # output: 3

converting list to set
num list = [10, 20, 30, 40]

num_set = set(num_list)

print (num_set) # output: {10, 20,

converting dictionary to list of keys

grade_dict = {"A": 90, "B": 60,

grade list = list(grade dict.keys())
print(grade list) # output: ["A",

PY Unit-l Part-1 Study Material V1

Note: Not all types of conversions are possible, and attempting to convert incompatible types can
result in errors. Therefore, it is important to carefully choose the appropriate type conversion

functions based on the data types involved in the conversion.

Leadertain.com

17

PY Unit-l Part-1 Study Material V1

Performing Calculations in Python

Performing calculations in Python involves manipulating numerical values using,

oCow>

A.

Mathematical Operators,

math Functions,

Variables, and

Order of Operations (Precedence & Associativity in Expressions).

Mathematical Operators for Calculations:

An operator is a symbol used to perform arithmetic and logical operations in a program. It tells the

compiler to perform certain mathematical calculations. The Python programming language supports

the following 7 types of operators

Noahkowh=

Arithmetic Operators

Comparison (or Relational) Operators
Logical Operators

Assignment operators

Bitwise Operators

Membership Operators

Identity operators

1. Arithmetic Operators (+, -, *, /, %, *¥)

The arithmetic operators are the symbols used to perform basic mathematical operations like

addition, subtraction, multiplication, division, and percentage modulo. The following table provides

information about arithmetic operators.

Operator Meaning Example
+ Addition 10+5=15

- Subtraction 10-5=5
* Multiplication 10*5=50
/ / Division returns floating value 10/5=2.0

// // Division returns quotient integer 10/5=2

% Modulo (Remainder of the Division) 5%2=1

ok Exponentiation 3**%2 =90

Leadertain.com 18

PY Unit-l Part-1 Study Material V1

Addition operator (+)

o On Numerical data types, performs mathematical addition

o On Character data types, performs concatenation or appending
Modulo operator (%)

o Used with integer data type only.
Mixed-mode arithmetic: Calculations using both integers and floating-point numbers is
called Mixed-mode arithmetic. The less general type (int) will be automatically converted
into more general type (float) before operation is performed

o Ex: If a circle has radius 5, we compute the area as follows:

o >>>3.14*5*5

o 78.5

o Here, the integer 5 will be converted to a float value 5.0 before calculation.
eval () function is used to calculate an expression written inside the single quotes.

o >>>eval('100/25*2")

o 8.0

Example:

rra

Calculation using Arithmetic Operations

rra

a=10
b=5

print("{} + {}

".format(a,b) ,end="")

print (a+b)

print("{} - {}

".format(a,b) ,end="")

print (a-b)
print("{} * {} = ".format(a,b),end="")
print (a*b)
print("{} / {} = ".format(a,b),end="")

print(a/b) # Division with / returns in floating point data

print("{} // {} = ".format(a,b) ,end="'")

print(a//b) # Division with // returns in integer quotient data

print("{} ** {} = ".format(a,b),end="")
print(a**b)

Leadertain.com 19

PY Unit-l Part-1 Study Material V1

Output:
10+5=15
10-5=5
10*5=50
10/5=2.0
10//5=2

10 ** 5 = 100000

2. Comparison or Relational Operators (<, >, <=, >=, ==, !=)

These operators are used to compare two values and always result in a boolean value
(True or False).

e Used to check the relationship between two values.
e Every relational operator has two results True or False.

e Used to define conditions in a program.

Operator Meaning Example

< Returns TRUE if the first value is smaller than second value, 10 < 5is False
otherwise returns False

> Returns True if the first value is larger than second value, 10 > 5is True
otherwise returns False

<= Returns True if the first value is smaller than or equal to 10 <=5 is False
second value, otherwise returns False

>= Returns True if the first value is larger than or equal to second | 10 >=5 is True
value, otherwise returns False

== Returns True if both values are equal otherwise returns False | 10 == 5 is False

1= Returns True if both values are not equal otherwise returns 10!=5is True
False

Example:

#Commparision or Relational Operators
a =10

b=2>5

print(a > b) #output: True

print(a < b) #output: False

Leadertain.com 20

PY Unit-l Part-1 Study Material V1

print(a == b) #output: False

print(a '= b) # not equal to, output: True

print(a >= b) #output: True

print(a <= b) #output: False

3. Logical Operators (and, or, not)

The logical operators are the symbols that combine multiple conditions into one condition. The

following table provides information about logical operators.

Operator Meaning Example
and Returns True if all conditions are True otherwise returns False | 10 <5 and 12 > 10 is False
or Returns False if all conditions are False otherwise returns True [10 <5o0r 12> 10 is True
not Returns True if condition is False and returns False if the not(10 <5 and 12 > 10) is
condition is True True
e Logical and - Returns True only if ALL conditions are True, if any of the conditions is
False then complete condition becomes False.
e Logical or - Returns True if ANY condition is True, if all conditions are False then the
complete condition becomes False.
Example:

#Logical Opertaors

a = True
b = False

print(a and b) #output: False

print(a or b) #output: True

print (not a) #output: False

a=10
b=5
la
lo
1n

print ("\n Logical AND

(a<b) and (b<c);
(a<b) or (b<c);
not (a<b) ;

",la); #False

print("\n Logical OR = ",lo); #True
print("\n Logical NOT = ",1ln); #True

Leadertain.com

21

PY Unit-l Part-1 Study Material V1

4. Assignment Operators (=, +=, -=, *=, /=, %=)

The assignment operators are used to assign the right-hand side value (Rvalue) to the left-hand side

variable (Lvalue).

The assignment operator is also used along with arithmetic operators. The following table describes

all the assignment operators in the Python programming language.

Operator Meaning Example
= Assign the right-hand side value to left-hand side variable A=15
+= Add both left and right-hand side values and store the result into A+=10
left-hand side variable = A =A+10
-= Subtract right-hand side value from left-hand side variable value and A-=B
store the result into left-hand side variable =>A=AB
*= Multiply right-hand side value with left-hand side variable value and A *=B
store the result into left-hand side variable = A = A*B
/= Divide left-hand side variable value with right-hand side variable value A/=B
and store the result into the left-hand side variable = A=A/B
%= Divide left-hand side variable value with right-hand side variable value A %=B
and store the remainder into the left-hand side variable = A=A%B

Multiple Assignment
You can assign a single value to more than one variable simultaneously.

Syntax

vari=var2=var3...varn= <expr>

Example:
x=y=z=5

Example:
id, name, marks = 100, ‘Kiran’, 97
The variables id, name, marks simultaneously get the new values 100, ‘Kiran’, 97 respectively.

Example:

#Assignment operators

a=2
a += 5

#fequivalent to a = a + 5

Leadertain.com

PY Unit-l Part-1 Study Material V1

print(a) #output: 7
a =3 #fequivalent to a = a - 3
print(a) #output: 4

a *= 2 # equivalent to a = a * 2

print(a) # output: 8

a /=14 #fequivalent to a = a / 4
print(a) #output: 2.0
a %= 2 #equivalent to a = a % 2

print(a) #output: 0.0

5. Bitwise Operators (&, |, A, ~, >>, <<)

The bitwise operators are used to perform bit-level operations in the Python programming language.
When we use the bitwise operators, the operations are performed based on the binary values. The
following truth table describes all the bitwise operators in Python programming language.

a b a&b alb a’b ~a
(AND) (OR) (XOR) (NOT)

1 1 1 1 0 0

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

Let us consider two variables A and B as A =25 (00011001) and B = 20 (00010100).

Operator Meaning Example
& the result of Bitwise AND is 1 if all the bits are 1; A&B
otherwise, itis 0 = 16 (00010000)
| the result of Bitwise OR is 0 if all the bits are O; A|B
otherwise, it is 1 = 29 (00011101)
A the result of Bitwise XOR is 0 if all the bits are same; A*B

otherwise, it is 1 = 13 (00001101)

~ the result of Bitwise once complement is the negation of the ~A
bit (Flipping) = 6 (00000110)

Leadertain.com 23

PY Unit-l Part-1 Study Material V1

<< the Bitwise left shift operator shifts all the bits to the left by A<<3
the specified number of positions = 200 (11001000)
Formula: x<<y = x*2V or 200 (A * 2%)

>> the Bitwise right shift operator shifts all the bits to the right A>>1
by the specified number of positions = 12 (00001100)
Formula: x>>y = x/2¥ or12 (A2

Example: [bitwise operators]

#Bitwise Operators

m = 10

n = 20

and val = (mé&n)

or val = (m|n)

not val = (~m)

xor_val = (m”n)

print ("AND value = ",and val) # 0

print ("OR value = ",or_val) # 30

print ("NOT value = ",not val) # -11
print ("XOR value = ",xor val) # 30

print ("left shift value = ", m << 1) # 20
print("right shift value = ", m >> 1) # 5

6. Membership Operators: Membership operators are used to testing if a value is a member of a
sequence.

Operator Syntax Description
in xiny Returns True if a sequence with the specified value is present in
the object.
not in xnotiny Returns True if a sequence with the specified value is not
present in the object.

Leadertain.com 24

Example:
#Membership Operators in and not in

marks list = [70, 40, 60, 90]
print (90 in marks list) # output: True

print (66 not in marks_list) # output: True

branches = ["AI", "AIML", "CSE", "ECE"]
print ("CSE" in branches) #True

branches = ["AI", "AIML", "CSE", "ECE"]
print ("CSE" not in branches) #False

PY Unit-l Part-1 Study Material V1

7. Identity Operators: Identity operators are used to comparing the memory addresses (or
locations) of two objects. These are used to check if two values (variable) are located on the same
part of the memory. If the x is a variable contain some value, it is assigned to variable y. Now both
variables are pointing (referring) to the same location on the memory.

Operator Syntax Description

Ssame memory

is Xisy This returns True if both variables are the same object or

object or same memory

is not xis noty | This returns True if both variables are not the same

Example:
#Identity Operators compare addresses

x =10
y =X

print(x is y) # output: True

a=1[1, 2, 3]

b= [1, 2, 3]

print(a is b) # output: False
print(a is not b) # output: True

Leadertain.com

25

PY Unit-l Part-1 Study Material V1

B. math Functions for Calculations:

Python has built-in math functions for more complex calculations such as trigonometric, square
root, log or constant values. You need to import the math module to access these functions.

Example:

import math

#Finding Small & Big numbers
smallnum = min(7, 17, 27)

bignum = max(7, 17, 27)

print("Min value: ", smallnum)
print("Max value: ", bignum)
#Finding absolute nos

absolutenum = abs(-7.25)

print ("Absolute Positive Number: ", absolutenum)
#Finding exponent

powernum = pow (2, 3)

print ("Power of Number: ", powernum)
#Finding square root

sqgrtnum = math.sqrt(81)

print ("Square root Number: ", sgrtnum)
#Finding ceil and floor

numl = math.ceil (7.4)

num2 = math.floor (7.4)
print("Ceiling Number: ", numl)
print ("Floor Number: ", num2)

Trigonometric functions
print(math.sin(math.pi/2)) # 1.0
print (math.cos(math.pi)) # -1.0

Logarithms

print (math.logl0(100)) # 2.0

Constants

print (math.pi) # 3.141592653589793
print(math.e) # 2.718281828459045

Leadertain.com

26

PY Unit-l Part-1 Study Material V1

C. Variables for Calculations:
You can assign values to variables and perform calculations with them.

#Calculate the area of the rectangle using height & width variables
h = 30

w = 20

area = h * w

print(area) # 600

Python also supports shorthand operators that allow you to perform a calculation and assign the
result to the same variable.

a =10
print(a) # 10
a +=>5
print(a) # 15

D. Order of Operations in Expressions for Calculations:

Expressions in Python

An expression in python consists of operators and operands (variables or values).
An expression may have several operations. The Python interpreter evaluates these
operations based on an ordered hierarchy. This is called Operator Precedence and
Associativity.

Operators are symbols that perform tasks such as arithmetic operations, logical operations,
membership operations, etc.

Operands are the constant values or variable values on which the operators perform the task. The
operand can be a direct value or variable.

Types of Expressions:

e Simple Expression - contains only one operator.
o 2+5
o -a

e Complex Expression - contains more than one operator
o 2+5*7 (we reduce it to a series of simple expressions)
o First, we calculate the expression 5 * 7 to 35 and
o Then, we calculate the expression 2 + 35 to 37 as a result.

e Expressions return values as a boolean, an integer, or any other Python data type.

Leadertain.com 27

PY Unit-l Part-1 Study Material V1

Precedence (priority) is used to find the order of different operators to be evaluated in a single

statement.

2+4+3%4 // * evaluates first
2+12 // + evaluates next
14

Associativity is used to find the order of operators with same precedence to be evaluated in a
single statement.

/Neft to right associativity
3*#8/4%*5 //both * and / has same precedence or priority
24 /4 *5 //left to right associativity
6 *5
30

//right to left associativity
a=b=c=0 // all =have same precedence or priority

- The precedence rule of thumb arithmetic calculations could be BODMAS (or PEMDAS) order of
operations (precedence) when evaluating expressions. Parentheses can be used to specify the
order of operations.

B - Bracket P - Parantheses

O- Of Squareroot or Of Exponent E - Exponent or Squareroot

DM - Division or Multiplication (same priority) MD - Multiplication or Division (same priority)
AS - Addition or Subtraction (same priority) AS - Addition or Subtraction (same priority)

Leadertain.com 28

Python Operators Precedence Table

PY Unit-l Part-1 Study Material V1

Following is the operator Precedence table in Python. The operators are arranged in the
descending order of their precedence (Highest precedence at the top and Lowest precedence at

the bottom). By default, the Associativity is left-to-right except as mentioned below.

Precedence Operator Description Associativity
1 () Parentheses (Highest precedence)
x[index], x[index],
x(arguments...), Subscription, slicing, call, attribute
2 x.attribute reference
3 await x Await expression
4 o Exponentiation right-to-left
5 +X, =X, ~X Unary plus, Unary minus, bitwise NOT right-to-left
Multiplication, matrix multiplication,
6 @, % division, floor division, remainder
7 +, — Addition and subtraction
8 <<, >> Left and right Shifts
9 & Bitwise AND
10 A Bitwise XOR
11 | Bitwise OR
Identity operators, Membership
12 is, is not, in, not in, |operators
13 == I= Equality operators
14 > >= < <= Comparison operators
15 not x Boolean NOT
16 and Boolean AND
17 or Boolean OR
18 if-else Conditional expression
19 lambda Lambda expression
20 = Assignment expression

Leadertain.com

29

PY Unit-l Part-1 Study Material V1

Precedence of Operators:

Example1:

a=(10+12"3%34/8) #

print (a)

Output: 10.25

Explanation:

Precedence of /,% and * are greater than Precedence of +
10+12*3% 34/8=10+36%34/8=10+2/8=10+0.25=10.25

Example2:

b=(4"2<<3+48/ 24)

print (b)

Output: 68

Explanation:

Precedence of // greater than + greater than << greater than * (XOR)
(472<<3+481//124)=(4"2<<3+2)=(4"2<<5)=(4"64)=68

Side Effects
A side effect is an action that results from the evaluation of an expression.

Expressions with Side Effects

x=4 /I x receives value 4

x=x+4 /I x receives value 7

y=++x*2 [/ yreceives 16 and ALSO x value changes to 8

Expressions without Side Effects
a=4, b=4, c=5
result=a*4 +b/2-c*b //values of a, b, ¢, d do not change

Leadertain.com 30

