

One piece of advice for fi rst year students:
The Computer Science major can be challenging and intimidating at fi rst, but never
give up. Take advantage of the summer internships which will give you hands-on
experience. That way you will have a better idea of what you would like to do in the
future (networking, Web development, research, teaching). Also, take advantage
of on-campus work opportunities at the Help Desk or a multimedia center, creating
applications for departments and student organizations, or even doing research for a
professor.

What’s the most interesting project you’ve worked on as a professional?
I have worked on several interesting projects for diff erent government agencies. One
of the most recent of these was AEIS (Academic Exchange Information System) at the
Bureau of Educational and Cultural Aff airs at the Department of State, Washington
DC. AEIS is Web-based and gathers data received from exchange program agencies
and institutions. It also provides the means for capturing and modifying as well as
reporting on program data. I have worked on all aspects of the software development
life cycle, but the rewarding part at the end of the day is to see the system live and
working, and to see users happy with it. I have learned to take simple, basic con-
cepts that I learned from my computer science courses and use them in learning new
programming languages, in daily research at work, and in analyzing and problem
solving.

Where do you see yourself in ten years?
I see myself a leader in technology, carrying a Master’s degree and contributing my
abilities in an innovative, challenging, and rewarding environment. I also see myself
teaching and mentoring new graduates, showing them the path to advancement and
success.

Amina Elgouacem graduated from Washington
and Lee University in 2003 with a BS in Computer
Science and a double major in French and is now
working at Primescape Solutions, a government
contractor company, as a Senior Web Developer/
Senior Consultant.

55minutes with...
Amina Elgouacem

1423902181_ifc_se.indd 11423902181_ifc_se.indd 1 11/19/08 8:52:19 AM11/19/08 8:52:19 AM

Fundamentals of
Python:

From First Programs
Through Data Structures

Kenneth A. Lambert

Martin Osborne, Contributing Author

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Fundamentals of Python: From First
Programs Through Data Structures
Kenneth A. Lambert

Executive Editor: Marie Lee

Acquisitions Editor: Amy Jollymore

Senior Product Manager: Alyssa Pratt

Development Editor: Ann Shaffer

Editorial Assistant: Julia Leroux-Lindsey

Marketing Manager: Bryant Chrzan

Content Project Manager: Matt Hutchinson

Art Director: Marissa Falco

Compositor: Gex Publishing Services

© 2010 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

ISBN-13: 978-1-4239-0218-8

ISBN-10: 1-4239-0218-1

Course Technology
25 Thomson Place
Boston, Massachusetts 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit course.cengage.com.

Purchase any of our products at your local college store or at our preferred
online store www.ichapters.com.

Some of the product names and company names used in this book have
been used for identification purposes only and may be trademarks or regis-
tered trademarks of their respective manufacturers and sellers.

Any fictional data related to persons or companies or URLs used through-
out this book is intended for instructional purposes only. At the time this
book was printed, any such data was fictional and not belonging to any real
persons or companies.

Course Technology, a part of Cengage Learning, reserves the right to revise this
publication and make changes from time to time in its content without notice.

The programs in this book are for instructional purposes only.
They have been tested with care, but are not guaranteed for any particular
intent beyond educational purposes. The author and the publisher do not
offer any warranties or representations, nor do they accept any liabilities
with respect to the programs.

Printed in Canada
1 2 3 4 5 6 7 12 11 10 09 08

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

[CHAPTER] 1 INTRODUCTION
1.1 Two Fundamental Ideas of Computer Science: Algorithms and Information

Processing ...2
1.1.1 Algorithms ..2
1.1.2 Information Processing..4

1.1 Exercises..5
1.2 The Structure of a Modern Computer System...6

1.2.1 Computer Hardware ..6
1.2.2 Computer Software..8

1.2 Exercises..10
1.3 A Not-So-Brief History of Computing Systems...10

1.3.1 Before Electronic Digital Computers ...11
1.3.2 The First Electronic Digital Computers (1940–1950)15
1.3.3 The First Programming Languages (1950–1965).................................16
1.3.4 Integrated Circuits, Interaction, and Timesharing (1965–1975)18
1.3.5 Personal Computing and Networks (1975–1990)19
1.3.6 Consultation, Communication, and Ubiquitous Computing

(1990–Present)..21
1.4 Getting Started with Python Programming..23

1.4.1 Running Code in the Interactive Shell ...23
1.4.2 Input, Processing, and Output...25
1.4.3 Editing, Saving, and Running a Script ..27
1.4.4 Behind the Scenes: How Python Works ...29

1.4 Exercises..30
1.5 Detecting and Correcting Syntax Errors...30
1.5 Exercises..32

Suggestions for Further Reading ...32
Summary ...32
Review Questions ...35
Projects..37

[CHAPTER] 2 SOFTWARE DEVELOPMENT, DATA TYPES, AND EXPRESSIONS 39
2.1 The Software Development Process ...40
2.1 Exercises..43
2.2 Case Study: Income Tax Calculator...43

2.2.1 Request ...43
2.2.2 Analysis ...44
2.2.3 Design...44
2.2.4 Implementation (Coding) ..45
2.2.5 Testing ..46

Table of Contents

2.3 Strings, Assignment, and Comments...47
2.3.1 Data Types..47
2.3.2 String Literals...48
2.3.3 Escape Sequences ...50
2.3.4 String Concatenation ...50
2.3.5 Variables and the Assignment Statement ..51
2.3.6 Program Comments and Docstrings...52

2.3 Exercises..53
2.4 Numeric Data Types and Character Sets ..54

2.4.1 Integers and Long Integers..54
2.4.2 Floating-Point Numbers..55
2.4.3 Character Sets ..56

2.4 Exercises..57
2.5 Expressions ...58

2.5.1 Arithmetic Expressions ..58
2.5.2 Mixed-Mode Arithmetic and Type Conversions60

2.5 Exercises..63
2.6 Using Functions and Modules ...63

2.6.1 Calling Functions: Arguments and Return Values................................64
2.6.2 The math Module ...65
2.6.3 The Main Module..66
2.6.4 Program Format and Structure ...67
2.6.5 Running a Script from a Terminal Command Prompt68

2.6 Exercises..70
Summary ...70
Review Questions ...72
Projects..73

[CHAPTER] 3 CONTROL STATEMENTS 75
3.1 Definite Iteration: The for Loop...76

3.1.1 Executing a Statement a Given Number of Times76
3.1.2 Count-Controlled Loops ...77
3.1.3 Augmented Assignment ...79
3.1.4 Loop Errors: Off-by-One Error..80
3.1.5 Traversing the Contents of a Data Sequence..80
3.1.6 Specifying the Steps in the Range ...81
3.1.7 Loops That Count Down..82

3.1 Exercises..83
3.2 Formatting Text for Output ...83
3.2 Exercises..86
3.3 Case Study: An Investment Report..87

3.3.1 Request ...87
3.3.2 Analysis ...87
3.3.3 Design...88
3.3.4 Implementation (Coding) ..88
3.3.5 Testing ..90

3.4 Selection: if and if-else Statements ...91
3.4.1 The Boolean Type, Comparisons, and Boolean Expressions91
3.4.2 if-else Statements ...92

3.4.3 One-Way Selection Statements...94
3.4.4 Multi-way if Statements ..95
3.4.5 Logical Operators and Compound Boolean Expressions.....................97
3.4.6 Short-Circuit Evaluation ...99
3.4.7 Testing Selection Statements ...100

3.4 Exercises..101
3.5 Conditional Iteration: The while Loop ..102

3.5.1 The Structure and Behavior of a while Loop102
3.5.2 Count Control with a while Loop..104
3.5.3 The while True Loop and the break Statement105
3.5.4 Random Numbers..107
3.5.5 Loop Logic, Errors, and Testing ...109

3.5 Exercises..109
3.6 Case Study: Approximating Square Roots...110

3.6.1 Request ...110
3.6.2 Analysis ...110
3.6.3 Design...110
3.6.4 Implementation (Coding) ..112
3.6.5 Testing ..113
Summary ...113
Review Questions ...116
Projects..118

[CHAPTER] 4 STRINGS AND TEXT FILES 121
4.1 Accessing Characters and Substrings in Strings..122

4.1.1 The Structure of Strings..122
4.1.2 The Subscript Operator...123
4.1.3 Slicing for Substrings ...124
4.1.4 Testing for a Substring with the in Operator125

4.1 Exercises..126
4.2 Data Encryption ...126
4.2 Exercises..129
4.3 Strings and Number Systems...129

4.3.1 The Positional System for Representing Numbers............................130
4.3.2 Converting Binary to Decimal ..131
4.3.3 Converting Decimal to Binary ..132
4.3.4 Conversion Shortcuts...133
4.3.5 Octal and Hexadecimal Numbers ...134

4.3 Exercises..136
4.4 String Methods ...136
4.4 Exercises..140
4.5 Text Files ...141

4.5.1 Text Files and Their Format..141
4.5.2 Writing Text to a File ..142
4.5.3 Writing Numbers to a File ..142
4.5.4 Reading Text from a File ...143
4.5.5 Reading Numbers from a File ...145
4.5.6 Accessing and Manipulating Files and Directories on Disk...............146

4.5 Exercises..148
4.6 Case Study: Text Analysis...148

4.6.1 Request ...149
4.6.2 Analysis ...149
4.6.3 Design...150
4.6.4 Implementation (Coding) ..151
4.6.5 Testing ..152
Summary ...153
Review Questions ...154
Projects..156

[CHAPTER] 5 LISTS AND DICTIONARIES 159
5.1 Lists ...160

5.1.1 List Literals and Basic Operators ..160
5.1.2 Replacing an Element in a List ...163
5.1.3 List Methods for Inserting and Removing Elements165
5.1.4 Searching a List..167
5.1.5 Sorting a List..168
5.1.6 Mutator Methods and the Value None ...168
5.1.7 Aliasing and Side Effects..169
5.1.8 Equality: Object Identity and Structural Equivalence........................171
5.1.9 Example: Using a List to Find the Median of a Set of Numbers172
5.1.10 Tuples ...173

5.1 Exercises..174
5.2 Defining Simple Functions ..175

5.2.1 The Syntax of Simple Function Definitions175
5.2.2 Parameters and Arguments..176
5.2.3 The return Statement...177
5.2.4 Boolean Functions..177
5.2.5 Defining a main Function...178

5.2 Exercises..179
5.3 Case Study: Generating Sentences ..179

5.3.1 Request ...179
5.3.2 Analysis ...179
5.3.3 Design...180
5.3.4 Implementation (Coding) ..182
5.3.5 Testing ..183

5.4 Dictionaries...183
5.4.1 Dictionary Literals ...183
5.4.2 Adding Keys and Replacing Values ...184
5.4.3 Accessing Values...185
5.4.4 Removing Keys ..186
5.4.5 Traversing a Dictionary ...186
5.4.6 Example: The Hexadecimal System Revisited....................................188
5.4.7 Example: Finding the Mode of a List of Values189

5.4 Exercises..190

5.5 Case Study: Nondirective Psychotherapy ...191
5.5.1 Request ...191
5.5.2 Analysis ...191
5.5.3 Design...192
5.5.4 Implementation (Coding) ..193
5.5.5 Testing ..195
Summary ...195
Review Questions ...196
Projects..198

[CHAPTER] 6 DESIGN WITH FUNCTIONS 201
6.1 Functions as Abstraction Mechanisms...202

6.1.1 Functions Eliminate Redundancy..202
6.1.2 Functions Hide Complexity ..203
6.1.3 Functions Support General Methods with Systematic Variations204
6.1.4 Functions Support the Division of Labor ...205

6.1 Exercises..205
6.2 Problem Solving with Top-Down Design...206

6.2.1 The Design of the Text-Analysis Program ...206
6.2.2 The Design of the Sentence-Generator Program..............................207
6.2.3 The Design of the Doctor Program ...209

6.2 Exercises..210
6.3 Design with Recursive Functions ..211

6.3.1 Defining a Recursive Function..211
6.3.2 Tracing a Recursive Function ..213
6.3.3 Using Recursive Definitions to Construct Recursive Functions214
6.3.4 Recursion in Sentence Structure ...214
6.3.5 Infinite Recursion...215
6.3.6 The Costs and Benefits of Recursion..216

6.3 Exercises..218
6.4 Case Study: Gathering Information from a File System219

6.4.1 Request ...219
6.4.2 Analysis ...220
6.4.3 Design...222
6.4.4 Implementation (Coding) ..224

6.5 Managing a Program’s Namespace ..227
6.5.1 Module Variables, Parameters, and Temporary Variables227
6.5.2 Scope...228
6.5.3 Lifetime ..229
6.5.4 Default (Keyword) Arguments ..230

6.5 Exercises..232
6.6 Higher-Order Functions (Advanced Topic) ..233

6.6.1 Functions as First-Class Data Objects ..233
6.6.2 Mapping..234
6.6.3 Filtering ..236
6.6.4 Reducing...237
6.6.5 Using lambda to Create Anonymous Functions...............................237
6.6.6 Creating Jump Tables ..238

6.6 Exercises..239
Summary ...240
Review Questions ...242
Projects..244

[CHAPTER] 7 SIMPLE GRAPHICS AND IMAGE PROCESSING 247
7.1 Simple Graphics ...248

7.1.1 Overview of Turtle Graphics ...248
7.1.2 Turtle Operations...249
7.1.3 Object Instantiation and the turtlegraphics Module251
7.1.4 Drawing Two-Dimensional Shapes ...254
7.1.5 Taking a Random Walk..255
7.1.6 Colors and the RGB System..256
7.1.7 Example: Drawing with Random Colors ..257
7.1.8 Using the str Function with Objects ..259

7.1 Exercises..260
7.2 Case Study: Recursive Patterns in Fractals..261

7.2.1 Request ...262
7.2.2 Analysis ...262
7.2.3 Design...263
7.2.4 Implementation (Coding) ..265

7.3 Image Processing ...266
7.3.1 Analog and Digital Information ...266
7.3.2 Sampling and Digitizing Images ...267
7.3.3 Image File Formats ..267
7.3.4 Image-Manipulation Operations ...268
7.3.5 The Properties of Images ..269
7.3.6 The images Module ..269
7.3.7 A Loop Pattern for Traversing a Grid ..273
7.3.8 A Word on Tuples..274
7.3.9 Converting an Image to Black and White ..275
7.3.10 Converting an Image to Grayscale..277
7.3.11 Copying an Image ..278
7.3.12 Blurring an Image ..279
7.3.13 Edge Detection ..280
7.3.14 Reducing the Image Size ...281

7.3 Exercises..283
Summary ...284
Review Questions ...285
Projects..287

[CHAPTER] 8 DESIGN WITH CLASSES 291
8.1 Getting Inside Objects and Classes ...292

8.1.1 A First Example: The Student Class..293
8.1.2 Docstrings ..296
8.1.3 Method Definitions..296
8.1.4 The __init__ Method and Instance Variables................................297
8.1.5 The __str__ Method..298

8.1.6 Accessors and Mutators ...298
8.1.7 The Lifetime of Objects ..299
8.1.8 Rules of Thumb for Defining a Simple Class.....................................300

8.1 Exercises..301
8.2 Case Study: Playing the Game of Craps ...301

8.2.1 Request ...301
8.2.2 Analysis ...301
8.2.3 Design...302
8.2.4 Implementation (Coding) ..304

8.3 Data-Modeling Examples...307
8.3.1 Rational Numbers ..307
8.3.2 Rational Number Arithmetic and Operator Overloading..................309
8.3.3 Comparisons and the __cmp__ Method..310
8.3.4 Equality and the __eq__ Method ..311
8.3.5 Savings Accounts and Class Variables ...312
8.3.6 Putting the Accounts into a Bank..315
8.3.7 Using cPickle for Permanent Storage of Objects317
8.3.8 Input of Objects and the try-except Statement............................318
8.3.9 Playing Cards ...319

8.3 Exercises..323
8.4 Case Study: An ATM..323

8.4.1 Request ...323
8.4.2 Analysis ...323
8.4.3 Design...325
8.4.4 Implementation (Coding) ..327

8.5 Structuring Classes with Inheritance and Polymorphism...................................329
8.5.1 Inheritance Hierarchies and Modeling ...330
8.5.2 Example: A Restricted Savings Account..331
8.5.3 Example: The Dealer and a Player in the Game of Blackjack333
8.5.4 Polymorphic Methods..338
8.5.5 Abstract Classes ...338
8.5.6 The Costs and Benefits of Object-Oriented Programming...............339

8.5 Exercises..341
Summary ...341
Review Questions ...343
Projects..344

[CHAPTER] 9 GRAPHICAL USER INTERFACES 347
9.1 The Behavior of Terminal-Based Programs and GUI-Based Programs............348

9.1.1 The Terminal-Based Version...348
9.1.2 The GUI-Based Version..349
9.1.3 Event-Driven Programming..351

9.1 Exercises..353
9.2 Coding Simple GUI-Based Programs ...353

9.2.1 Windows and Labels ..354
9.2.2 Displaying Images ..355
9.2.3 Command Buttons and Responding to Events...................................356
9.2.4 Viewing the Images of Playing Cards ...358

9.2.5 Entry Fields for the Input and Output of Text361
9.2.6 Using Pop-up Dialog Boxes ..363

9.2 Exercises..364
9.3 Case Study: A GUI-Based ATM..365

9.3.1 Request ...365
9.3.2 Analysis ...365
9.3.3 Design...366
9.3.4 Implementation (Coding) ..367

9.4 Other Useful GUI Resources ..370
9.4.1 Colors ...371
9.4.2 Text Attributes..371
9.4.3 Sizing and Justifying an Entry ...372
9.4.4 Sizing the Main Window...373
9.4.5 Grid Attributes ...374
9.4.6 Using Nested Frames to Organize Components................................378
9.4.7 Multi-Line Text Widgets ...379
9.4.8 Scrolling List Boxes ...382
9.4.9 Mouse Events ...385
9.4.10 Keyboard Events ..386

9.4 Exercises..387
Summary ...388
Review Questions ...389
Projects..390

[CHAPTER] 10 MULTITHREADING, NETWORKS, AND CLIENT/SERVER
PROGRAMMING 393

10.1 Threads and Processes ...394
10.1.1 Threads...395
10.1.2 Sleeping Threads..398
10.1.3 Producer, Consumer, and Synchronization ..400

10.1 Exercises..407
10.2 Networks, Clients, and Servers..407

10.2.1 IP Addresses ...407
10.2.2 Ports, Servers, and Clients...409
10.2.3 Sockets and a Day/Time Client Script..410
10.2.4 A Day/Time Server Script ...412
10.2.5 A Two-Way Chat Script...414
10.2.6 Handling Multiple Clients Concurrently ...416
10.2.7 Setting Up Conversations for Others ...418

10.2 Exercises..420
10.3 Case Study: A Multi-Client Chat Room ...421

10.3.1 Request ..421
10.3.2 Analysis ..421
10.3.3 Design...422
10.3.4 Implementation (Coding) ..423
Summary ...425
Review Questions ...426
Projects..428

[CHAPTER] 11 SEARCHING, SORTING, AND COMPLEXITY ANALYSIS 431
11.1 Measuring the Efficiency of Algorithms..432

11.1.1 Measuring the Run Time of an Algorithm ..432
11.1.2 Counting Instructions ..435
11.1.3 Measuring the Memory Used by an Algorithm..................................438

11.1 Exercises..439
11.2 Complexity Analysis ...439

11.2.1 Orders of Complexity ..439
11.2.2 Big-O Notation ..441
11.2.3 The Role of the Constant of Proportionality442

11.2 Exercises..443
11.3 Search Algorithms ..443

11.3.1 Search for a Minimum ..444
11.3.2 Linear Search of a List ..444
11.3.3 Best-Case, Worst-Case, and Average-Case Performance...................445
11.3.4 Binary Search of a List...446
11.3.5 Comparing Data Items and the cmp Function...................................448

11.3 Exercises..449
11.4 Sort Algorithms ..450

11.4.1 Selection Sort ...450
11.4.2 Bubble Sort...452
11.4.3 Insertion Sort ...453
11.4.4 Best-Case, Worst-Case, and Average-Case Performance Revisited...455

11.4 Exercises..456
11.5 An Exponential Algorithm: Recursive Fibonacci ..457
11.6 Converting Fibonacci to a Linear Algorithm..458
11.7 Case Study: An Algorithm Profiler..460

11.7.1 Request ...460
11.7.2 Analysis ...460
11.7.3 Design...462
11.7.4 Implementation (Coding) ..463
Summary ...466
Review Questions ...467
Projects..468

[CHAPTER] 12 TOOLS FOR DESIGN, DOCUMENTATION, AND TESTING 471
12.1 Software Design with UML...472

12.1.1 UML and Modeling...473
12.1.2 Use Case Diagrams ..473
12.1.3 Class Diagrams...476
12.1.4 Collaboration Diagrams...479
12.1.5 From Collaboration Diagram to Code ...481
12.1.6 Inheritance..482

12.1 Exercises..483
12.2 Documentation ...484

12.2.1 Writing APIs ..484
12.2.2 Revisiting the Student Class ..485
12.2.3 Preconditions and Postconditions ..487

12.2.4 Enforcing Preconditions with Exceptions...488
12.2.5 Web-Based Documentation with pydoc..490

12.2 Exercises..493
12.3 Testing...493

12.3.1 What to Test...494
12.3.2 Three Approaches to Choosing Test Data..494

12.3.2.1 Haphazard Testing ..495
12.3.2.2 Black-Box Testing ...495
12.3.2.3 White-Box Testing..495

12.3.3 When to Test..496
12.3.3.1 Unit Testing ..496
12.3.3.2 Integration Testing..496
12.3.3.3 Acceptance Testing ...496
12.3.3.4 Regression Testing ..497

12.3.4 Proofs of Program Correctness ...497
12.3.5 Unit Testing in Python ..498

12.3 Exercises..502
Suggestions for Further Reading ...502
Summary ...503
Review Questions ...504
Projects..505

[CHAPTER] 13 COLLECTIONS, ARRAYS, AND LINKED STRUCTURES 507
13.1 Overview of Collections ...508

13.1.1 Linear Collections..508
13.1.2 Hierarchical Collections ..508
13.1.3 Graph Collections ..509
13.1.4 Unordered Collections ..510
13.1.5 Operations on Collections ...510
13.1.6 Abstraction and Abstract Data Types ..512

13.1 Exercises..513
13.2 Data Structures for Implementing Collections: Arrays513

13.2.1 The Array Data Structure..513
13.2.2 Random Access and Contiguous Memory ..516
13.2.3 Static Memory and Dynamic Memory..517
13.2.4 Physical Size and Logical Size...518

13.2 Exercises..519
13.3 Operations on Arrays ...519

13.3.1 Increasing the Size of an Array..520
13.3.2 Decreasing the Size of an Array ..521
13.3.3 Inserting an Item into an Array That Grows......................................521
13.3.4 Removing an Item from an Array ...523
13.3.5 Complexity Trade-Off: Time, Space, and Arrays524

13.3 Exercises..525
13.4 Two-Dimensional Arrays (Grids)...525

13.4.1 Processing a Grid ...526
13.4.2 Creating and Initializing a Grid ..526
13.4.3 Defining a Grid Class ..527
13.4.4 Ragged Grids and Multidimensional Arrays.......................................528

13.4 Exercises..528
13.5 Linked Structures ...529

13.5.1 Singly Linked Structures and Doubly Linked Structures530
13.5.2 Noncontiguous Memory and Nodes...531
13.5.3 Defining a Singly Linked Node Class...533
13.5.4 Using the Singly Linked Node Class ..534

13.5 Exercises..536
13.6 Operations on Singly Linked Structures ...536

13.6.1 Traversal ...536
13.6.2 Searching ..538
13.6.3 Replacement ...539
13.6.4 Inserting at the Beginning ...539
13.6.5 Inserting at the End ...540
13.6.6 Removing at the Beginning ...542
13.6.7 Removing at the End ...543
13.6.8 Inserting at Any Position ...544
13.6.9 Removing at Any Position ...547
13.6.10 Complexity Trade-Off: Time, Space, and Singly Linked Structures.549

13.6 Exercises..550
13.7 Variations on a Link ...550

13.7.1 A Circular Linked Structure with a Dummy Header Node550
13.7.2 Doubly Linked Structures ...552

13.7 Exercises..555
Summary ..555
Review Questions ...556
Projects ..557

[CHAPTER] 14 LINEAR COLLECTIONS: STACKS 561
14.1 Overview of Stacks ...562
14.2 Using a Stack ..563

14.2.1 The Stack Interface..564
14.2.2 Instantiating a Stack ...565
14.2.3 Example Application: Matching Parentheses......................................566

14.2 Exercises..568
14.3 Three Applications of Stacks ...569

14.3.1 Evaluating Arithmetic Expressions..569
14.3.2 Evaluating Postfix Expressions ..570

14.3.2 Exercises..572
14.3.3 Converting Infix to Postfix ..572

14.3.3 Exercises..575
14.3.4 Backtracking ...575
14.3.5 Memory Management..577

14.4 Implementations of Stacks ...580
14.4.1 Test Driver..580
14.4.2 Array Implementation..581
14.4.3 Linked Implementation ...584
14.4.4 Time and Space Analysis of the Two Implementations......................587

14.4 Exercises..588

14.5 Case Study: Evaluating Postfix Expressions ..589
14.5.1 Request ...589
14.5.2 Analysis ...589
14.5.3 Design...592

14.5.3.1 Instance Variables and Methods for Class
PFEvaluatorView ..593

14.5.3.2 Instance Variables and Methods for Class
PFEvaluatorModel ..594

14.5.3.3 Instance Variables and Methods for Class
PFEvaluator..594

14.5.3.4 Instance Variables and Methods for Class Scanner595
14.5.3.5 Instance and Class Variables and Methods for Class

Token ...595
14.5.4 Implementation ..596
Summary ...599
Review Questions ...600
Projects..601

[CHAPTER] 15 LINEAR COLLECTIONS: QUEUES 603
15.1 Overview of Queues ...604
15.2 The Queue Interface and Its Use ..605
15.2 Exercises..608
15.3 Two Applications of Queues ..609

15.3.1 Simulations ...609
15.3.2 Round-Robin CPU Scheduling...611

15.3 Exercises..612
15.4 Implementations of Queues ...612

15.4.1 A Linked Implementation..612
15.4.2 An Array Implementation ..614

15.4.2.1 A First Attempt ...615
15.4.2.2 A Second Attempt...615
15.4.2.3 A Third Attempt ...616

15.4.3 Time and Space Analysis for the Two Implementations617
15.4 Exercises..618
15.5 Case Study: Simulating a Supermarket Checkout Line......................................618

15.5.1 Request ...618
15.5.2 Analysis ...618
15.5.3 The Interface..619
15.5.4 Classes and Responsibilities...620

15.6 Priority Queues ..627
15.6 Exercise ...632
15.7 Case Study: An Emergency Room Scheduler ...633

15.7.1 Request ...633
15.7.2 Analysis ...633
15.7.3 Classes...635
15.7.4 Design and Implementation ..635
Summary ...638
Review Questions ...638
Projects..640

[CHAPTER] 16 LINEAR COLLECTIONS: LISTS 643
16.1 Overview of Lists..644
16.2 Using Lists ..645

16.2.1 Index-Based Operations...646
16.2.2 Content-Based Operations ..646
16.2.3 Position-Based Operations ..647
16.2.4 Interfaces for Lists ...652

16.2 Exercises..654
16.3 Applications of Lists ...654

16.3.1 Heap-Storage Management...654
16.3.2 Organization of Files on a Disk...656
16.3.3 Implementation of Other ADTs..657

16.4 Indexed List Implementations ...658
16.4.1 An Array-Based Implementation of an Indexed List658
16.4.2 A Linked Implementation of an Indexed List.....................................660
16.4.3 Time and Space Analysis for the Two Implementations663

16.4 Exercises..665
16.5 Implementing Positional Lists ...665

16.5.1 The Data Structures for a Linked Positional List665
16.5.2 Methods Used to Navigate from Beginning to End667
16.5.3 Methods Used to Navigate from End to Beginning670
16.5.4 Insertions into a Positional List...670
16.5.4 Removals from a Positional List..671
16.5.5 Time and Space Analysis of Positional List Implementations672

16.5 Exercises..672
16.6 Iterators...673

16.6.1 Using an Iterator in Python ..674
16.6.2 Implementing an Iterator ..676

16.6 Exercises..677
16.7 Case Study: Developing a Sorted List ...678

16.7.1 Request ...678
16.7.2 Analysis ...678
16.7.3 Design...679
16.7.4 Implementation (Coding) ..680
Summary ...681
Review Questions ...682
Projects..683

[CHAPTER] 17 RECURSION 685
17.1 n log n Sorting ..686

17.1.1 Overview of Quicksort...686
17.1.2 Partitioning...687
17.1.3 Complexity Analysis of Quicksort ...689
17.1.4 Implementation of Quicksort ..690
17.1.5 Merge Sort ...692
17.1.6 Complexity Analysis for Merge Sort ...695

17.1 Exercises..696

17.2 Recursive List Processing...696
17.2.1 Basic Operations on a Lisp-Like List..696
17.2.2 Recursive Traversals of a Lisp-Like List ...698
17.2.3 Building a Lisp-Like List...700
17.2.4 The Internal Structure of a Lisp-Like List...702
17.2.5 Lists and Functional Programming...703

17.2 Exercises..704
17.3 Recursion and Backtracking...705

17.3.1 A General Recursive Strategy..705
17.3.2 The Maze Problem Revisited ..706
17.3.3 The Eight Queens Problem ..709

17.4 Recursive Descent and Programming Languages...714
17.4.1 Introduction to Grammars ..714
17.4.2 Recognizing, Parsing, and Interpreting Sentences in a Language717
17.4.3 Lexical Analysis and the Scanner...717
17.4.4 Parsing Strategies ...718

17.5 Case Study: A Recursive Descent Parser...719
17.5.1 Request ...719
17.5.2 Analysis ...719
17.5.3 Classes...720
17.5.4 Implementation (Coding) ..720

17.6 The Costs and Benefits of Recursion ..722
17.6.1 No, Maybe, and Yes ...723
17.6.2 Getting Rid of Recursion...723
17.6.3 Tail Recursion ..724
Summary ...725
Review Questions ...726
Projects..727

[CHAPTER] 18 HIERARCHICAL COLLECTIONS: TREES 733
18.1 An Overview of Trees...734

18.1.1 Tree Terminology...734
18.1.2 General Trees and Binary Trees ..736
18.1.3 Recursive Definitions of Trees ..736

18.1 Exercise ...737
18.2 Why Use a Tree? ..737
18.3 The Shape of Binary Trees...740
18.3 Exercises..742
18.4 Three Common Applications of Binary Trees ..743

18.4.1 Heaps ..743
18.4.2 Binary Search Trees ...744
18.4.3 Expression Trees ..745

18.4 Exercises..747
18.5 Binary Tree Traversals..747
18.5 Exercise ...749
18.6 A Binary Tree ADT..749

18.6.1 The Interface for a Binary Tree ADT...750
18.6.2 Processing a Binary Tree ...752

18.6.3 Implementing a Binary Tree..753
18.6.4 The String Representation of a Tree ..756

18.6 Exercises..757
18.7 Developing a Binary Search Tree ..757

18.7.1 The Binary Search Tree Interface ...757
18.7.2 Data Structures for the Implementation of BST758
18.7.3 Searching a Binary Search Tree...759
18.7.4 Inserting an Item into a Binary Search Tree.......................................760
18.7.5 Removing an Item from a Binary Search Tree762
18.7.6 Complexity Analysis of Binary Search Trees763

18.7 Exercises..763
18.8 Case Study: Parsing and Expression Trees..764

18.8.1 Request ...764
18.8.2 Analysis ...764
18.8.3 Design and Implementation of the Node Classes765
18.8.4 Design and Implementation of the Parser Class767

18.9 An Array Implementation of Binary Trees ..769
18.9 Exercises..770

18.10 Implementing Heaps ..771
18.10 Exercises..774
18.11 Using a Heap to Implement a Priority Queue..774

Summary ...775
Review Questions ...776
Projects..777

[CHAPTER] 19 UNORDERED COLLECTIONS: SETS AND DICTIONARIES 779
19.1 Using Sets ...780

19.1.1 The Python set Class...781
19.1.2 A Sample Session with Sets ...782
19.1.3 Applications of Sets ..783
19.1.4 Implementations of Sets ..783
19.1.5 Relationship Between Sets and Dictionaries.......................................783

19.1 Exercises..784
19.2 List Implementations of Sets and Dictionaries ...784

19.2.1 Sets..784
19.2.2 Dictionaries ..785
19.2.3 Complexity Analysis of the List Implementations of Sets and
Dictionaries...788

19.2 Exercises..789
19.3 Hashing Strategies..789

19.3.1 The Relationship of Collisions to Density ...790
19.3.2 Hashing with Non-Numeric Keys ..792
19.3.3 Linear Probing ...794
19.3.4 Quadratic Probing..796
19.3.5 Chaining ...797
19.3.6 Complexity Analysis ...798

19.3 Exercises..800

19.4 Case Study: Profiling Hashing Strategies..800
19.4.1 Request ...800
19.4.2 Analysis ...800
19.4.3 Design...803
19.4.4 Implementation ..803

19.5 Hashing Implementation of Dictionaries ..806
19.5 Exercises..810
19.6 Hashing Implementation of Sets ...811
19.6 Exercises..812
19.7 Sorted Sets and Dictionaries ..813

Summary ...814
Review Questions ...815
Projects..816

[CHAPTER] 20 GRAPHS 819
20.1 Graph Terminology..820
20.1 Exercises..824
20.2 Why Use Graphs? ..824
20.3 Representations of Graphs ..825

20.3.1 Adjacency Matrix..825
20.3.2 Adjacency List ..826
20.3.3 Analysis of the Two Representations...828
20.3.4 Further Run-Time Considerations ...829

20.3 Exercises..829
20.4 Graph Traversals...830

20.4.1 A Generic Traversal Algorithm ...830
20.4.2 Breadth-First and Depth-First Traversals ...831
20.4.3 Graph Components ...834

20.4 Exercises..834
20.5 Trees Within Graphs..835

20.5.1 Spanning Trees and Forests...835
20.5.2 Minimum Spanning Tree...835
20.5.3 Algorithms for Minimum Spanning Trees..836

20.6 Topological Sort ...838
20.7 The Shortest-Path Problem ..840

20.7.1 Dijkstra’s Algorithm ...840
20.7.2 The Initialization Step ...841
20.7.3 The Computation Step ..842
20.7.4 Analysis ...843

20.7 Exercises..843
20.8 Developing a Graph ADT ...844

20.8.1 Example Use of the Graph ADT ..844
20.8.2 The Class LinkedDirectedGraph ..846
20.8.3 The Class LinkedVertex...850
20.8.4 The Class LinkedEdge ...852

20.9 Case Study: Testing Graph Algorithms ..853
20.9.1 Request ...853
20.9.2 Analysis ...853
20.9.3 The Classes GraphDemoView and GraphDemoModel...................855
20.9.4 Implementation (Coding) ..856
Summary ...860
Review Questions ...861
Projects..863

[APPENDIX] A PYTHON RESOURCES 865
A.1 Installing Python on Your Computer ..866
A.2 Using the Terminal Command Prompt, IDLE, and Other IDEs......................866

[APPENDIX] B INSTALLING THE turtlegraphics AND images
LIBRARIES 869

[APPENDIX] C APIS FOR GRAPHICS AND IMAGE PROCESSING 871
C.1 The turtlegraphics API...871
C.2 The images API ...872

[APPENDIX] D TRANSITION FROM PYTHON TO JAVA AND C++ 875

GLOSSARY/INDEX 877

This page intentionally left blank

PREFACE
Welcome to Fundamentals of Python. This text is intended for a complete, first-
year study of programming and problem-solving. It covers the material taught in
typical Computer Science 1 and Computer Science 2 courses (CS1 and CS2) at
the undergraduate level.

This book covers five major aspects of computing:

1 Programming Basics—Data types, control structures, algorithm devel-
opment, and program design with functions are basic ideas that you need
to master in order to solve problems with computers. This book exam-
ines these core topics in detail and gives you practice employing your
understanding of them to solve a wide range of problems.

2 Object-Oriented Programming (OOP)—Object-Oriented
Programming is the dominant programming paradigm used to develop
large software systems. This book introduces you to the fundamental
principles of OOP and enables you to apply them successfully.

3 Data and Information Processing—Most useful programs rely on data
structures to solve problems. These data structures include strings,
arrays, files, lists, stacks, queues, trees, sets, dictionaries, and graphs. This
book gives you experience using, building, and assessing the performance
of data structures. The general concept of an abstract data type is intro-
duced, as is the difference between abstraction and implementation.
You’ll learn to use complexity analysis to evaluate space/time tradeoffs of
different implementations of ADTs.

4 Software Development Life Cycle—Rather than isolate software
development techniques in one or two chapters, this book deals with
them throughout in the context of numerous case studies. Among other
things, you’ll learn that coding a program is often not the most difficult
or challenging aspect of problem solving and software development.

5 Contemporary Applications of Computing—The best way to learn
about programming and problem solving is to create interesting programs
with real-world applications. In this book, you’ll begin by creating applica-
tions that involve numerical problems and text processing. For example,
you’ll learn the basics of encryption techniques such as those that are used
to make your credit card number and other information secure on the
Internet. But unlike many other introductory texts, this one does not
restrict itself to problems involving numbers and text. Most contemporary
applications involve graphical user interfaces, event-driven programming,
graphics, and network communications. These topics are presented in
optional, standalone chapters.

PREFACE [xxi]

C6840_FM 11/19/08 11:56 AM Page xxi

PREFACE[xxii]

Why Python?
Computer technology and applications have become increasingly more sophisti-
cated over the past two decades, and so has the computer science curriculum, espe-
cially at the introductory level. Today’s students learn a bit of programming and
problem–solving, and are then expected to move quickly into topics like software
development, complexity analysis, and data structures that, twenty years ago, were
relegated to advanced courses. In addition, the ascent of object-oriented program-
ming as the dominant paradigm of problem solving has led instructors and text-
book authors to bring powerful, industrial-strength programming languages such as
C++ and Java into the introductory curriculum. As a result, instead of experiencing
the rewards and excitement of solving problems with computers, beginning com-
puter science students often become overwhelmed by the combined tasks of mas-
tering advanced concepts as well as the syntax of a programming language.

This book uses the Python programming language as a way of making the
first year of computer science more manageable and attractive for students and
instructors alike. Python has the following pedagogical benefits:

� Python has simple, conventional syntax. Python statements are very close to
those of pseudocode algorithms, and Python expressions use the conven-
tional notation found in algebra. Thus, students can spend less time learn-
ing the syntax of a programming language and more time learning to solve
interesting problems.

� Python has safe semantics. Any expression or statement whose meaning
violates the definition of the language produces an error message.

� Python scales well. It is very easy for beginners to write simple programs in
Python. Python also includes all of the advanced features of a modern pro-
gramming language, such as support for data structures and object-oriented
software development, for use when they become necessary.

� Python is highly interactive. Expressions and statements can be entered at
an interpreter’s prompts to allow the programmer to try out experimental
code and receive immediate feedback. Longer code segments can then be
composed and saved in script files to be loaded and run as modules or
standalone applications.

� Python is general purpose. In today’s context, this means that the language
includes resources for contemporary applications, including media comput-
ing and networks.

� Python is free and is in widespread use in industry. Students can download
Python to run on a variety of devices. There is a large Python user com-
munity, and expertise in Python programming has great resume value.

C6840_FM 11/19/08 11:56 AM Page xxii

To summarize these benefits, Python is a comfortable and flexible vehicle for
expressing ideas about computation, both for beginners and for experts as well. If
students learn these ideas well in the first year, they should have no problems
making a quick transition to other languages needed for courses later in the cur-
riculum. Most importantly, beginning students will spend less time staring at a
computer screen and more time thinking about interesting problems to solve.

Organization of the Book
Chapters 1 through 10 constitute the core of a CS1 course. The approach in these
chapters is easygoing, with each new concept introduced only when it is needed.

Chapter 1 introduces computer science by focusing on two fundamental
ideas, algorithms and information processing. A brief overview of computer hard-
ware and software, followed by an extended discussion of the history of comput-
ing, sets the context for computational problem solving.

Chapters 2 and 3 cover the basics of problem solving and algorithm develop-
ment using the standard control structures of expression evaluation, sequencing,
Boolean logic, selection, and iteration with the basic numeric data types.
Emphasis in these chapters is on problem solving that is both systematic and
experimental, involving algorithm design, testing, and documentation.

Chapters 4 and 5 introduce the use of the strings, text files, lists, and diction-
aries. These data structures are both remarkably easy to manipulate in Python
and support some interesting applications. Chapter 5 also introduces simple func-
tion definitions as a way of organizing algorithmic code.

Chapter 6 explores the technique and benefits of procedural abstraction with
function definitions. Top-down design, stepwise refinement, and recursive design
with functions are examined as means of structuring code to solve complex prob-
lems. Details of namespace organization (parameters, temporary variables, and
module variables) and communication among software components are discussed.
An optional section on functional programming with higher-order functions
shows how to exploit functional design patterns to simplify solutions.

Chapter 7 focuses on the use of existing objects and classes to compose pro-
grams. Special attention is paid to the interface, or set of methods, of a class of
objects and the manner in which objects cooperate to solve problems. This chapter
also introduces two contemporary applications of computing, graphics and image
processing—areas in which object-based programming is particularly useful.

Chapter 8 introduces object-oriented design with class and method defini-
tions. Several examples of simple class definitions from different application
domains are presented. Some of these are then integrated into more realistic

PREFACE [xxiii]

C6840_FM 11/19/08 11:56 AM Page xxiii

PREFACE[xxiv]

applications, to show how object-oriented software components can be used to
build complex systems. Emphasis is on designing appropriate interfaces for
classes that exploit inheritance and polymorphism.

Chapters 9 and 10 cover advanced material related to two important areas of
computing: graphical user interfaces and networks. Although these two chapters
are entirely optional, they give students challenging experiences at the end of the
first semester course. Chapter 9 contrasts the event-driven model of GUI pro-
grams with the process-driven model of terminal-based programs. The creation
and layout of GUI components are explored, as well as the decomposition of a
GUI-based program using the model/view/controller pattern. Chapter 10 intro-
duces multithreaded programs and the construction of simple network-based
client/server applications.

Chapters 11-20 cover the topics addressed in a traditional CS2 course. These
topics include specialized abstract data types, with a focus on interfaces, imple-
mentations, and applications. Other important CS2 topics include recursive pro-
cessing of data structures, search and sort algorithms, and the tools used in
software development, such as complexity analysis, unit testing, and graphical
notations (UML) to document designs.

Chapters 11 through 13 explore tools used in software development.
Chapter 11 introduces complexity analysis with big-O notation. Enough material
is presented to enable you to perform simple analyses of the running time and
memory usage of algorithms and data structures, using search and sort algorithms
as examples. Chapter 12 examines tools used in the design and testing of soft-
ware. These include basic UML diagrams, documentation of classes and meth-
ods, and unit testing. Chapter 13 begins with an overview of various categories of
collection ADTs. The chapter then covers the details of processing arrays and lin-
ear linked structures, the concrete data structures used to implement many ADTs.
You learn the underlying models of computer memory that support arrays and
linked structures and the time/space tradeoffs that they entail.

Armed with these tools, you are then ready to consider the different collec-
tion ADTs, which form the subject of Chapters 14-20.

Chapters 14-16 present the linear collections, stacks, queues, and lists. Each
collection is viewed first from the perspective of its users, who are aware only of
an interface and a set of performance characteristics possessed by a chosen imple-
mentation. The use of each collection is illustrated with one or more applica-
tions, and then several implementations are developed and their performance is
analyzed. Emphasis is placed on the inclusion of conventional methods in inter-
faces to allow different types of collections to collaborate in applications. For
example, one such method creates an iterator, which allows any collection to be
traversed in the context of a simple loop structure.

C6840_FM 11/19/08 11:56 AM Page xxiv

Chapters 17-20 present advanced data structures and algorithms as a transi-
tion to later courses in computer science. Chapter 17 visits recursion for the sec-
ond time in the book. This pass includes an examination of advanced algorithms
for sorting, backtracking search, recursive descent parsing, and the processing of
recursive data structures such as Lisp-like lists. Chapter 18 discusses various tree
structures, including binary search trees, heaps, and expression trees. Chapter 19
examines the implementation of the unordered collections, dictionaries and sets,
using hashing strategies. Chapter 20 provides an introduction to graphs and
graph-processing algorithms.

Special Features
This book explains and develops concepts carefully, using frequent examples and
diagrams. New concepts are then applied in complete programs to show how
they aid in solving problems. The chapters place an early and consistent emphasis
on good writing habits and neat, readable documentation.

The book includes several other important features:
� Case studies—These present complete Python programs ranging from the

simple to the substantial. To emphasize the importance and usefulness of
the software development life cycle, case studies are discussed in the frame-
work of a user request, followed by analysis, design, implementation, and
suggestions for testing, with well-defined tasks performed at each stage.
Some case studies are extended in end-of-chapter programming projects.

� Chapter objectives and chapter summaries—Each chapter begins with a set
of learning objectives and ends with a summary of the major concepts cov-
ered in the chapter.

� Key terms and a glossary—When a technical term is introduced in the text,
it appears in boldface. Definitions of the key terms are also collected in a
glossary.

� Exercises—Most major sections of each chapter end with exercise ques-
tions that reinforce the reading by asking basic questions about the mate-
rial in the section. Each chapter ends with a set of review exercises.

� Programming projects—Each chapter ends with a set of programming
projects of varying difficulty.

� Software toolkits for graphics and image processing—This book comes with
two open-source Python toolkits for the easy graphics and image processing
discussed in Chapter 7. These are can be obtained from the student down-
loads page on www.course.com, or at http://home.wlu.edu/~lambertk/python/

� Appendices—Three appendices include information on obtaining Python
resources, installing the toolkits, and using the toolkits’ interfaces.

PREFACE [xxv]

C6840_FM 11/19/08 11:56 AM Page xxv

PREFACE[xxvi]

Supplemental Resources
The following supplemental materials are available when this book is used in a
classroom setting. All of the teaching tools available with this book are provided
to the instructor on a single CD-ROM.

Electronic Instructor’s Manual
The Instructor’s Manual that accompanies this textbook includes:

� Additional instructional material to assist in class preparation, including
suggestions for lecture topics.

� Solutions to all the end-of-chapter materials, including the Programming
Exercises.

ExamView®

This textbook is accompanied by ExamView, a powerful testing software package
that allows instructors to create and administer printed, computer (LAN-based),
and Internet exams. ExamView includes hundreds of questions that correspond to
the topics covered in this text, enabling students to generate detailed study guides
that include page references for further review. These computer-based and
Internet testing components allow students to take exams at their computers, and
save the instructor time because each exam is graded automatically.

PowerPoint Presentations
This book comes with Microsoft PowerPoint slides for each chapter. These are
included as a teaching aid either to make available to students on the network for
chapter review, or to be used during classroom presentations. Instructors can
modify slides or add their own slides to tailor their presentations.

Distance Learning
Course Technology is proud to offer online courses in WebCT and Blackboard.
For more information on how to bring distance learning to your course, contact
your local Cengage Learning sales representative.

Source Code
The source code is available at www.cengage.com/computerscience, and also is avail-
able on the Instructor Resources CD-ROM. If an input file is needed to run a
program, it is included with the source code.

C6840_FM 11/19/08 11:56 AM Page xxvi

Solution files
The solution files for all programming exercises are available at www.cengage.com/
computerscience and are available on the Instructor Resources CD-ROM. If an input
file is needed to run a programming exercise, it is included with the solution file.

We Appreciate Your Feedback
We have tried to produce a high-quality text, but should you encounter any
errors, please report them to lambertk@wlu.edu. A listing of errata, should they be
found, as well as other information about the book, will be posted on the Web
site http://home.wlu.edu/~lambertk/python/.

Acknowledgments
I would like to thank my contributing author, Martin Osborne, for many years of
advice, friendly criticism, and encouragement on several of my book projects.

I would like to thank my colleague, Sara Sprenkle, and our students at
Washington and Lee University for classroom testing this book over several semesters.

I would like to thank the following reviewers for the time and effort they
contributed as they completed their reviews of each chapter: Paul Albee, Central
Michigan University; Andrew Danner, Swarthmore College; Susan Fox,
Macalester College; Robert Franks, Central College; and Jim Slack, Minnesota
State University, Mankato. Also, thank you to the following reviewers who con-
tributed their thoughts on the original book proposal: Christian Blouin,
Dalhousie University; Margaret Iwobi, Binghamton University; Sam Midkiff,
Purdue University; and Ray Morehead, West Virginia University.

Also, thank you to the individuals at Course Technology who helped to assure
that the content of all data and solution files used for this text were correct and
accurate: Chris Scriver, MQA Project Leader and Serge Palladino, MQA Tester.

Finally, thanks to several other people whose work made this book possible:
Ann Shaffer, Developmental Editor, Shaffer Technical Editing, LLC; Marisa
Taylor, Senior Project Manager, GEX Inc.; Amy Jollymore, Acquisitions Editor,
Course Technology; Alyssa Pratt, Senior Product Manager, Course Technology;
and Matt Hutchinson, Content Project Manager, Course Technology.

PREFACE [xxvii]

C6840_FM 11/19/08 11:56 AM Page xxvii

PREFACE[xxviii]

Dedication
To my pal, Ken Van Ness
Kenneth A. Lambert

Lexington, VA

C6840_FM 11/19/08 11:56 AM Page xxviii

After completing this chapter, you will be able to
� Describe the basic features of an algorithm
� Explain how hardware and software collaborate in a com-

puter’s architecture
� Give a brief history of computing
� Compose and run a simple Python program
As a reader of this book, you almost certainly have played a

video game and listened to music on a CD player. It’s likely that you
have watched a movie on a DVD player and prepared a snack in a
microwave oven. Chances are that you have made at least one phone
call to or from a cell phone. You and your friends have most likely
used a desktop computer or a laptop computer, not to mention digi-
tal cameras and handheld music and video players.

All of these devices have something in common: they are or
contain computers. Computer technology makes them what they
are. Devices that rely on computer technology are almost every-
where, not only in our homes, but also in our schools, where we
work, and where we play. Computer technology plays an important
role in entertainment, education, medicine, manufacturing, commu-
nications, government, and commerce. It has been said that we have
digital lifestyles and that we live in an information age with an infor-
mation-based economy. Some people even claim that nature itself
performs computations on information structures present in DNA
and in the relationships among subatomic particles.

It’s difficult to imagine our world without computers, although
we don’t think about the actual computers very much. It’s also hard
to imagine that the human race did without computer technology

[CHAPTER] Introduction 1

C6840_01 11/19/08 11:41 AM Page 1

for thousands of years, and that the world as we know it has been so involved in
and with computer technology for only the past 25 years or so.

In the chapters that follow, you will learn about computer science, which is
the study of computation that has made this new technology and this new world
possible. You will also learn how to use computers effectively and appropriately to
enhance your own life and the lives of others.

1.1 Two Fundamental Ideas of Computer
Science: Algorithms and Information
Processing
Like most areas of study, computer science focuses on a broad set of interrelated
ideas. Two of the most basic ones are algorithms and information processing.
In this section, these ideas are introduced in an informal way. We will examine
them in more detail in later chapters.

1.1.1 Algorithms

People computed long before the invention of modern computing devices, and
many continue to use computing devices that we might consider primitive. For
example, consider how merchants made change for customers in marketplaces
before the existence of credit cards, pocket calculators, or cash registers. Making
change can be a complex activity. It probably took you some time to learn how to
do it, and it takes some mental effort to get it right every time. Let’s consider
what’s involved in this process.

The first step is to compute the difference between the purchase price and
the amount of money that the customer gives the merchant. The result of this
calculation is the total amount that the merchant must return to the purchaser.
For example, if you buy a dozen eggs at the farmers’ market for $2.39 and you
give the farmer a $10 bill, she should return $7.61 to you. To produce this
amount, the merchant selects the appropriate coins and bills that, when added to
$2.39, make $10.00.

Few people can subtract three-digit numbers without resorting to some man-
ual aids, such as pencil and paper. As you learned in grade school, subtraction can
be carried out with pencil and paper by following a sequence of well-defined
steps. You have probably done this many times but never made a list of the

CHAPTER 1 Introduction[2]

C6840_01 11/19/08 11:41 AM Page 2

May not be copied, scanned, or duplicated, in whole or in part.

specific steps involved. Making such lists to solve problems is something com-
puter scientists do all the time. For example, the following list of steps describes
the process of subtracting two numbers using a pencil and paper:

Step 1 Write down the two numbers, with the larger number above the
smaller number and their digits aligned in columns from the right.

Step 2 Assume that you will start with the rightmost column of digits and
work your way left through the various columns.

Step 3 Write down the difference between the two digits in the current
column of digits, borrowing a 1 from the top number’s next column
to the left if necessary.

Step 4 If there is no next column to the left, stop. Otherwise, move to the
next column to the left and go to Step 3.

If the computing agent (in this case a human being) follows each of these
simple steps correctly, the entire process results in a correct solution to the given
problem. We assume in Step 3 that the agent already knows how to compute the
difference between the two digits in any given column, borrowing if necessary.

To make change, most people can select the combination of coins and bills
that represent the correct change amount without any manual aids, other than
the coins and bills. But the mental calculations involved can still be described in a
manner similar to the preceding steps, and we can resort to writing them down
on paper if there is a dispute about the correctness of the change.

The sequence of steps that describes each of these computational processes is
called an algorithm. Informally, an algorithm is like a recipe. It provides a set of
instructions that tells us how to do something, such as make change, bake bread,
or put together a piece of furniture. More precisely, an algorithm describes a
process that ends with a solution to a problem. The algorithm is also one of the
fundamental ideas of computer science. An algorithm has the following features:

1 An algorithm consists of a finite number of instructions.

2 Each individual instruction in an algorithm is well defined. This means that
the action described by the instruction can be performed effectively or be
executed by a computing agent. For example, any computing agent capa-
ble of arithmetic can compute the difference between two digits. So an
algorithmic step that says “compute the difference between two digits”
would be well defined. On the other hand, a step that says “divide a number
by 0” is not well defined, because no computing agent could carry it out.

1.1 Two Fundamental Ideas of Computer Science: Algorithms and Information Processing [3]

C6840_01 11/19/08 11:41 AM Page 3

3 An algorithm describes a process that eventually halts after arriving at a
solution to a problem. For example, the process of subtraction halts after
the computing agent writes down the difference between the two digits
in the leftmost column of digits.

4 An algorithm solves a general class of problems. For example, an algo-
rithm that describes how to make change should work for any two
amounts of money whose difference is greater than or equal to $0.00.

Creating a list of steps that describe how to make change might not seem like
a major accomplishment to you. But the ability to break a task down into its com-
ponent parts is one of the main jobs of a computer programmer. Once we write
an algorithm to describe a particular type of computation, a machine can be built
to do the computing. Put another way, if we can develop an algorithm to solve a
problem, we can automate the task of solving the problem. You might not feel
compelled to write a computer program to automate the task of making change,
because you can probably already make change yourself fairly easily. But suppose
you needed to do a more complicated task—such as sorting a list of 100 names.
In that case, a computer program would be very handy.

Computers can be designed to run a small set of algorithms for performing
specialized tasks such as operating a microwave oven. But we can also build com-
puters, like the one on your desktop, that are capable of performing a task
described by any algorithm. These computers are truly general-purpose problem-
solving machines. They are unlike any machines we have ever built before, and
they have formed the basis of the completely new world in which we live.

Later in this book, we introduce a notation for expressing algorithms and
some suggestions for designing algorithms. You will see that algorithms and algo-
rithmic thinking are critical underpinnings of any computer system.

1.1.2 Information Processing

Since human beings first learned to write several thousand years ago, they have
processed information. Information itself has taken many forms in its history, from
the marks impressed on clay tablets in ancient Mesopotamia, to the first written
texts in ancient Greece, to the printed words in the books, newspapers, and maga-
zines mass-produced since the European Renaissance, to the abstract symbols of
modern mathematics and science used during the past 350 years. Only recently,
however, have human beings developed the capacity to automate the processing of
information by building computers. In the modern world of computers, informa-
tion is also commonly referred to as data. But what is information?

CHAPTER 1 Introduction[4]

C6840_01 11/19/08 11:41 AM Page 4

May not be copied, scanned, or duplicated, in whole or in part.

Like mathematical calculations, information processing can be described with
algorithms. In our earlier example of making change, the subtraction steps
involved manipulating symbols used to represent numbers and money. In carry-
ing out the instructions of any algorithm, a computing agent manipulates infor-
mation. The computing agent starts with some given information (known as
input), transforms this information according to well-defined rules, and produces
new information, known as output.

It is important to recognize that the algorithms that describe information
processing can also be represented as information. Computer scientists have been
able to represent algorithms in a form that can be executed effectively and effi-
ciently by machines. They have also designed real machines, called electronic
digital computers, which are capable of executing algorithms.

Computer scientists more recently discovered how to represent many other
things, such as images, music, human speech, and video, as information. Many of
the media and communication devices that we now take for granted would be
impossible without this new kind of information processing. We examine many of
these achievements in more detail in later chapters.

1.1 Exercises
These short end-of-section exercises are intended to stimulate your thinking
about computing.

1 List three common types of computing agents.

2 Write an algorithm that describes the second part of the process of mak-
ing change (counting out the coins and bills).

3 Write an algorithm that describes a common task, such as baking a cake
or operating a DVD player.

4 Describe an instruction that is not well defined and thus could not be
included as a step in an algorithm. Give an example of such an instruction.

5 In what sense is a desktop computer a general-purpose problem-solving
machine?

6 List four devices that use computers and describe the information that
they process. (Hint: Think of the inputs and outputs of the devices.)

1.1 Two Fundamental Ideas of Computer Science: Algorithms and Information Processing [5]

C6840_01 11/19/08 11:41 AM Page 5

1.2 The Structure of a Modern Computer
System
We now give a brief overview of the structure of modern computer systems. A
modern computer system consists of hardware and software. Hardware consists
of the physical devices required to execute algorithms. Software is the set of these
algorithms, represented as programs in particular programming languages. In
the discussion that follows, we focus on the hardware and software found in a
typical desktop computer system, although similar components are also found in
other computer systems, such as handheld devices and ATMs (automatic teller
machines).

1.2.1 Computer Hardware

The basic hardware components of a computer are memory, a central processing
unit (CPU), and a set of input/output devices, as shown in Figure 1.1.

[FIGURE 1.1] Hardware components of a modern computer system

Human users primarily interact with the input and output devices. The input
devices include a keyboard, a mouse, and a microphone. Common output devices
include a monitor and speakers. Computers can also communicate with the exter-
nal world through various ports that connect them to networks and to other
devices such as handheld music players and digital cameras. The purpose of most
of the input devices is to convert information that human beings deal with, such
as text, images, and sounds, into information for computational processing. The
purpose of most output devices is to convert the results of this processing back to
human-usable form.

Input device Output device

CPU

Memory

CHAPTER 1 Introduction[6]

C6840_01 11/19/08 11:41 AM Page 6

May not be copied, scanned, or duplicated, in whole or in part.

Computer memory is set up to represent and store information in electronic
form. Specifically, information is stored as patterns of binary digits (1s and 0s).
To understand how this works, consider a basic device such as a light switch,
which can only be in one of two states, on or off. Now suppose there is a bank of
switches that control 16 small lights in a row. By turning the switches off or on,
we can represent any pattern of 16 binary digits (1s and 0s) as patterns of lights
that are on or off. As we will see later in this book, computer scientists have dis-
covered how to represent any information, including text, images, and sound, in
binary form.

Now, suppose there are 8 of these groups of 16 lights. We can select any
group of lights and examine or change the state of each light within that collec-
tion. We have just developed a tiny model of computer memory. This memory
has 8 cells, each of which can store 16 bits of binary information. A diagram of
this model, in which the memory cells are filled with binary digits, is shown in
Figure 1.2. This memory is also sometimes called primary or internal or
random access memory (RAM).

[FIGURE 1.2] A model of computer memory

The information stored in memory can represent any type of data, such as
numbers, text, images, or sound, or the instructions of a program. We can also
store in memory an algorithm encoded as binary instructions for the computer.
Once the information is stored in memory, we typically want to do something
with it—that is, we want to process it. The part of a computer that is responsible
for processing data is the central processing unit (CPU). This device, which is
also sometimes called a processor, consists of electronic switches arranged to
perform simple logical, arithmetic, and control operations. The CPU executes an
algorithm by fetching its binary instructions from memory, decoding them, and
executing them. Executing an instruction might involve fetching other binary
information—the data—from memory as well.

1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1
1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1
0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0

Cell 7
Cell 6
Cell 5
Cell 4
Cell 3
Cell 2
Cell 1
Cell 0

1.2 The Structure of a Modern Computer System [7]

C6840_01 11/19/08 11:41 AM Page 7

The processor can locate data in a computer’s primary memory very quickly.
However, these data exist only as long as electric power comes into the computer.
If the power fails or is turned off, the data in primary memory are lost. Clearly, a
more permanent type of memory is needed to preserve data. This more perma-
nent type of memory is called external or secondary memory, and it comes in
several forms. Magnetic storage media, such as tapes and hard disks, allow bit
patterns to be stored as patterns on a magnetic field. Semiconductor storage
media, such as flash memory sticks, perform much the same function with a dif-
ferent technology, as do optical storage media, such as CDs and DVDs. Some
of these secondary storage media can hold much larger quantities of information
than the internal memory of a computer.

1.2.2 Computer Software

You have learned that a computer is a general-purpose problem-solving machine.
To solve any computable problem, a computer must be capable of executing any
algorithm. Because it is impossible to anticipate all of the problems for which
there are algorithmic solutions, there is no way to “hard-wire” all potential algo-
rithms into a computer’s hardware. Instead, we build some basic operations into
the hardware’s processor and require any algorithm to use them. The algorithms
are converted to binary form and then loaded, with their data, into the com-
puter’s memory. The processor can then execute the algorithms’ instructions by
running the hardware’s more basic operations.

Any programs that are stored in memory so that they can be executed later
are called software. A program stored in computer memory must be represented
in binary digits, which is also known as machine code. Loading machine code
into computer memory one digit at a time would be a tedious, error-prone task
for human beings. It would be convenient if we could automate this process to
get it right every time. For this reason, computer scientists have developed
another program, called a loader, to perform this task. A loader takes a set of
machine language instructions as input and loads them into the appropriate
memory locations. When the loader is finished, the machine language program is
ready to execute. Obviously, the loader cannot load itself into memory, so this is
one of those algorithms that must be hardwired into the computer.

Now that a loader exists, we can load and execute other programs that make
the development, execution, and management of programs easier. This type of
software is called system software. The most important example of system soft-
ware is a computer’s operating system. You are probably already familiar with at
least one of the most popular operating systems, such as Linux, Apple’s Mac OS,

CHAPTER 1 Introduction[8]

C6840_01 11/19/08 11:41 AM Page 8

May not be copied, scanned, or duplicated, in whole or in part.

and Microsoft Windows. An operating system is responsible for managing and
scheduling several concurrently running programs. It also manages the com-
puter’s memory, including the external storage, and manages communications
between the CPU, the input/output devices, and other computers on a network.
An important part of any operating system is its file system, which allows human
users to organize their data and programs in permanent storage. Another impor-
tant function of an operating system is to provide user interfaces—that is, ways
for the human user to interact with the computer’s software. A terminal-based
interface accepts inputs from a keyboard and displays text output on a monitor
screen. A modern graphical user interface (GUI) organizes the monitor screen
around the metaphor of a desktop, with windows containing icons for folders,
files, and applications. This type of user interface also allows the user to manipu-
late images with a pointing device such as a mouse.

Another major type of software is called applications software, or simply
applications. An application is a program that is designed for a specific task, such
as editing a document or displaying a Web page. Applications include Web
browsers, word processors, spreadsheets, database managers, graphic design pack-
ages, music production systems, and games, among many others. As you begin to
learn to write computer programs, you will focus on writing simple applications.

As you have learned, computer hardware can execute only instructions that
are written in binary form—that is, in machine language. Writing a machine lan-
guage program, however, would be an extremely tedious, error-prone task. To
ease the process of writing computer programs, computer scientists have devel-
oped high-level programming languages for expressing algorithms. These lan-
guages resemble English and allow the author to express algorithms in a form
that other people can understand.

A programmer typically starts by writing high-level language statements in a
text editor. The programmer then runs another program called a translator to
convert the high-level program code into executable code. Because it is possible
for a programmer to make grammatical mistakes even when writing high-level
code, the translator checks for syntax errors before it completes the translation
process. If it detects any of these errors, the translator alerts the programmer via
error messages. The programmer then has to revise the program. If the transla-
tion process succeeds without a syntax error, the program can be executed by the
run-time system. The run-time system might execute the program directly on
the hardware or run yet another program called an interpreter or virtual
machine to execute the program. Figure 1.3 shows the steps and software used in
the coding process.

1.2 The Structure of a Modern Computer System [9]

C6840_01 11/19/08 11:41 AM Page 9

[FIGURE 1.3] Software used in the coding process

1.2 Exercises
1 List two examples of input devices and two examples of output devices.

2 What does the central processing unit (CPU) do?

3 How is information represented in hardware memory?

4 What is the difference between a terminal-based interface and a graphical
user interface?

5 What role do translators play in the programming process?

1.3 A Not-So-Brief History of Computing
Systems
Now that we have in mind some of the basic ideas of computing and computer
systems, let’s take a moment to examine how they have taken shape in history.
Figure 1.4 summarizes some of the major developments in the history of comput-
ing. The discussion that follows provides more details about these developments.

Create high-level
language program

User inputs

Other error messages

Syntax error messages

Program
outputs

Text editor Translator

Run-time
system

CHAPTER 1 Introduction[10]

C6840_01 11/19/08 11:41 AM Page 10

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 1.4] Summary of major developments in the history of computing

1.3.1 Before Electronic Digital Computers

Ancient mathematicians developed the first algorithms. The word “algorithm”
comes from the name of a Persian mathematician, Muhammad ibn Musa
Al-Khawarizmi, who wrote several mathematics textbooks in the ninth century.

Before 1800
Approximate Dates Major Developments

Mathematicians develop and use algorithms
Abacus used as a calculating aide
First mechanical calculators built by Pascal and Leibniz
Jacquard’s loom
Babbage’s Analytical Engine
Boole’s system of logic
Hollerith’s punch card machine

1930s Turing publishes results on computability
Shannon’s theory of information and digital switching

1940s First electronic digital computers
1950s First symbolic programming languages

Transistors make computers smaller, faster, more durable,
less expensive
Emergence of data-processing applications

1800–1930

Integrated circuits accelerate the miniaturization of hardware
First minicomputers
Time-sharing operating systems
Interactive user interfaces with keyboards and monitors
Proliferation of high-level programming languages
Emergence of a software industry and the academic study of
computer science and computer engineering

1975–1990 First microcomputers and mass-produced personal computers
Graphical user interfaces become widespread
Networks and the Internet

1990s Optical storage for multimedia applications, images, sound,
and video
World Wide Web and e-commerce
Laptop computers

2000–present Embedded computing
Wireless computing
Computers used in enormous variety of cars, household
appliances, and industrial equipment

1960–1975

1.3 A Not-So-Brief History of Computing Systems [11]

C6840_01 11/19/08 11:41 AM Page 11

About 2,300 years ago, the Greek mathematician Euclid, the inventor of geome-
try, developed an algorithm for computing the greatest common divisor of two
numbers.

A device known as the abacus also appeared in ancient times. The abacus
helped people perform simple arithmetic. Users calculated sums and differences
by sliding beads on a grid of wires (see Figure 1.5a). The configuration of beads
on the abacus served as the data.

[a] Abacus Image © Lim ChewHow, 2008. Used under license from Shutterstock.com.

[b] Pascal’s Calculator Image © Mary Evans/Photo Reasearchers, Inc.

CHAPTER 1 Introduction[12]

C6840_01 11/19/08 11:41 AM Page 12

May not be copied, scanned, or duplicated, in whole or in part.

[c] Jacquard’s Loom Image © Roger Viollet/Getty Images
[FIGURE 1.5] Some early computing devices

In the seventeenth century, the French mathematician Blaise Pascal
(1623–1662) built one of the first mechanical devices to automate the process of

1.3 A Not-So-Brief History of Computing Systems [13]

C6840_01 11/19/08 11:41 AM Page 13

addition (see Figure 1.5b). The addition operation was embedded in the configu-
ration of gears within the machine. The user entered the two numbers to be
added by rotating some wheels. The sum or output number appeared on another
rotating wheel. The German mathematician Gottfried Leibnitz (1646–1716) built
another mechanical calculator that included other arithmetic functions such as
multiplication. Leibnitz, who with Newton also invented calculus, went on to
propose the idea of computing with symbols as one of our most basic and general
intellectual activities. He argued for a universal language in which one could
solve any problem by calculating.

Early in the nineteenth century, the French engineer Joseph Jacquard
(1752–1834) designed and constructed a machine that automated the process of
weaving (see Figure 1.5c). Until then, each row in a weaving pattern had to be set
up by hand, a quite tedious, error-prone process. Jacquard’s loom was designed to
accept input in the form of a set of punched cards. Each card described a row in a
pattern of cloth. Although it was still an entirely mechanical device, Jacquard’s
loom possessed something that previous devices had lacked—the ability to exe-
cute an algorithm automatically. The set of cards expressed the algorithm or set
of instructions that controlled the behavior of the loom. If the loom operator
wanted to produce a different pattern, he just had to run the machine with a dif-
ferent set of cards.

The British mathematician Charles Babbage (1792–1871) took the concept of
a programmable computer a step further by designing a model of a machine that,
conceptually, bore a striking resemblance to a modern general-purpose computer.
Babbage conceived his machine, which he called the Analytical Engine, as a
mechanical device. His design called for four functional parts: a mill to perform
arithmetic operations, a store to hold data and a program, an operator to run the
instructions from punched cards, and an output to produce the results on
punched cards. Sadly, Babbage’s computer was never built. The project perished
for lack of funds near the time when Babbage himself passed away.

In the last two decades of the nineteenth century, a U.S. Census Bureau stat-
istician named Herman Hollerith (1860–1929) developed a machine that auto-
mated data processing for the U.S. Census. Hollerith’s machine, which had the
same component parts as Babbage’s Analytical Engine, simply accepted a set of
punched cards as input and then tallied and sorted the cards. His machine greatly
shortened the time it took to produce statistical results on the U.S. population.
Government and business organizations seeking to automate their data process-
ing quickly adopted Hollerith’s punched card machines. Hollerith was also one of
the founders of a company that eventually became IBM (International Business
Machines).

Also in the nineteenth century, the British secondary school teacher George
Boole (1815–1864) developed a system of logic. This system consisted of a pair of

CHAPTER 1 Introduction[14]

C6840_01 11/19/08 11:41 AM Page 14

May not be copied, scanned, or duplicated, in whole or in part.

values, TRUE and FALSE, and a set of three primitive operations on these val-
ues, AND, OR, and NOT. Boolean logic eventually became the basis for design-
ing the electronic circuitry to process binary information.

A half a century later, in the 1930s, the British mathematician Alan Turing
(1912–1954) explored the theoretical foundations and limits of algorithms and
computation. Turing’s essential contributions were to develop the concept of a
universal machine that could be specialized to solve any computable problems,
and to demonstrate that some problems are unsolvable by computers.

1.3.2 The First Electronic Digital Computers (1940–1950)

In the late 1930s, Claude Shannon (1916–2001), a mathematician and electrical
engineer at M.I.T., wrote a classic paper titled “A Symbolic Analysis of Relay and
Switching Circuits.” In this paper, he showed how operations and information in
other systems, such as arithmetic, could be reduced to Boolean logic and then to
hardware. For example, if the Boolean values TRUE and FALSE were written as
the binary digits 1 and 0, one could write a sequence of logical operations that
computes the sum of two strings of binary digits. All that was required to build an
electronic digital computer was the ability to represent binary digits as on/off
switches and to represent the logical operations in other circuitry.

The needs of the combatants in World War II pushed the development of
computer hardware into high gear. Several teams of scientists and engineers in
the United States, England, and Germany independently created the first genera-
tion of general-purpose digital electronic computers during the 1940s. All of
these scientists and engineers used Shannon’s innovation of expressing binary dig-
its and logical operations in terms of electronic switching devices. Among these
groups was a team at Harvard University under the direction of Howard Aiken.
Their computer, called the Mark I, became operational in 1944 and did mathe-
matical work for the U.S. Navy during the war. The Mark I was considered an
electromechanical device, because it used a combination of magnets, relays, and
gears to store and process data.

Another team under J. Presper Eckert and John Mauchly, at the University
of Pennsylvania, produced a computer called the ENIAC (Electronic Numerical
Integrator and Calculator). The ENIAC calculated ballistics tables for the
artillery of the U.S. Army toward the end of the war. Because the ENIAC used
entirely electronic components, it was almost a thousand times faster than the
Mark I.

Two other electronic digital computers were completed a bit earlier than the
ENIAC. They were the ABC (Atanasoff-Berry Computer), built by John
Atanasoff and Clifford Berry at Iowa State University in 1942, and the Colossus,

1.3 A Not-So-Brief History of Computing Systems [15]

C6840_01 11/19/08 11:41 AM Page 15

constructed by a group working under Alan Turing in England in 1943. The
ABC was created to solve systems of simultaneous linear equations. Although the
ABC’s function was much narrower than that of the ENIAC, the ABC is now
regarded as the first electronic digital computer. The Colossus, whose existence
had been top secret until recently, was used to crack the powerful German
Enigma code during the war.

The first electronic digital computers, sometimes called mainframe
computers, consisted of vacuum tubes, wires, and plugs, and filled entire rooms.
Although they were much faster than people at computing, by our own current
standards they were extraordinarily slow and prone to breakdown. Moreover, the
early computers were extremely difficult to program. To enter or modify a pro-
gram, a team of workers had to rearrange the connections among the vacuum
tubes by unplugging and replugging the wires. Each program was loaded by liter-
ally hardwiring it into the computer. With thousands of wires involved, it was
easy to make a mistake.

The memory of these first computers stored only data, not the program that
processed the data. As we have seen, the idea of a stored program first appeared
100 years earlier in Jacquard’s loom and in Babbage’s design for the Analytical
Engine. In 1946, John von Neumann realized that the instructions of the pro-
grams could also be stored in binary form in an electronic digital computer’s
memory. His research group at Princeton developed one of the first modern
stored-program computers.

Although the size, speed, and applications of computers have changed dra-
matically since those early days, the basic architecture and design of the elec-
tronic digital computer have remained remarkably stable.

1.3.3 The First Programming Languages (1950–1965)

The typical computer user now runs many programs, made up of millions of lines
of code, that perform what would have seemed like magical tasks 20 or 30 years
ago. But the first digital electronic computers had no software as we think of it
today. The machine code for a few relatively simple and small applications had to
be loaded by hand. As the demand for larger and more complex applications
grew, so did the need for tools to expedite the programming process.

In the early 1950s, computer scientists realized that a symbolic notation
could be used instead of machine code, and the first assembly languages
appeared. The programmers would enter mnemonic codes for operations, such as
ADD and OUTPUT, and for data variables, such as SALARY and RATE, at a
keypunch machine. The keystrokes punched a set of holes in a small card for
each instruction. The programmers then carried their stacks of cards to a system

CHAPTER 1 Introduction[16]

C6840_01 11/19/08 11:41 AM Page 16

May not be copied, scanned, or duplicated, in whole or in part.

operator, who placed them in a device called a card reader. This device trans-
lated the holes in the cards to patterns in the computer’s memory. A program
called an assembler then translated the application programs in memory to
machine code, and they were executed.

Programming in assembly language was a definite improvement over pro-
gramming in machine code. The symbolic notation used in assembly languages
was easier for people to read and understand. Another advantage was that the
assembler could catch some programming errors before the program actually
executed. However, the symbolic notation still appeared a bit arcane when com-
pared with the notations of conventional mathematics. To remedy this problem,
John Backus, a programmer working for IBM, developed FORTRAN (Formula
Translation Language) in 1954. Programmers, many of whom were mathemati-
cians, scientists, and engineers, could now use conventional algebraic notation.
FORTRAN programmers still entered their programs on a keypunch machine,
but the computer executed them after they were translated to machine code by a
compiler.

FORTRAN was considered ideal for numerical and scientific applications.
However, expressing the kind of data used in data processing—in particular, tex-
tual information—was difficult. For example, FORTRAN was not practical for
processing information that included people’s names, addresses, Social Security
numbers, and the financial data of corporations and other institutions. In the
early 1960s, a team led by Rear Admiral Grace Murray Hopper developed
COBOL (Common Business Oriented Language) for data processing in the
United States Government. Banks, insurance companies, and other institutions
were quick to adopt its use in data-processing applications.

Also in the late 1950s and early 1960s, John McCarthy, a computer scientist
at MIT, developed a powerful and elegant notation called LISP (List Processing)
for expressing computations. Based on a theory of recursive functions (a subject
covered in Chapter 6 of this book), LISP captured the essence of symbolic infor-
mation processing. A student of McCarthy’s, Stephen “Slug” Russell, coded the
first interpreter for LISP in 1960. The interpreter accepted LISP expressions
directly as inputs, evaluated them, and printed their results. In its early days,
LISP was used primarily for laboratory experiments in an area of research known
as artificial intelligence. More recently, LISP has been touted as an ideal lan-
guage for solving any difficult or complex problems.

Although they were among the first high-level programming languages,
FORTAN and LISP have survived for decades. They have undergone many mod-
ifications to improve their capabilities and have served as models for the develop-
ment of many other programming languages. COBOL, by contrast, is no longer
in active use but has survived mainly in the form of legacy programs that must
still be maintained.

1.3 A Not-So-Brief History of Computing Systems [17]

C6840_01 11/19/08 11:41 AM Page 17

These new, high-level programming languages had one feature in common:
abstraction. In science or any other area of enquiry, an abstraction allows human
beings to reduce complex ideas or entities to simpler ones. For example, a set of
ten assembly language instructions might be replaced with an equivalent algebraic
expression that consists of only five symbols in FORTRAN. Put another way, any
time you can say more with less, you are using an abstraction. The use of abstrac-
tion is also found in other areas of computing, such as hardware design and infor-
mation architecture. The complexities don’t actually go away, but the abstractions
hide them from view. The suppression of distracting complexity with abstractions
allows computer scientists to conceptualize, design, and build ever more sophisti-
cated and complex systems.

1.3.4 Integrated Circuits, Interaction, and Timesharing
(1965–1975)

In the late 1950s, the vacuum tube gave way to the transistor as the mechanism
for implementing the electronic switches in computer hardware. As a solid-state
device, the transistor was much smaller, more reliable, more durable, and less
expensive to manufacture than a vacuum tube. Consequently, the hardware com-
ponents of computers generally became smaller in physical size, more reliable, and
less expensive. The smaller and more numerous the switches became, the faster
the processing and the greater the capacity of memory to store information.

The development of the integrated circuit in the early 1960s allowed com-
puter engineers to build ever smaller, faster, and less expensive computer hard-
ware components. They perfected a process of photographically etching
transistors and other solid-state components onto very thin wafers of silicon,
leaving an entire processor and memory on a single chip. In 1965, Gordon
Moore, one of the founders of the computer chip manufacturer Intel, made a
prediction that came to be known as Moore’s Law. This prediction states that
the processing speed and storage capacity of hardware will increase and its cost
will decrease by approximately a factor of 2 every 18 months. This trend has held
true for the past 40 years. For example, there were about 50 electrical compo-
nents on a chip in 1965, whereas by 2000, a chip could hold over 40 million com-
ponents. Without the integrated circuit, men would not have gone to the moon
in 1969, and we would not have the powerful and inexpensive handheld devices
that we now use on a daily basis.

Minicomputers the size of a large office desk appeared in the 1960s. The
means of developing and running programs also were changing. Until then, a
computer was typically located in a restricted area with a single human operator.

CHAPTER 1 Introduction[18]

C6840_01 11/19/08 11:41 AM Page 18

May not be copied, scanned, or duplicated, in whole or in part.

Programmers composed their programs on keypunch machines in another room
or building. They then delivered their stacks of cards to the computer operator,
who loaded them into a card reader, and compiled and ran the programs in
sequence on the computer. Programmers then returned to pick up the output
results, in the form of new stacks of cards or printouts. This mode of operation,
also called batch processing, might cause a programmer to wait days for results,
including error messages.

The increases in processing speed and memory capacity enabled computer
scientists to develop the first time-sharing operating system. John McCarthy,
the creator of the programming language LISP, recognized that a program could
automate many of the functions performed by the human system operator. When
memory, including magnetic secondary storage, became large enough to hold
several users’ programs at the same time, they could be scheduled for concurrent
processing. Each process associated with a program would run for a slice of time
and then yield the CPU to another process. All of the active processes would
repeatedly cycle for a turn with the CPU until they finished.

Several users could now run their own programs simultaneously by entering
commands at separate terminals connected to a single computer. As processor
speeds continued to increase, each user gained the illusion that a time-sharing
computer system belonged entirely to him or her.

By the late 1960s, programmers could enter program input at a terminal and
also see program output immediately displayed on a CRT (Cathode Ray Tube)
screen. Compared to its predecessors, this new computer system was both highly
interactive and much more accessible to its users.

Many relatively small and medium-sized institutions, such as universities,
were now able to afford computers. These machines were used not only for data
processing and engineering applications, but also for teaching and research in the
new and rapidly growing field of computer science.

1.3.5 Personal Computing and Networks (1975–1990)

In the mid-1960s, Douglas Engelbart, a computer scientist working at the
Stanford Research Institute (SRI), first saw one of the ultimate implications of
Moore’s Law: eventually, perhaps within a generation, hardware components
would become small enough and affordable enough to mass produce an individ-
ual computer for every human being. What form would these personal computers
take, and how would their owners use them? Two decades earlier, in 1945,
Engelbart had read an article in The Atlantic Monthly titled “As We May Think”
that had already posed this question and offered some answers. The author,
Vannevar Bush, a scientist at MIT, predicted that computing devices would serve

1.3 A Not-So-Brief History of Computing Systems [19]

C6840_01 11/19/08 11:41 AM Page 19

as repositories of information, and ultimately, of all human knowledge. Owners of
computing devices would consult this information by browsing through it with
pointing devices, and contribute information to the knowledge base almost at
will. Engelbart agreed that the primary purpose of the personal computer would
be to augment the human intellect, and he spent the rest of his career designing
computer systems that would accomplish this goal.

During the late 1960s, Engelbart built the first pointing device or mouse. He
also designed software to represent windows, icons, and pull-down menus on a
bit-mapped display screen. He demonstrated that a computer user could not
only enter text at the keyboard but could also directly manipulate the icons that
represent files, folders, and computer applications on the screen.

But for Engelbart, personal computing did not mean computing in isolation.
He participated in the first experiment to connect computers in a network, and
he believed that soon people would use computers to communicate, share infor-
mation, and collaborate on team projects.

Engelbart developed his first experimental system, which he called NLS
(oNLine System) Augment, on a minicomputer at SRI. In the early 1970s, he
moved to Xerox PARC (Palo Alto Research Center) and worked with a team
under Alan Kay to develop the first desktop computer system. Called the Alto,
this system had many of the features of Engelbart’s Augment, as well as e-mail
and a functioning hypertext (a forerunner of the World Wide Web). Kay’s group
also developed a programming language called Smalltalk, which was designed to
create programs for the new computer and to teach programming to children.
Kay’s goal was to develop a personal computer the size of a large notebook,
which he called the Dynabook. Unfortunately for Xerox, the company’s manage-
ment had more interest in photocopy machines than in the work of Kay’s vision-
ary research group. However, a young entrepreneur named Steve Jobs visited the
Xerox lab and saw the Alto in action. In 1984, Apple Computer, the now-famous
company founded by Steve Jobs, brought forth the Macintosh, the first successful
mass-produced personal computer with a graphical user interface.

While Kay’s group was busy building the computer system of the future in
their research lab, dozens of hobbyists gathered near San Francisco to found the
Homebrew Computer Club, the first personal computer users group. They met
to share ideas, programs, hardware, and applications for personal computing. The
first mass-produced personal computer, the Altair, appeared in 1975. The Altair
contained Intel’s 8080 processor, the first microcomputer chip. But from the
outside, the Altair looked and behaved more like a miniature version of the early
computers than the Alto. Programs and their input had to be entered by flipping
switches, and output was displayed by a set of lights. However, the Altair was
small enough for personal computing enthusiasts to carry home, and I/O devices
eventually were invented to support the processing of text and sound.

CHAPTER 1 Introduction[20]

C6840_01 11/19/08 11:41 AM Page 20

May not be copied, scanned, or duplicated, in whole or in part.

The Osborne and the Kaypro were among the first mass-produced interactive
personal computers. They boasted tiny display screens and keyboards, with floppy
disk drives for loading system software, applications software, and users’ data files.
Early personal computing applications were word processors, spreadsheets, and
games such as PacMan and SpaceWar!. These computers also ran CP/M (Control
Program for Microcomputers), the first PC-based operating system.

In the early 1980s, a college dropout named Bill Gates and his partner Paul
Allen built their own operating system software, which they called MS-DOS
(Microsoft Disk Operating System). They then arranged a deal with the giant
computer manufacturer IBM to supply MS-DOS for the new line of PCs that the
company intended to mass-produce. This deal proved to be a very advantageous
one for Gates’ company, Microsoft. Not only did Microsoft receive a fee for each
computer sold, but it also was able to get a head start on supplying applications
software that would run on its operating system. Brisk sales of the IBM PC and
its “clones” to individuals and institutions quickly made MS-DOS the world’s
most widely used operating system. Within a few years, Gates and Allen had
become billionaires, and within a decade, Gates had become the world’s richest
man, a position he held for 13 straight years.

Also in the 1970s, the U.S. Government began to support the development
of a network that would connect computers at military installations and research
universities. The first such network, called ARPANET (Advanced Research
Projects Agency Network), connected four computers at SRI, UCLA (University
of California at Los Angeles), UC Santa Barbara, and the University of Utah.
Bob Metcalfe, a researcher associated with Kay’s group at Xerox, developed a
software protocol called Ethernet for operating a network of computers. Ethernet
allowed computers to communicate in a local area network (LAN) within an
organization and also with computers in other organizations via a wide area net-
work (WAN). By the mid 1980s, the ARPANET had grown into what we now
call the Internet, connecting computers owned by large institutions, small organi-
zations, and individuals all over the world.

1.3.6 Consultation, Communication, and Ubiquitous
Computing (1990–Present)

In the 1990s, computer hardware costs continued to plummet, and processing
speed and memory capacity skyrocketed. Optical storage media such as compact
discs (CDs) and digital video discs (DVDs) were developed for mass storage. The
computational processing of images, sound, and video became feasible and wide-
spread. By the end of the decade, entire movies were being shot or constructed

1.3 A Not-So-Brief History of Computing Systems [21]

C6840_01 11/19/08 11:41 AM Page 21

and played back using digital devices. The capacity to create lifelike three-
dimensional animations of whole environments led to a new technology called
virtual reality. New devices appeared, such as flatbed scanners and digital
cameras, which could be used along with the more traditional microphone and
speakers to support the input and output of almost any type of information.

Desktop and laptop computers now not only perform useful work but also
give their users new means of personal expression. The past decade has seen the
rise of computers as communication tools, with e-mail, instant messaging, bulletin
boards, chat rooms, and the amazing World Wide Web. With the rise of wireless
technology, all of these capabilities are now available almost everywhere on tiny,
handheld devices. Computing is becoming ubiquitous, yet also less visible.

Perhaps the most interesting story from this period concerns Tim Berners-
Lee, the creator of the World Wide Web. In the late 1980s, Berners-Lee, a theo-
retical physicist doing research at the CERN Institute in Geneva, Switzerland,
began to develop some ideas for using computers to share information. Computer
engineers had been linking computers to networks for several years, and it was
already common in research communities to exchange files and send and receive
e-mail around the world. However, the vast differences in hardware, operating sys-
tems, file formats, and applications still made it difficult for users who were not
adept at programming to access and share this information. Berners-Lee was
interested in creating a common medium for sharing information that would be
easy to use, not only for scientists but also for any other person capable of manip-
ulating a keyboard and mouse and viewing the information on a monitor.

Berners-Lee was familiar with Vannevar Bush’s vision of a web-like consulta-
tion system, Engelbart’s work on NLS Augment, and also with the first widely
available hypertext systems. One of these systems, Apple Computer’s Hypercard,
broadened the scope of hypertext to hypermedia. Hypercard allowed authors to
organize not just text but also images, sound, video, and executable applications
into webs of linked information. However, a Hypercard database sat only on stand-
alone computers; the links could not carry Hypercard data from one computer to
another. Furthermore, the supporting software ran only on Apple’s computers.

Berners-Lee realized that networks could extend the reach of a hypermedia
system to any computers connected to the net, making their information available
worldwide. To preserve its independence from particular operating systems, the
new medium would need to have universal standards for distributing and present-
ing the information. To ensure this neutrality and independence, no private corpo-
ration or individual government could own the medium and dictate the standards.

Berners-Lee built the software for this new medium, which we now call the
World Wide Web, in 1992. The software used many of the existing mechanisms
for transmitting information over the Internet. People contribute information to

CHAPTER 1 Introduction[22]

C6840_01 11/19/08 11:41 AM Page 22

May not be copied, scanned, or duplicated, in whole or in part.

the Web by publishing files on computers known as Web servers. The Web server
software on these computers is responsible for answering requests for viewing the
information stored on the Web server. To view information on the Web, people use
software called a Web browser. In response to a user’s commands, a Web browser
sends a request for information across the Internet to the appropriate Web server.
The server responds by sending the information back to the browser’s computer,
called a Web client, where it is displayed or rendered in the browser.

Although Berners-Lee wrote the first Web server and Web browser software, he
made two other, even more important contributions. First, he designed a set of rules,
called HTTP (Hypertext Transfer Protocol), which allows any server and browser to
talk to each other. Second, he designed a language, HTML (Hypertext Markup
Language), which allows browsers to structure the information to be displayed on
Web pages. He then made all of these resources available to anyone for free.

Berners-Lee’s invention and gift of this universal information medium is a truly
remarkable achievement. Today there are millions of Web servers in operation
around the world. Anyone with the appropriate training and resources—companies,
government, nonprofit organizations, and private individuals—can start up a new
Web server or obtain space on one. Web browser software now runs not only on
desktop and laptop computers, but on handheld devices such as cell phones.

This concludes our not-so-brief overview of the history of computing. If you
want to learn more about this history, consult the sources listed at the end of this
chapter. We now turn to an introduction to programming in Python.

1.4 Getting Started with Python Programming
Guido van Rossum invented the Python programming language in the early
1990s. Python is a high-level, general-purpose programming language for solving
problems on modern computer systems. The language and many supporting tools
are free and Python programs can run on any operating system. Python, its docu-
mentation, and related materials can be downloaded from www.python.org. You
can find instructions for downloading and installing Python in Appendix A. In
this section, we show you how to create and run simple Python programs.

1.4.1 Running Code in the Interactive Shell

Python is an interpreted language, and simple Python expressions and statements
can be run in an interactive programming environment called the shell. The easiest
way to open a Python shell is to launch the IDLE. This is an integrated program

1.4 Getting Started with Python Programming [23]

C6840_01 11/19/08 11:41 AM Page 23

development environment that comes with the Python installation. When you do
this, a window named Python Shell opens. Figure 1.6 shows a shell window on
Mac OS X. A shell window running on a Windows system or a Linux system
should look similar if not identical to this one.

[FIGURE 1.6] Python shell window

A shell window contains an opening message followed by the special symbol
>>>, called a shell prompt. The cursor at the shell prompt waits for you to enter
a Python command. Note that you can get immediate help by entering help at
the shell prompt or selecting Help from the window’s drop-down menu.

When you enter an expression or statement, Python evaluates it and displays its
result, if there is one, followed by a new prompt. The next few lines show the evalu-
ation of several expressions and statements. In this example, the results are displayed
in italics, although they would not actually appear in italics on the computer screen.

>>>ƒ3ƒ+ƒ4ƒ
7
>>>ƒ3
3
>>>ƒ“Pythonƒisƒreallyƒcool!”
'Pythonƒisƒreallyƒcool!'
>>>ƒnameƒ=ƒ“KenƒLambert”
>>>ƒname
'KenƒLambert'
>>>ƒ“Hiƒthereƒ“ƒ+ƒname
'HiƒthereƒKenƒLambert'
>>>ƒprintƒ'Hiƒthere'
Hiƒthere
>>>ƒprintƒ“Hiƒthere”,ƒname
HiƒthereƒKenƒLambert
>>>ƒ

CHAPTER 1 Introduction[24]

C6840_01 11/19/08 11:41 AM Page 24

May not be copied, scanned, or duplicated, in whole or in part.

To quit the Python shell, you can either select the window’s close box or
press the Control+D key combination.

The Python shell is useful for experimenting with short expressions or state-
ments to learn new features of the language, as well as for consulting documenta-
tion on the language. The means of developing more complex and interesting
programs are examined in the rest of this section.

1.4.2 Input, Processing, and Output

Most useful programs accept inputs from some source, process these inputs, and
then finally output results to some destination. In terminal-based interactive pro-
grams, the input source is the keyboard and the output destination is the terminal
display. The Python shell itself is such a program; its inputs are Python expres-
sions or statements. Its processing evaluates these items. Its outputs are the
results displayed in the shell.

The programmer can also force the output of a value by using the print
statement. The simplest form of this statement looks like the following:

printƒ<expression>

This example shows you the basic syntax (or rules) for forming a print
statement. The angle brackets (the < and > symbols) enclose a type of phrase. In
actual Python code, you would replace this syntactic form, including the angle
brackets, with an example of that type of phrase. In this case, <expression> is
shorthand for any Python expression.

When executing the print statement, Python first evaluates the expression
and then displays its value. In the example shown earlier, print was used to dis-
play some text. The following is an example:

>>>ƒprintƒ'Hiƒthere'
Hiƒthere

In this example, the text 'Hi there' is the text that we want Python to dis-
play. In programming terminology, this piece of text is referred to as a string. In
Python code, a string is always enclosed in single quotation marks. However, the
print statement displays a string without the quotation marks.

You can also write a print statement that includes two or more expressions
separated by commas. In such a case, the print statement evaluates the expressions

1.4 Getting Started with Python Programming [25]

C6840_01 11/19/08 11:41 AM Page 25

and displays their results, separated by single spaces, on one line. The syntax for a
print statement with two or more expressions looks like the following:

ƒprintƒ<expression>,ƒ…ƒ,ƒ<expression>

Note the ellipsis in this syntax example. The ellipsis indicates that you could
include multiple expressions after the first one. Whether it outputs one or multi-
ple expressions, the print statement always ends its output with a newline. In
other words, it displays the values of the expressions, and then it moves the cur-
sor to the next line on the screen.

To begin the next output on the same line as the previous one, you can place
a comma at the end of the earlier print statement, as follows:

printƒ<expression>,ƒ

As you create programs in Python, you’ll often want your programs to ask
the user for input. You can do this by using an input function. An input function
causes the program to stop and wait for the user to enter a value from the key-
board. When the user presses the return or Enter key, the function accepts the
input value and makes it available to the program. A program that receives an
input value in this manner typically saves it for further processing.

The following example shows the process of receiving an input string from
the user and saving it for further processing. The user’s input is in italics. This
example shows a particular version called the raw_input function.

>>>ƒnameƒ=ƒraw_input(“Enterƒyourƒname:ƒ“)
Enterƒyourƒname:ƒKenƒLambert
>>>ƒname
'KenƒLambert'
>>>ƒprintƒname
KenƒLambert
>>>ƒ

The raw_input function does the following:

1 Displays a prompt for the input. In this example, the prompt is
“Enterƒyour name: “.

2 Receives a string of keystrokes, called characters, entered at the keyboard
and returns the string to the shell.

CHAPTER 1 Introduction[26]

C6840_01 11/19/08 11:41 AM Page 26

May not be copied, scanned, or duplicated, in whole or in part.

How does the raw_input function know what to use as the prompt? The
text in parentheses, “Enter your name: “, is an argument for the raw_input
function that tells it what to use for the prompt. An argument is a piece of infor-
mation that a function needs to do its work.

The string returned by the function in our example is assigned to the variable
name. The form of an input statement for text used in this book is the following:

<variableƒidentifier>ƒ=ƒraw_input(<aƒstringƒprompt>)

A variable identifier, or variable for short, is just a name for a value. When
a variable receives its value in an input statement, the variable then refers to this
value. If the user enters the name “Ken Lambert” in our last example, the value
of the variable name can be viewed as follows:

>>>ƒname
'KenƒLambert'

The raw_input function works best for text. To input numbers from the
keyboard, it is more convenient to use the input function. This function is used
in the same manner as raw_input, but behaves in a slightly different way. The
input function receives a string of characters from the keyboard as text, but then
evaluates this string. If the string happens to represent a number, the correspon-
ding numeric value is returned to the program. The next session shows the input
of two numbers and the display of their sum:

>>>ƒfirstƒ=ƒinput(“Enterƒtheƒfirstƒnumber:ƒ“)
Enterƒtheƒfirstƒnumber:ƒ23
>>>ƒsecondƒ=ƒinput(“Enterƒtheƒsecondƒnumber:ƒ“)
Enterƒtheƒsecondƒnumber:ƒ44
>>>ƒprintƒ“Theƒsumƒis”,ƒfirstƒ+ƒsecond
Theƒsumƒisƒ67
>>>ƒ

1.4.3 Editing, Saving, and Running a Script

While it is easy to try out short Python expressions and statements interactively
at a shell prompt, it is more convenient to compose, edit, and save longer, more
complex programs in files. We can then run these program files or scripts either

1.4 Getting Started with Python Programming [27]

C6840_01 11/19/08 11:41 AM Page 27

within IDLE or from the operating system’s command prompt without opening
IDLE. Script files are also the means by which Python programs are distributed
to others. Most important, as you know from writing term papers, files allow you
to save, safely and permanently, many hours of work.

To compose and execute programs in this manner, you perform the
following steps:

1 Select the option New Window from the File menu of the shell window.

2 In the new window, enter Python expressions or statements on separate
lines, in the order in which you want Python to execute them.

3 At any point, you may save the file by selecting File/Save. If you do this,
you should use a .py extension. For example, your first program file
might be named myprogram.py.

4 To run this file of code as a Python script, select Run Module from the
Run menu or press the F5 key (Windows) or the Control+F5 key (Mac
or Linux).

The command in Step 4 reads the code from the saved file and executes it. If
Python executes any print statements in the code, you will see the outputs as
usual in the shell window. If the code requests any inputs, the interpreter will
pause to allow you to enter them. Otherwise, program execution continues invisi-
bly behind the scenes. When the interpreter has finished executing the last
instruction, it quits and returns you to the shell prompt.

Figure 1.7 shows an IDLE window containing a complete script that
prompts the user for the width and height of a rectangle, computes its area, and
outputs the result:

[FIGURE 1.7] Python script in an IDLE window

When the script is run from the IDLE window, it produces the interaction
with the user in the shell window shown in Figure 1.8.

CHAPTER 1 Introduction[28]

C6840_01 11/19/08 11:41 AM Page 28

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 1.8] Interaction with a script in a shell window

This can be a slightly less interactive way of executing programs than entering
them directly at Python’s interpreter prompt. However, running the script from
the IDLE window will allow you to construct some complex programs, test them,
and save them in program libraries that you can reuse or share with others.

1.4.4 Behind the Scenes: How Python Works

Whether you are running Python code as a script or interactively in a shell, the
Python interpreter does a great deal of work to carry out the instructions in your
program. This work can be broken into a series of steps, as shown in Figure 1.9.

[FIGURE 1.9] Steps in interpreting a Python program

1 The interpreter reads a Python expression or statement, also called the
source code, and verifies that it is well formed. In this step, the inter-
preter behaves like a strict English teacher who rejects any sentence that
does not adhere to the grammar rules, or syntax, of the language. As

Python code

User inputs Other error messages

Syntax error messages

Program
outputs

Byte code

Syntax Checker
and Translator

Python Virtual
Machine (PVM)

1.4 Getting Started with Python Programming [29]

C6840_01 11/19/08 11:41 AM Page 29

soon as the interpreter encounters such an error, it halts translation with
an error message.

2 If a Python expression is well formed, the interpreter then translates it to
an equivalent form in a low-level language called byte code. When the
interpreter runs a script, it completely translates it to byte code.

3 This byte code is next sent to another software component, called the
Python virtual machine (PVM), where it is executed. If another error
occurs during this step, execution also halts with an error message.

1.4 Exercises
1 Describe what happens when the programmer enters the string

“Greetings!” in the Python shell.

2 Write a line of code that prompts the user for his or her name and saves
the user’s input in a variable called name.

3 What is a Python script?

4 Explain what goes on behind the scenes when your computer runs a
Python program.

1.5 Detecting and Correcting Syntax Errors
Programmers inevitably make typographical errors when editing programs, and
the Python interpreter will nearly always detect them. Such errors are called
syntax errors. The term syntax refers to the rules for forming sentences in a
language. When Python encounters a syntax error in a program, it halts execu-
tion with an error message. The following sessions with the Python shell show
several types of syntax errors and the corresponding error messages:

>>>ƒlengthƒ=ƒinput(“Enterƒtheƒlength:ƒ“)
Enterƒtheƒlength:ƒ44

>>>ƒprintƒlenth
Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<pyshell#1>”,ƒlineƒ1,ƒinƒ<module>
NameError:ƒnameƒ'lenth'ƒisƒnotƒdefined

CHAPTER 1 Introduction[30]

C6840_01 11/19/08 11:41 AM Page 30

May not be copied, scanned, or duplicated, in whole or in part.

The first statement assigns an input value to the variable length. The next
statement attempts to print the value of the variable lenth. Python responds that
this name is not defined. Although the programmer might have meant to write
the variable length, Python can read only what the programmer actually entered.
This is a good example of the rule that a computer can read only the instructions
it receives, not the instructions we intend to give it.

The next statement attempts to print the value of the correctly spelled vari-
able, but Python still generates an error message.

>>>ƒƒprintƒlength
ƒƒFileƒ“<pyshell#1>”,ƒlineƒ1
ƒƒƒƒprintƒlength
ƒƒƒƒ^
IndentationError:ƒunexpectedƒindent

In this error message, Python explains that this line of code is unexpectedly
indented. In fact, there is an extra space before the word print. Indentation is
significant in Python code. Each line of code entered at a shell prompt or in a
script must begin in the leftmost column, with no leading spaces. The only
exception to this rule occurs in control statements and definitions, where nested
statements must be indented one or more spaces.

You might think that it would be painful to keep track of indentation in a
program. However, in compensation, the Python language is much simpler than
other programming languages. Consequently, there are fewer types of syntax
errors to encounter and correct, and a lot less syntax for you to learn!

In our final example, the programmer attempts to add two numbers, but for-
gets to include the second one:

>>>ƒ3ƒ+ƒƒƒ
ƒƒFileƒ“<pyshell#1>”,ƒlineƒ1
ƒƒƒƒ3ƒ+ƒ
ƒƒƒƒƒƒƒ^
SyntaxError:ƒinvalidƒsyntax

Although the shell reports a generic invalid syntax error, the caret symbol
clearly points to the absence of a second operand for the addition.

In later chapters, you will learn more about other kinds of program errors
and how to repair the code that generates them.

1.5 Detecting and Correcting Syntax Errors [31]

C6840_01 11/19/08 11:41 AM Page 31

1.5 Exercises
1 Suppose your script attempts to print the value of a variable that has not

yet been assigned a value. How does the Python interpreter react?

2 Miranda has forgotten to complete an arithmetic expression before the
end of a line of code. How will the Python interpreter react?

3 Why does Python code generate fewer types of syntax errors than code
in other programming languages?

Suggestions for Further Reading
John Battelle, The Search: How Google and Its Rivals Rewrote the Rules
of Business and Transformed Our Culture (New York: Portfolio
Trade, 2006).

Tim Berners-Lee, Weaving the Web: The Original Design and Ultimate
Destiny of the World Wide Web (New York: Harper-Collins, 2000).

Paul Graham, Hackers and Painters: Big Ideas from the Computer Age
(Sebastopol, CA: O’Reilly, 2004).

Katie Hafner and Matthew Lyon, Where Wizards Stay Up Late:
The Origins of the Internet (New York: Simon and Schuster, 1996).

Michael E. Hobart and Zachary S. Schiffman, Information Ages:
Literacy, Numeracy, and the Computer Revolution (Baltimore: The
Johns Hopkins University Press, 1998).

Georges Ifrah, The Universal History of Computing: From the Abacus to
the Quantum Computer (New York: John Wiley & Sons, Inc., 2001).

John Markoff, What the Doormouse Said: How the Sixties Counterculture
Shaped the Personal Computer Industry (New York: Viking, 2005).

Summary
� One of the most fundamental ideas of computer science is the algo-

rithm. An algorithm is a sequence of instructions for solving a prob-
lem. A computing agent can carry out these instructions to solve a
problem in a finite amount of time.

CHAPTER 1 Introduction[32]

C6840_01 11/19/08 11:41 AM Page 32

May not be copied, scanned, or duplicated, in whole or in part.

� Another fundamental idea of computer science is information process-
ing. Practically any relationship among real-world objects can be
represented as information or data. Computing agents manipulate
information and transform it by following the steps described in
algorithms.

� Real computing agents can be constructed out of hardware devices.
These consist of a central processing unit (CPU), a memory, and
input and output devices. The CPU contains circuitry that executes
the instructions described by algorithms. The memory contains
switches that represent binary digits. All information stored in mem-
ory is represented in binary form. Input devices such as a keyboard
and flatbed scanner and output devices such as a monitor and speakers
transmit information between the computer’s memory and the exter-
nal world. These devices also transfer information between a binary
form and a form that human beings can use.

� Some real computers, such as those in wristwatches and cell phones,
are specialized for a small set of tasks, whereas a desktop or laptop
computer is a general-purpose problem-solving machine.

� Software provides the means whereby different algorithms can be run
on a general-purpose hardware device. The term “software” can refer
to editors and interpreters for developing programs, an operating sys-
tem for managing hardware devices, user interfaces for communicat-
ing with human users, and applications such as word processors,
spreadsheets, database managers, games, and media-processing
programs.

� Software is written in programming languages. Languages such as
Python are high level; they resemble English and allow authors to
express their algorithms clearly to other people. A program called an
interpreter translates a Python program to a lower-level form that can
be executed on a real computer.

� The Python shell provides a command prompt for evaluating and
viewing the results of Python expressions and statements. IDLE is an
integrated development environment that allows the programmer to
save programs in files and load them into a shell for testing.

� Python scripts are programs that are saved in files and run from a ter-
minal command prompt. An interactive script consists of a set of input
statements, statements that process these inputs, and statements that
output the results.

Summary [33]

C6840_01 11/19/08 11:41 AM Page 33

� When a Python program is executed, it is translated into byte code.
This byte code is then sent to the Python virtual machine (PVM) for
further interpretation and execution.

� Syntax is the set of rules for forming correct expressions and state-
ments in a programming language. When the interpreter encounters a
syntax error in a Python program, it halts execution with an error
message. Two examples of syntax errors are a reference to a variable
that does not yet have a value and an indentation that is unexpected.

CHAPTER 1 Introduction[34]

C6840_01 11/19/08 11:41 AM Page 34

May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS [35]

REVIEW QUESTIONS
1 Which of the following are examples of algorithms?

a A dictionary
b A recipe
c A set of instructions for putting together a utility shed
d The spelling checker of a word processor

2 Which of the following contain information?

a My grandmother’s china cabinet
b An audio CD
c A refrigerator
d A book
e A running computer

3 Which of the following are general-purpose computing devices?

a A cell phone
b A portable music player
c A laptop computer
d A programmable thermostat

4 Which of the following are input devices?

a Speakers
b Microphone
c Printers
d A mouse

5 Which of the following are output devices?

a A digital camera
b A keyboard
c A flatbed scanner
d A monitor

C6840_01 11/19/08 11:41 AM Page 35

CHAPTER 1 Introduction[36]

6 What is the purpose of the CPU?

a Store information
b Receive inputs from the human user
c Decode and execute instructions
d Send output to the human user

7 Which of the following translates and executes instructions in a
programming language?

a A compiler
b A text editor
c A loader
d An interpreter

8 Which of the following outputs data in a Python program?

a The input statement
b The assignment statement
c The print statement
d The main function

9 What is IDLE used to do?

a Edit Python programs
b Save Python programs to files
c Run Python programs
d All of the above

10 What is the set of rules for forming sentences in a language called?

a Semantics
b Pragmatics
c Syntax
d Logic

C6840_01 11/19/08 11:41 AM Page 36

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS
1 Open a Python shell, enter the following expressions, and observe the

results:

a 8

b 8 * 2

c 8 ** 2

d 8 / 12

e 8 / 12.0

f 8 / 0

2 Write a Python program that prints (displays) your name, address, and
telephone number.

3 Evaluate the following statement at a shell prompt: print “Your name
is”, name. Then assign name an appropriate value and evaluate the
statement again.

4 Open an IDLE window and enter the program from Figure 1.7 that
computes the area of a rectangle. Load the program into the shell by
pressing the F5 key and correct any errors that occur. Test the program
with different inputs by running it least three times.

5 Modify the program of Project 4 to compute the area of a triangle. Issue
the appropriate prompts for the triangle’s base and height and change the
names of the variables appropriately. Then, use the formula .5 * base
* height to compute the area. Test the program from an IDLE window.

6 Write and test a program that computes the area of a circle. This pro-
gram should request a number representing a radius as input from the
user. It should use the formula 3.14 * radius ** 2 to compute the
area, and output this result suitably labeled.

7 Write and test a program that accepts the user’s name (as text) and age
(as a number) as input. The program should output a sentence contain-
ing the user’s name and age.

PROJECTS [37]

C6840_01 11/19/08 11:41 AM Page 37

CHAPTER 1 Introduction[38]

8 Enter an input statement using the raw_input function at the shell
prompt. When the prompt asks you for input, enter a number. Then,
attempt to add 1 to that number, observe the results, and explain what
happened.

9 Enter an input statement using the input function at the shell prompt.
When the prompt asks you for input, enter your first name, observe the
results, and explain what happened.

10 Enter the expression help() at the shell prompt. Follow the instructions
to browse the topics and modules.

C6840_01 11/19/08 11:41 AM Page 38

May not be copied, scanned, or duplicated, in whole or in part.

After completing this chapter, you will be able to
� Describe the basic phases of software development: analysis,

design, coding, and testing
� Use strings for the terminal input and output of text
� Use integers and floating point numbers in arithmetic

operations
� Construct arithmetic expressions
� Initialize and use variables with appropriate names
� Import functions from library modules
� Call functions with arguments and use returned values

appropriately
� Construct a simple Python program that performs inputs,

calculations, and outputs
� Use docstrings to document Python programs
This chapter begins with a discussion of the software develop-

ment process, followed by a case study in which we walk through
the steps of program analysis, design, coding, and testing. We also
examine the basic elements from which programs are composed.
These include the data types for text and numbers and the expres-
sions that manipulate them. The chapter concludes with an intro-
duction to the use of functions and modules in simple programs.

[CHAPTER]
SOFTWARE DEVELOPMENT,

Data Types, and Expressions2

C6840_02 11/19/08 11:41 AM Page 39

2.1 The Software Development Process
There is much more to programming than writing lines of code, just as there is
more to building houses than pounding nails. The “more” consists of organiza-
tion and planning, and various conventions for diagramming those plans.
Computer scientists refer to the process of planning and organizing a program as
software development. There are several approaches to software development.
One version is known as the waterfall model.

The waterfall model consists of several phases:

1 Customer request—In this phase, the programmers receive a broad
statement of a problem that is potentially amenable to a computerized
solution. This step is also called the user requirements phase.

2 Analysis—The programmers determine what the program will do. This
is sometimes viewed as a process of clarifying the specifications for the
problem.

3 Design—The programmers determine how the program will do its task.

4 Implementation—The programmers write the program. This step is
also called the coding phase.

5 Integration—Large programs have many parts. In the integration phase,
these parts are brought together into a smoothly functioning whole, usu-
ally not an easy task.

6 Maintenance—Programs usually have a long life; a lifespan of 5 to
15 years is common for software. During this time, requirements change,
errors are detected, and minor or major modifications are made.

The phases of the waterfall model are shown in Figure 2.1. As you can see,
the figure resembles a waterfall, in which the results of each phase flow down to
the next. However, a mistake detected in one phase often requires the developer
to back up and redo some of the work in the previous phase. Modifications made
during maintenance also require backing up to earlier phases.

Although the diagram depicts distinct phases, this does not mean that devel-
opers must analyze and design a complete system before coding it. Modern soft-
ware development is usually incremental and iterative. This means that analysis
and design may produce a rough draft, skeletal version, or prototype of a system
for coding, and then back up to earlier phases to fill in more details after some
testing. For purposes of introducing this process, however, we treat these phases
as distinct.

CHAPTER 2 Software Development, Data Types, and Expressions[40]

C6840_02 11/19/08 11:41 AM Page 40

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 2.1] The waterfall model of the software development process

Programs rarely work as hoped the first time they are run; hence, they
should be subjected to extensive and careful testing. Many people think that
testing is an activity that applies only to the implementation and integration
phases; however, you should scrutinize the outputs of each phase carefully. Keep
in mind that mistakes found early are much less expensive to correct than those
found late. Figure 2.2 illustrates some relative costs of repairing mistakes when
found in different phases. These are not just financial costs but also costs in time
and effort.

Implementation

Test

Analysis

Verify

Integration

Test

Maintenance

Design

Verify

Customer request

Verify

2.1 The Software Development Process [41]

C6840_02 11/19/08 11:41 AM Page 41

[FIGURE 2.2] Relative costs of repairing mistakes that are found in different phases

Keep in mind that the cost of developing software is not spread equally over
the phases. The percentages shown in Figure 2.3 are typical.

[FIGURE 2.3] Percentage of total cost incurred in each phase of the development process

You might think that implementation takes the most time and therefore costs
the most. However, as you can see in Figure 2.3, maintenance is actually the most
expensive part of software development. The cost of maintenance can be reduced
by careful analysis, design, and implementation.

Integration 8%

Implementation 8%

Maintenance 68%

Design 8%

Analysis 8%

Software Development Phase

Cost of

Correcting

a Fault

Analysis Design Implementation Integration Maintenance

CHAPTER 2 Software Development, Data Types, and Expressions[42]

C6840_02 11/19/08 11:41 AM Page 42

May not be copied, scanned, or duplicated, in whole or in part.

As you read this book and begin to sharpen your programming skills, you
should remember two points:

1 There is more to software development than writing code.

2 If you want to reduce the overall cost of software development, write
programs that are easy to maintain. This requires thorough analysis,
careful design, and a good coding style. We will have more to say about
coding styles throughout the book.

2.1 Exercises
1 List four phases of the software development process and explain what

they accomplish.

2 Jack says that he will not bother with analysis and design but proceed
directly to coding his programs. Why is that not a good idea?

2.2 Case Study: Income Tax Calculator
Most of the chapters in this book include a case study that illustrates the software
development process. This approach may seem overly elaborate for small pro-
grams, but it scales up well when programs become larger. The first case study
develops a program that calculates income tax.

Each year nearly everyone with an income faces the unpleasant task of com-
puting his or her income tax return. If only it could be done as easily as suggested
in this case study. We start with the customer request phase.

2.2.1 Request

The customer requests a program that computes a person’s income tax.

2.2 Case Study: Income Tax Calculator [43]

C6840_02 11/19/08 11:41 AM Page 43

2.2.2 Analysis

Analysis often requires the programmer to learn some things about the problem
domain, in this case, the relevant tax law. For the sake of simplicity, let’s assume
the following tax laws:

� All taxpayers are charged a flat tax rate of 20%.
� All taxpayers are allowed a $10,000 standard deduction.
� For each dependent, a taxpayer is allowed an additional $2000 deduction.
� Gross income must be entered to the nearest penny.
� The income tax is expressed as a decimal number.
Another part of analysis determines what information the user will have to

provide. In this case, the user inputs are gross income and number of dependents.
The program calculates the income tax based on the inputs and the tax law and
then displays the income tax. Figure 2.4 shows the proposed terminal-based
interface. Characters in italics indicate user inputs. The program prints the rest.
The inclusion of an interface at this point is a good idea because it allows the cus-
tomer and the programmer to discuss the intended program’s behavior in a con-
text understandable to both.

[FIGURE 2.4] The user interface for the income tax calculator

2.2.3 Design

During analysis, we specify what a program is going to do. In the next phase, design,
we describe how the program is going to do it. This usually involves writing an
algorithm. In Chapter 1, we showed how to write algorithms in ordinary English. In
fact, algorithms are more often written in a somewhat stylized version of English
called pseudocode. Here is the pseudocode for our income tax program:

Input the gross income and number of dependents
Compute the taxable income using the formula
Taxable income = gross income - 10000 - (2000 * number of dependents)
Compute the income tax using the formula

Enter the gross income: 150000.00
Enter the number of dependents: 3
The income tax is $26200.00

CHAPTER 2 Software Development, Data Types, and Expressions[44]

C6840_02 11/19/08 11:41 AM Page 44

May not be copied, scanned, or duplicated, in whole or in part.

Tax = taxable income * 0.20
Print the tax

Although there are no precise rules governing the syntax of pseudocode, in
your pseudocode you should strive to describe the essential elements of the pro-
gram in a clear and concise manner. Note that this pseudocode closely resembles
Python code, so the transition to the coding step should be straightforward.

2.2.4 Implementation (Coding)

Given the preceding pseudocode, an experienced programmer would now find it
easy to write the corresponding Python program. For a beginner, on the other
hand, writing the code can be the most difficult part of the process. Although the
program that follows is simple by most standards, do not expect to understand
every bit of it at first. The rest of this chapter explains the elements that make it
work and much more.

“””
Program:ƒtaxform.py
Author:ƒKenƒLambert

Computeƒaƒperson'sƒincomeƒtax.

1.ƒSignificantƒconstants
ƒƒƒƒƒƒƒtaxƒrate
ƒƒƒƒƒƒƒstandardƒdeduction
ƒƒƒƒƒƒƒdeductionƒperƒdependent
2.ƒTheƒinputsƒare
ƒƒƒƒƒƒƒgrossƒincome
ƒƒƒƒƒƒƒnumberƒofƒdependents
3.ƒComputations:
ƒƒƒƒƒƒƒtaxableƒincomeƒ=ƒgrossƒincomeƒ-ƒtheƒstandardƒdeductionƒ-
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒaƒdeductionƒforƒeachƒdependent
ƒƒƒƒƒƒƒincomeƒtaxƒ=ƒisƒaƒfixedƒpercentageƒofƒtheƒtaxableƒincome
4.ƒTheƒoutputsƒare
ƒƒƒƒƒƒƒtheƒincomeƒtax
“””

#ƒInitializeƒtheƒconstants
TAX_RATEƒ=ƒ0.20
STANDARD_DEDUCTIONƒ=ƒ10000.0
DEPENDENT_DEDUCTIONƒ=ƒ3000.0

continued

2.2 Case Study: Income Tax Calculator [45]

C6840_02 11/19/08 11:41 AM Page 45

#ƒRequestƒtheƒinputs
grossIncomeƒ=ƒinput(“Enterƒtheƒgrossƒincome:ƒ“)
numDependentsƒ=ƒinput(“Enterƒtheƒnumberƒofƒdependents:ƒ“)

#ƒComputeƒtheƒincomeƒtax
taxableIncomeƒ=ƒgrossIncomeƒ-ƒSTANDARD_DEDUCTIONƒ-ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒDEPENDENT_DEDUCTIONƒ*ƒnumDependents
incomeTaxƒ=ƒtaxableIncomeƒ*ƒTAX_RATE

#ƒDisplayƒtheƒincomeƒtax
printƒ“Theƒincomeƒtaxƒisƒ$”ƒ+ƒstr(incomeTax)

2.2.5 Testing

Our income tax program can run as a script from an IDLE window. If there are
no syntax errors, we will be able to enter a set of inputs and view the results.
However, a single run without syntax errors and with correct outputs provides
just a slight indication of a program’s correctness. Only thorough testing can
build confidence that a program is working correctly. Testing is a deliberate
process that requires some planning and discipline on the programmer’s part. It
would be much easier to turn the program in after the first successful run to meet
a deadline or to move on to the next assignment. But your grade, your job, or
people’s lives might be affected by the slipshod testing of software.

Testing can be performed easily from an IDLE window. The programmer just
loads the program repeatedly into the shell and enters different sets of inputs. The
real challenge is coming up with sets of inputs that can reveal an error. An error at
this point, also called a logic error or a design error, is an unexpected output.

A correct program produces the expected output for any legitimate input.
The tax calculator’s analysis does not provide a specification of what inputs are
legitimate, but common sense indicates that they would be numbers greater than
or equal to 0. Some of these inputs will produce outputs that are less than 0, but
we will assume for now that these outputs are expected. Even though the range of
the input numbers on a computer is finite, testing all of the possible combinations
of inputs would be impractical. The challenge is to find a smaller set of inputs,
called a test suite, from which we can conclude that the program will likely be
correct for all inputs. In the tax program, we try inputs of 0, 1, and 2 for the num-
ber of dependents. If the program works correctly with these, we can assume that
it will work correctly with larger values. The test inputs for the gross income are a
number equal to the standard deduction and a number twice that amount (10000
and 20000, respectively). These two values will show the cases of a minimum

CHAPTER 2 Software Development, Data Types, and Expressions[46]

C6840_02 11/19/08 11:41 AM Page 46

May not be copied, scanned, or duplicated, in whole or in part.

expected tax (0) and expected taxes that are less than or greater than 0. The pro-
gram is run with each possible combination of the two inputs. Table 2.1 shows the
possible combinations of inputs and the expected outputs in the test suite.

[TABLE 2.1] The test suite for the tax calculator program

If there is a logic error in the code, it will almost certainly be caught using
these data. Note that the negative outputs are not considered errors. We will see
how to prevent such computations in the next chapter.

2.3 Strings, Assignment, and Comments
Text processing is by far the most common application of computing. E-mail, text
messaging, Web pages, and word processing all rely on and manipulate data con-
sisting of strings of characters. This section introduces the use of strings for the
output of text and the documentation of Python programs. We begin with an
introduction to data types in general.

2.3.1 Data Types

In the real world, we use data all the time without bothering to consider what
kind of data we’re using. For example, consider this sentence: “In 2007, Micaela
paid $120,000 for her house at 24 East Maple Street.” This sentence includes at
least four pieces of data—a name, a date, a price, and an address—but of course
you don’t have to stop to think about that before you utter the sentence. You cer-
tainly don’t have to stop to consider that the name consists only of text charac-
ters, the date and house price are numbers, and so on. However, when we use
data in a computer program, we do need to keep in mind the type of data we’re

NUMBER OF DEPENDENTS GROSS INCOME EXPECTED TAX

0 10000 0

1 10000 –600

2 10000 –1200

0 20000 2000

1 20000 1400

2 20000 800

2.3 Strings, Assignment, and Comments [47]

C6840_02 11/19/08 11:41 AM Page 47

using. We also need to keep in mind what we can do with (what operations can
be performed on) particular data.

In programming, a data type consists of a set of values and a set of opera-
tions that can be performed on those values. A literal is the way a value of a data
type looks to a programmer. The programmer can use a literal in a program to
mention a data value. When the Python interpreter evaluates a literal, the value it
returns is simply that literal. Table 2.2 shows example literals of several Python
data types.

[TABLE 2.2] Literals for some Python data types

The first three data types listed in Table 2.2, int, long, and float, are
called numeric data types, because they represent numbers. You’ll learn more
about numeric data types later in this chapter. For now, we will focus on charac-
ter strings—which are often referred to simply as strings.

2.3.2 String Literals

In Python, a string literal is a sequence of characters enclosed in single or double
quotation marks. The following session with the Python shell shows some exam-
ple strings:

>>>ƒ'Helloƒthere!'
'Helloƒthere!'
>>>ƒ“Helloƒthere!”
'Helloƒthere!'
>>>ƒ''
''
>>>ƒ“”
''
>>>

TYPE OF DATA PYTHON TYPE NAME EXAMPLE LITERALS

Integers int -1, 0, 1, 2

long 3420000556008L

Real numbers float -0.55, .3333, 3.14, 6.0

Character strings str “Hi”, “”, 'A', '66'

CHAPTER 2 Software Development, Data Types, and Expressions[48]

C6840_02 11/19/08 11:41 AM Page 48

May not be copied, scanned, or duplicated, in whole or in part.

The last two string literals ('' and “”) represent the empty string. Although it
contains no characters, the empty string is a string nonetheless. Note that the empty
string is different from a string that contains a single blank space character, “ “.

Double-quoted strings are handy for composing strings that contain single
quotation marks or apostrophes. Here is a self-justifying example:

>>>ƒ“I'mƒusingƒaƒsingleƒquoteƒinƒthisƒstring!”
“I'mƒusingƒaƒsingleƒquoteƒinƒthisƒstring!”
>>>ƒprintƒ“I'mƒusingƒaƒsingleƒquoteƒinƒthisƒstring!”
I'mƒusingƒaƒsingleƒquoteƒinƒthisƒstring!
>>>

Note that the print statement displays the nested quotation mark but not
the enclosing quotation marks. A double quotation mark can also be included in a
string literal if one uses the single quotation marks to enclose the literal.

When you write a string literal in Python code that will be displayed on the
screen as output, you need to determine whether you want to output the string as a
single line or as a multi-line paragraph. If you want to output the string as a single
line, you have to include the entire string literal (including its opening and closing
quotation marks) in the same line of code. Otherwise, a syntax error will occur. To
output a paragraph of text that contains several lines, you could use a separate
print statement for each line. However, it is more convenient to enclose the entire
string literal, line breaks and all, within three consecutive quotation marks (either
single or double) for printing. The next session shows how this is done:

>>>ƒprintƒ“””Thisƒveryƒlongƒsentenceƒextendsƒallƒtheƒwayƒto
theƒnextƒline.”””
Thisƒveryƒlongƒsentenceƒextendsƒallƒtheƒwayƒto
theƒnextƒline.

Note that the first line in the output ends exactly where the first line ends in
the code.

When you evaluate a string in the Python shell without the print statement,
you can see the literal for the newline character, \n, embedded in the result, as
follows:

>>>ƒ“””Thisƒveryƒlongƒsentenceƒextendsƒallƒtheƒwayƒto
theƒnextƒline.ƒ“””
'Thisƒveryƒlongƒsentenceƒextendsƒallƒtheƒwayƒto\ntheƒnextƒline.'
>>>

2.3 Strings, Assignment, and Comments [49]

C6840_02 11/19/08 11:41 AM Page 49

2.3.3 Escape Sequences
The newline character \n is called an escape sequence. Escape sequences are the
way Python expresses special characters, such as the tab, the newline, and the
backspace (delete key), as literals. Table 2.3 lists some escape sequences in Python.

[TABLE 2.3] Some escape sequences in Python

Because the backslash is used for escape sequences, it must be escaped to
appear as a literal character in a string. Thus, print “\\” would display a single
\ character.

2.3.4 String Concatenation
You can join two or more strings to form a new string using the concatenation
operator +. Here is an example:

>>>ƒ“Hiƒ“ƒ+ƒ“there,ƒ“ƒ+ƒ“Ken!”
'Hiƒthere,ƒKen!'
>>>

The * operator allows you to build a string by repeating another string a given
number of times. The left operand is a string and the right operand is an integer.
For example, if you want the string “Python” to be preceded by 10 spaces, it would
be easier to use the * operator with 10 and one space than to enter the 10 spaces by
hand. The next session shows the use of the * and + operators to achieve this result:

>>>ƒ“ƒ“ƒ*ƒ10ƒ+ƒ“Python”
'ƒƒƒƒƒƒƒƒƒƒPython'
>>>

ESCAPE SEQUENCE MEANING

\b Backspace

\n Newline

\t Horizontal tab

\\ The \ character

\' Single quotation mark

\” Double quotation mark

CHAPTER 2 Software Development, Data Types, and Expressions[50]

C6840_02 11/19/08 11:41 AM Page 50

May not be copied, scanned, or duplicated, in whole or in part.

2.3.5 Variables and the Assignment Statement

As we saw in Chapter 1, a variable associates a name with a value, making it easy to
remember and use the value later in a program. You need to be mindful of a few
rules when choosing names for your variables. For example, some names, such as
if, def, and import, are reserved for other purposes and thus cannot be used for
variable names. In general, a variable name must begin with either a letter or an
underscore (_), and can contain any number of letters, digits, or other underscores.
Python variable names are case sensitive; thus, the variable WEIGHT is a different
name from the variable weight. Python programmers typically use lowercase letters
for variable names, but in the case of variable names that consist of more than one
word, it’s common to begin each word in the variable name (except for the first one)
with an uppercase letter. This makes the variable name easier to read. For example,
the name interestRate is slightly easier to read than the name interestrate.

Programmers use all uppercase letters for the names of variables that contain
values that the program never changes. Such variables are known as symbolic
constants. Examples of symbolic constants in the tax calculator case study are
TAX_RATE and STANDARD_DEDUCTION.

Variables receive their initial values and can be reset to new values with an
assignment statement. The form of an assignment statement is the following:

<variable name> = <expression>

The Python interpreter first evaluates the expression on the right side of the
assignment symbol and then binds the variable name on the left side to this value.
When this happens to the variable name for the first time, it is called defining or
initializing the variable. Note that the = symbol means assignment, not equality.
After you initialize a variable, subsequent uses of the variable name in expressions
are known as variable references.

When the interpreter encounters a variable reference in any expression, it
looks up the associated value. If a name is not yet bound to a value when it is ref-
erenced, Python signals an error. The next session shows some definitions of
variables and their references:

>>>ƒfirstNameƒ=ƒ“Ken”
>>>ƒsecondNameƒ=ƒ“Lambert”
>>>ƒfullNameƒ=ƒfirstNameƒ+ƒ“ƒ“ƒ+ƒsecondName
>>>ƒfullName
'KenƒLambert'
>>>

2.3 Strings, Assignment, and Comments [51]

C6840_02 11/19/08 11:41 AM Page 51

The first two statements initialize the variables firstName and secondName
to string values. The next statement references these variables, concatenates the
values referenced by the variables to build a new string, and assigns the result to
the variable fullName. The last line of code is a simple reference to the variable
fullName, which returns its value.

Variables serve two important purposes in programs. They help the program-
mer keep track of data that change over the course of time. They also allow the
programmer to refer to a complex piece of information with a simple name. Any
time you can substitute a simple thing for a more complex one in a program, you
make the program easier for programmers to understand and maintain. Such a
process of simplification is called abstraction, and it is one of the fundamental
ideas of computer science. Throughout this book, you’ll learn about other
abstractions used in computing, including functions, modules, and classes.

The wise programmer selects names that inform the human reader about the
purpose of the data. This, in turn, makes the program easier to maintain and
troubleshoot. A good program not only performs its task correctly, it also reads
like an essay in which each word is carefully chosen to convey the appropriate
meaning to the reader. For example, a program that creates a payment schedule
for a simple interest loan might use the variables rate, initialAmount,
currentBalance, and interest.

2.3.6 Program Comments and Docstrings

We conclude this subsection on strings with a discussion of program comments.
A comment is a piece of program text that the interpreter ignores but that pro-
vides useful documentation to programmers. At the very least, the author of a
program can include his or her name and a brief statement about the purpose of
the program at the beginning of the program file. This type of comment, called a
docstring, is a multi-line string of the form discussed earlier in this section. Here
is a docstring that begins a typical program for a lab session:

“””
Program:ƒcircle.py
Author:ƒKenƒLambert
Lastƒdateƒmodified:ƒ7/10/08

Theƒpurposeƒofƒthisƒprogramƒisƒtoƒcomputeƒtheƒareaƒofƒaƒcircle.
Theƒinputƒisƒanƒintegerƒorƒfloating-pointƒnumberƒrepresentingƒthe
radiusƒofƒtheƒcircle.ƒTheƒoutputƒisƒaƒfloating-pointƒnumber
labeledƒtheƒareaƒofƒtheƒcircle.
“””

CHAPTER 2 Software Development, Data Types, and Expressions[52]

C6840_02 11/19/08 11:41 AM Page 52

May not be copied, scanned, or duplicated, in whole or in part.

In addition to docstrings, end-of-line comments can document a program.
These comments begin with the # symbol and extend to the end of a line. An
end-of-line comment might explain the purpose of a variable or the strategy used
by a piece of code, if it is not already obvious. Here is an example:

>>>ƒRATEƒ=ƒ0.85ƒƒƒ# Conversion rate for Canadian to US dollars

Throughout this book, both types of documentation are colored in green.
Good documentation can be as important in a program as its executable

code. Ideally, program code is self-documenting, so a human reader can instantly
understand it. However, a program is often read by people who are not its
authors, and even the authors might find their own code inscrutable after months
of not seeing it. The trick is to avoid documenting code that has an obvious
meaning, but to aid the poor reader when the code alone might not provide suffi-
cient understanding. With this end in mind, it’s a good idea to do the following:

1 Begin a program with a statement of its purpose and other information
that would help orient a programmer called on to modify the program at
some future date.

2 Accompany a variable definition with a comment that explains the vari-
able’s purpose.

3 Precede major segments of code with brief comments that explain their
purpose. The case study program presented earlier in this chapter does this.

4 Include comments to explain the workings of complex or tricky sections
of code.

2.3 Exercises
1 Let the variable x be “dog” and the variable y be “cat”. Write the val-

ues returned by the following operations:

a x + y

b “the “ + x + “ chases the “ + y

c x * 4

2 Write a string that contains your name and address on separate lines
using embedded newline characters. Then write the same string literal
without the newline characters.

2.3 Exercises [53]

C6840_02 11/19/08 11:41 AM Page 53

3 How does one include an apostrophe as a character within a string
literal?

4 What happens when a print statement prints a string literal with
embedded newline characters?

5 Which of the following are valid variable names?

a length

b _width

c firstBase

d 2MoreToGo

e halt!

6 List two of the purposes of program documentation.

2.4 Numeric Data Types and Character Sets
The first applications of computers were to crunch numbers. Although text and
media processing have lately been of increasing importance, the use of numbers
in many applications is still very important. In this section, we give a brief
overview of numeric data types and their cousins, character sets.

2.4.1 Integers and Long Integers

As you learned in mathematics, the integers include 0, all of the positive whole
numbers, and all of the negative whole numbers. Although the range of integers
is infinite, a real computer’s memory places a limit on the magnitude of the
largest positive and negative integers. The most common implementation of
Python’s int data type consists of the integers from –2,147,483,648 (–231) to
2,147,483,647 (231 – 1). Integer literals in a program are written without commas,
and the leading minus sign indicates a negative value.

When the value of an integer exceeds these limits, Python automatically uses
the long data type to represent it. A long integer looks just like a regular integer

CHAPTER 2 Software Development, Data Types, and Expressions[54]

C6840_02 11/19/08 11:41 AM Page 54

May not be copied, scanned, or duplicated, in whole or in part.

but can end with the letter L. The next code segment obtains a long integer from
the Python shell by adding 1 to the largest positive int:

>>>ƒ2147483647ƒ+ƒ1
2147483648L
>>>ƒprintƒ2147483647ƒ+ƒ1
2147483648
>>>

The magnitude of a long integer can be quite large, but is still limited by the
memory of your particular computer. As an experiment, try evaluating the expres-
sion 2147483647 ** 100, which raises the largest positive int value to the
100th power. You will see a number that contains many lines of digits!

2.4.2 Floating-Point Numbers

A real number in mathematics, such as the value of pi (3.1416…), consists of a
whole number, a decimal point, and a fractional part. Real numbers have infinite
precision, which means that the digits in the fractional part can continue forever.
Like the integers, real numbers also have an infinite range. However, because a
computer’s memory is not infinitely large, a computer’s memory limits not only
the range but also the precision that can be represented for real numbers. Python
uses floating-point numbers to represent real numbers. Values of the most com-
mon implementation of Python’s float type range from approximately –10308 to
10308 and have 16 digits of precision.

A floating-point number can be written using either ordinary decimal notation
or scientific notation. Scientific notation is often useful for mentioning very large
numbers. Table 2.4 shows some equivalent values in both notations.

[TABLE 2.4] Decimal and scientific notations for floating-point numbers

DECIMAL NOTATION SCIENTIFIC NOTATION MEANING

3.78 3.78e0 3.78 × 100

37.8 3.78e1 3.78 × 101

3780.0 3.78e3 3.78 × 103

0.378 3.78e-1 3.78 × 10-1

0.00378 3.78e-3 3.78 × 10-3

2.4 Numeric Data Types and Character Sets [55]

C6840_02 11/19/08 11:41 AM Page 55

2.4.3 Character Sets

Some programming languages use different data types for strings and individual
characters. In Python, character literals look just like string literals and are of the
string type. But they also belong to several different character sets, among them
the ASCII set and the Unicode set. (The term ASCII stands for American
Standard Code for Information Interchange.) In the 1960s, the original ASCII set
encoded each keyboard character and several control characters using the inte-
gers from 0 through 127. An example of a control character is Control+D, which
is the command to terminate a shell window. As new function keys and some
international characters were added to keyboards, the ASCII set doubled in size
to 256 distinct values in the mid-1980s. Then, when characters and symbols were
added from languages other than English, the Unicode set was created to support
65,536 values in the early 1990s.

Table 2.5 shows the mapping of character values to the first 128 ASCII
codes. The digits in the left column represent the leftmost digits of an
ASCII code, and the digits in the top row are the rightmost digits. Thus,
the ASCII code of the character 'R' at row 8, column 2 is 82.

[TABLE 2.5] The original ASCII character set

0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT

1 LF VT FF CR SO SI DLE DCI DC2 DC3

2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS

3 RS US SP ! “ # $ % & `

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ‘ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ DEL

CHAPTER 2 Software Development, Data Types, and Expressions[56]

C6840_02 11/19/08 11:41 AM Page 56

May not be copied, scanned, or duplicated, in whole or in part.

Some might think it odd to include characters in a discussion of numeric
types. However, as you can see, the ASCII character set maps to a set of integers.
Python’s ord and chr functions convert characters to their numeric ASCII codes
and back again, respectively. The next section uses the following functions to
explore the ASCII system:

>>>ƒord('a')
97
>>>ƒord('A')
65
>>>ƒchr(65)
'A'
>>>ƒchr(66)
'B'
>>>

Note that the ASCII code for 'B' is the next number in the sequence after
the code for 'A'. These two functions provide a handy way to shift letters by a
fixed amount. For example, if you want to shift three places to the right of the
letter 'A', you can write chr(ord('A') + 3).

2.4 Exercises
1 Which data type would most appropriately be used to represent the

following data values?

a The number of months in a year

b The area of a circle

c The current minimum wage

d The approximate age of the universe (12,000,000,000 years)

e Your name

2 Explain the differences between the data types int and long.

3 Write the values of the following floating-point numbers in Python’s
scientific notation:

a 355.76

b 0.007832

c 4.3212

4 Consult Table 2.5 to write the ASCII values of the characters '$' and '&'.

2.4 Exercises [57]

C6840_02 11/19/08 11:41 AM Page 57

2.5 Expressions
As we have seen, a literal evaluates to itself, whereas a variable reference evaluates
to the variable’s current value. Expressions provide an easy way to perform oper-
ations on data values to produce other data values. When entered at the Python
shell prompt, an expression’s operands are evaluated and its operator is then
applied to these values to compute the value of the expression. In this section, we
examine arithmetic expressions in more detail.

2.5.1 Arithmetic Expressions

An arithmetic expression consists of operands and operators combined in a man-
ner that is already familiar to you from learning algebra. Table 2.6 shows several
arithmetic operators and gives examples of how you might use them in Python code.

[TABLE 2.6] Arithmetic operators

In algebra, you are probably used to indicating multiplication like this: ab.
However, in Python, we must indicate multiplication explicitly, using the multi-
plication operator (*), like this: a * b. Binary operators are placed between their
operands (a * b, for example), whereas unary operators are placed before their
operands (-a, for example).

The precedence rules you learned in algebra apply during the evaluation of
arithmetic expressions in Python:

� Exponentiation has the highest precedence and is evaluated first.
� Unary negation is evaluated next, before multiplication, division, and

remainder.

OPERATOR MEANING SYNTAX

- Negation -a

** Exponentiation a ** b

* Multiplication a * b

/ Division a / b

% Remainder or modulus a % b

+ Addition a + b

- Subtraction a - b

CHAPTER 2 Software Development, Data Types, and Expressions[58]

C6840_02 11/19/08 11:41 AM Page 58

May not be copied, scanned, or duplicated, in whole or in part.

� Multiplication, division, and remainder are evaluated before addition and
subtraction.

� Addition and subtraction are evaluated before assignment.
� With two exceptions, operations of equal precedence are left associative,

so they are evaluated from left to right. Exponentiation and assignment
operations are right associative, so consecutive instances of these are eval-
uated from right to left.

� You can use parentheses to change the order of evaluation.

Table 2.7 shows some arithmetic expressions and their values.

[TABLE 2.7] Some arithmetic expressions and their values

The last two lines of Table 2.7 show attempts to divide by 0, which result in
an error. These expressions are good illustrations of the difference between syn-
tax and semantics. Syntax is the set of rules for constructing well-formed expres-
sions or sentences in a language. Semantics is the set of rules that allow an agent
to interpret the meaning of those expressions or sentences. A computer generates
a syntax error when an expression or sentence is not well formed. A semantic
error is detected when the action which an expression describes cannot be car-
ried out, even though that expression is syntactically correct. Although the
expressions 45 / 0 and 45 % 0 are syntactically correct, they are meaningless,
because a computing agent cannot carry them out. Human beings can tolerate all
kinds of syntax errors and semantic errors when they converse in natural lan-
guages. By contrast, computing agents can tolerate none of these errors.

EXPRESSION EVALUATION VALUE

5 + 3 * 2 5 + 6 11

(5 + 3) * 2 8 * 2 16

6 % 2 0 0

2 * 3 ** 2 2 * 9 18

-3 ** 2 -(3 ** 2) -9

-(3) ** 2 9 9

2 ** 3 ** 2 2 ** 9 512

(2 ** 3) ** 2 8 ** 2 64

45 / 0 Error: cannot divide by 0

45 % 0 Error: cannot divide by 0

2.5 Expressions [59]

C6840_02 11/19/08 11:41 AM Page 59

When both operands of an expression are of the same numeric type (int,
long, or float), the resulting value is also of that type, unless the combination
of two ints is large enough to produce a long. When each operand is of a differ-
ent type, the resulting value is of the more general type. Note that the float
type is more general than the long type, which is more general than the int
type. Thus, 3 / 4 produces 0, whereas 3 / 4.0 produces .75.

Although spacing within an expression is not important to the Python inter-
preter, programmers usually insert a single space before and after each operator
to make the code easier for people to read. Normally, an expression must be
completed on a single line of Python code. When an expression becomes long or
complex, you can move to a new line by placing a backslash character \ at the
end of the current line. The next example shows this technique:

>>>ƒ3ƒ+ƒ4ƒ*ƒ\
2ƒ**ƒ5
131
>>>

Make sure to insert the backslash before or after an operator. If you break lines in
this manner in IDLE, the editor automatically indents the code properly.

As you will see shortly, you can also break a long line of code immediately
after a comma. Examples include function calls with several arguments.

2.5.2 Mixed-Mode Arithmetic and Type Conversions

When working with a handheld calculator, we do not give much thought to the
fact that we intermix integers and floating-point numbers. Performing calcula-
tions involving both integers and floating-point numbers is called mixed-mode
arithmetic. For instance, if a circle has radius 3, we compute the area as follows:

>>>ƒ3.14ƒ*ƒ3ƒ**ƒ2
28.26

How do we perform a similar calculation in Python? In a binary operation on
operands of different numeric types, the less general type (int) is temporarily and
automatically converted to the more general type (float) before the operation is
performed. Thus, in the example expression, the value 9 is converted to 9.0 before
the multiplication.

CHAPTER 2 Software Development, Data Types, and Expressions[60]

C6840_02 11/19/08 11:41 AM Page 60

May not be copied, scanned, or duplicated, in whole or in part.

In Python, mixed-mode arithmetic can be problematic. For instance,

3ƒ/ƒ2ƒ*ƒ5.0ƒyieldsƒ1ƒ*ƒ5.0,ƒwhichƒyieldsƒ5.0,

whereas

3ƒ/ƒ2.0ƒ*ƒ5ƒyieldsƒ1.5ƒ*ƒ5,ƒwhichƒyieldsƒ7.5

In general, when you want the most precise results, you should place a decimal
point and a zero after the relevant integer literals before doing the arithmetic.
Unfortunately, when you are working with a variable that refers to an integer, you
cannot simply add a decimal point to the operand. Here is an example:

3ƒ/ƒsomeIntegerƒ*ƒ5.0

In this case, you can use a type conversion function to change the variable’s
value to a float before the operation. A type conversion function is a function
with the same name as the data type to which it converts. Here is an example of a
type conversion function at work:

3ƒ/ƒfloat(someInteger)ƒ*ƒ5.0

Table 2.8 lists some common type conversion functions and their uses.

[TABLE 2.8] Type conversion functions

Note that the int function converts a float to an int by truncation, not by
rounding to the nearest whole number. Truncation simply chops off the number’s

CONVERSION FUNCTION EXAMPLE USE VALUE RETURNED

int(<a number or a string>) int(3.77) 3

int(“33”) 33

long(<a number or a string>) long(12) 12L

float(<a number or a string>) float(22) 22.0

str(<any value>) str(99) '99'

2.5 Expressions [61]

C6840_02 11/19/08 11:41 AM Page 61

fractional part. The round function rounds a float to the nearest float whose
fractional part is 0. Thus, to round a float to the nearest whole number, you
must compose calls to round and int, as in the next example:

>>>ƒint(6.75)
6
>>>ƒround(6.75)
7.0
>>>ƒint(round(6.75))
7
>>>

Another use of type conversion occurs in the construction of strings from
numbers and other strings. For instance, assume that the variable profit refers
to a floating-point number that represents an amount of money in dollars and
cents. Suppose that, to build a string that represents this value for output, we
need to concatenate the $ symbol to the value of profit. However, Python does
not allow the use of the + operator with a string and a number:

>>>ƒprofitƒ=ƒ1000.55
>>>ƒprintƒ'$'ƒ+ƒprofit
Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<stdin>”,ƒlineƒ1,ƒinƒ<module>
TypeError:ƒcannotƒconcatenateƒ'str'ƒandƒ'float'ƒobjects

To solve this problem, we use the str function to convert the value of profit to
a string and then concatenate this string to the $ symbol, as follows:

>>>ƒprintƒ'$'ƒ+ƒstr(profit)
$1000.55
>>>

Python is a strongly typed programming language. The interpreter checks
data types of all operands before operators are applied to those operands. If the
type of an operand is not appropriate, the interpreter halts execution with an
error message. This error checking prevents a program from attempting to do
something that it cannot do.

CHAPTER 2 Software Development, Data Types, and Expressions[62]

C6840_02 11/19/08 11:41 AM Page 62

May not be copied, scanned, or duplicated, in whole or in part.

2.5 Exercises
1 Let x = 8 and y = 2. Write the values of the following expressions:

a x + y * 3

b (x + y) * 3

c x ** y

d x % y

e x / 12.0

f x / 6

2 Let x = 4.66. Write the values of the following expressions:

a round(x)

b int(x)

3 How does a Python programmer round a float value to the nearest
int value?

4 How does a Python programmer concatenate a numeric value to a
string value?

5 Assume that the variable x has the value 55. Use an assignment state-
ment to increment the value of x by 1.

2.6 Using Functions and Modules
Thus far in this chapter, we have examined two ways to manipulate data within
expressions. We can apply an operator such as + to one or more operands to pro-
duce a new data value. Alternatively, we can call a function such as round with
one or more data values to produce a new data value. Python includes many use-
ful functions, which are organized in libraries of code called modules. In this
section, we examine the use of functions and modules.

2.6 Using Functions and Modules [63]

C6840_02 11/19/08 11:41 AM Page 63

2.6.1 Calling Functions: Arguments and Return Values

A function is a chunk of code that can be called by name to perform a task.
Functions often require arguments, that is, specific data values, to perform their
tasks. Arguments are also known as parameters. When a function completes its
task (which is usually some kind of computation), the function may send a result
back to the part of the program that called that function in the first place. The
process of sending a result back to another part of a program is known as
returning a value.

For example, the argument in the function call round(6.5) is the value 6.5,
and the value returned is 7.0. When an argument is an expression, it is first evalu-
ated and then its value is passed to the function for further processing. For
instance, the function call abs(4 – 5) first evaluates the expression 4 - 5 and
then passes the result, -1 to abs. Finally, abs returns 1.

The values returned by function calls can be used in expressions and state-
ments. For example, the statement print abs(4 - 5) + 3 prints the value 4.

Some functions have only optional arguments, some have required
arguments and some have both required and optional arguments. For example,
the round function has one required argument, the number to be rounded.
When called with just one argument, the round function exhibits its default
behavior, which is to return the nearest float with a fractional part of 0.
However, when a second, optional argument is supplied, this argument, a num-
ber, indicates the number of places of precision to which the first argument
should be rounded. For example, round(7.563, 2) returns 7.56.

To learn how to use a function’s arguments, consult the documentation on
functions in the shell. For example, Python’s help function displays information
about round, as follows:

>>>ƒhelp(round)

Helpƒonƒbuilt-inƒfunctionƒroundƒinƒmoduleƒ__builtin__:

round(...)
ƒƒƒƒround(number[,ƒndigits])ƒ->ƒfloatingƒpointƒnumber

ƒƒƒƒRoundƒaƒnumberƒtoƒaƒgivenƒprecisionƒinƒdecimalƒdigitsƒ(defaultƒ0ƒdigits).
ƒƒƒƒThisƒalwaysƒreturnsƒaƒfloating-pointƒnumber.ƒPrecisionƒmayƒbeƒnegative.

Each argument passed to a function has a specific data type. When writing
code that involves functions and their arguments, you need to keep these data

CHAPTER 2 Software Development, Data Types, and Expressions[64]

C6840_02 11/19/08 11:41 AM Page 64

May not be copied, scanned, or duplicated, in whole or in part.

types in mind. A program that attempts to pass an argument of the wrong data
type to a function will usually generate an error. For example, one cannot take
the square root of a string, but only of a number. Likewise, if a function call is
placed in an expression that expects a different type of operand than that returned
by the function, an error will be raised. If you’re not sure of the data type associ-
ated with a particular function’s arguments, read the documentation.

2.6.2 The math Module

Functions and other resources are coded in components called modules.
Functions like abs and round from the __builtin__ module are always avail-
able for use, whereas the programmer must explicitly import other functions
from the modules where they are defined.

The math module includes several functions that perform basic mathematical
operations. The next code session imports the math module and lists a directory
of its resources:

>>>ƒimportƒmath
>>>ƒdir(math)
['__doc__',ƒ'__file__',ƒ'__name__',ƒ'acos',ƒ'asin',ƒ'atan',ƒ'atan2',ƒ'ceil',
ƒ'cos',ƒ'cosh',ƒ'degrees',ƒ'e',ƒ'exp',ƒ'fabs',ƒ'floor',ƒ'fmod',ƒ'frexp',ƒ
'hypot',ƒ'ldexp',ƒ'log',ƒ'log10',ƒ'modf',ƒ'pi',ƒ'pow',ƒ'radians',ƒ'sin',ƒ
'sinh',ƒ'sqrt',ƒ'tan',ƒ'tanh']

This list of function names includes some familiar trigonometric functions as well
as Python’s most exact estimates of the constants π and e.

To use a resource from a module, you write the name of a module as a quali-
fier, followed by a dot (.) and the name of the resource. For example, to use the
value of pi from the math module, you would write the following code: math.pi.
The next session uses this technique to display the value of π and the square root
of 2:

>>>ƒmath.pi
3.1415926535897931
>>>ƒmath.sqrt(2)
1.4142135623730951

2.6 Using Functions and Modules [65]

C6840_02 11/19/08 11:41 AM Page 65

Once again, help is available if needed:

>>>ƒhelp(math.cos)

Helpƒonƒbuilt-inƒfunctionƒcosƒinƒmoduleƒmath:

cos(...)
ƒƒƒƒcos(x)

ƒƒƒƒReturnƒtheƒcosineƒofƒxƒ(measuredƒinƒradians).

Alternatively, one can browse through the documentation for the entire module
by entering help(math). The function help uses a module’s own docstring and
the docstrings of all its functions to print the documentation.

If you are going to use only a couple of a module’s resources frequently, you
can avoid the use of the qualifier with each reference by importing the individual
resources, as follows:

>>>ƒfromƒmathƒimportƒpi,ƒsqrt
>>>ƒprintƒpi,ƒsqrt(2)
3.14159265359ƒ1.41421356237
>>>

Programmers occasionally import all of a module’s resources to use without
the qualifier. For example, the statement from math import * would import all
of the math module’s resources.

Generally, the first technique of importing resources (that is, importing just
the module’s name) is preferred. The use of a module qualifier not only reminds
the reader of a function’s purpose, but also helps the interpreter to discriminate
between different functions that have the same name.

2.6.3 The Main Module

In the case study, earlier in this chapter, we showed how to write documentation
for a Python script. To differentiate this script from the other modules in a pro-
gram (and there could be many), we call it the main module. Like any module,
the main module can also be imported. Instead of launching the script from a ter-
minal prompt or loading it into the shell from IDLE, you can start Python from

CHAPTER 2 Software Development, Data Types, and Expressions[66]

C6840_02 11/19/08 11:41 AM Page 66

May not be copied, scanned, or duplicated, in whole or in part.

the terminal prompt and import the script as a module. Let’s do that with the
taxform.py script, as follows:

>>>ƒimportƒtaxform
Enterƒtheƒgrossƒincome:ƒ120000
Enterƒtheƒnumberƒofƒdependents:ƒ2
Theƒincomeƒtaxƒisƒ$20800.0

After importing a main module, you can view its documentation by running
the help function:

>>>ƒhelp(taxform)

DESCRIPTION
ƒƒƒƒProgram:ƒtaxform.py
ƒƒƒƒAuthor:ƒKen

ƒƒƒƒComputeƒaƒperson'sƒincomeƒtax.

ƒƒƒƒ1.ƒSignificantƒconstants
ƒƒƒƒƒƒƒƒƒƒƒtaxƒrate
ƒƒƒƒƒƒƒƒƒƒƒstandardƒdeduction
ƒƒƒƒƒƒƒƒƒƒƒdeductionƒperƒdependent
ƒƒƒƒ2.ƒTheƒinputsƒare
ƒƒƒƒƒƒƒƒƒƒƒgrossƒincome
ƒƒƒƒƒƒƒƒƒƒƒnumberƒofƒdependents
ƒƒƒƒ3.ƒComputations:
ƒƒƒƒƒƒƒƒƒƒƒnetƒincomeƒ=ƒgrossƒincomeƒ-ƒtheƒstandardƒdeductionƒ-
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒaƒdeductionƒforƒeachƒdependent
ƒƒƒƒƒƒƒƒƒƒƒincomeƒtaxƒ=ƒisƒaƒfixedƒpercentageƒofƒtheƒnetƒincome
ƒƒƒƒ4.ƒTheƒoutputsƒare
ƒƒƒƒƒƒƒƒƒƒƒtheƒincomeƒtax

2.6.4 Program Format and Structure

This is a good time to step back and get a sense of the overall format and struc-
ture of simple Python programs. It’s a good idea to structure your programs as
follows:

� Start with an introductory comment stating the author’s name, the purpose
of the program, and other relevant information. This information should
be in the form of a docstring.

2.6 Using Functions and Modules [67]

C6840_02 11/19/08 11:41 AM Page 67

� Then, include statements that do the following:

• Import any modules needed by the program.

• Initialize important variables, suitably commented.

• Prompt the user for input data and save the input data in variables.

• Process the inputs to produce the results.

• Display the results.

Take a moment to review the income tax program presented in the case study
at the beginning of this chapter. Notice how the program conforms to this basic
organization. Also, notice that the various sections of the program are separated
by whitespace (blank lines). Remember, programs should be easy for other pro-
grammers to read and understand. They should read like essays!

2.6.5 Running a Script from a Terminal Command Prompt

Thus far in this book, we have been developing and running Python programs exper-
imentally in IDLE. When a program’s development and testing are finished, the pro-
gram can be released to others to run on their computers. Python must be installed
on a user’s computer, but the user need not run IDLE to run a Python script.

One way to run a Python script is to open a terminal command prompt win-
dow. On a computer running Windows, this is the DOS command prompt window;
to open it, select the Start button, select All Programs, select Accessories, and
then select Command Prompt. On a Macintosh or UNIX-based system, this is a ter-
minal window. A terminal window on a Macintosh is shown in Figure 2.5.

[FIGURE 2.5] A terminal window on a Macintosh

After the user has opened a terminal window, she must navigate or change
directories until the prompt shows that she is attached to the directory that contains
the Python script. For example, if we assume that the script named taxform.py is

CHAPTER 2 Software Development, Data Types, and Expressions[68]

C6840_02 11/19/08 11:41 AM Page 68

May not be copied, scanned, or duplicated, in whole or in part.

in the pythonfiles directory under the terminal’s current directory, Figure 2.6
shows the commands to change to this directory and list its contents.

[FIGURE 2.6] Changing to another directory and listing its contents

When the user is attached to the appropriate directory, she can run the script
by entering the command python scriptname.py at the command prompt.
Figure 2.7 shows this step and a run of the taxform script.

[FIGURE 2.7] Running a Python script in a terminal window

All Python installations also provide the capability of launching Python
scripts by double-clicking the files from the operating system’s file browser. On
Windows systems, this feature is automatic, whereas on Macintosh and UNIX-
based systems, the .py file type must be set to launch with the Python launcher
application. When you launch a script in this manner, however, the command
prompt window opens, shows the output of the script, and closes. To prevent this
fly-by-window problem, you can add an input statement at the end of the script
that pauses until the user presses the enter or return key, as follows:

raw_input(“Pleaseƒpressƒenterƒorƒreturnƒtoƒquitƒtheƒprogram.ƒ“)

2.6 Using Functions and Modules [69]

C6840_02 11/19/08 11:41 AM Page 69

2.6 Exercises
1 Explain the relationship between a function and its arguments.

2 The math module includes a pow function that raises a number to a
given power. The first argument is the number and the second argument
is the exponent. Write a code segment that imports this function and
calls it to print the values 82 and 54.

3 Explain how to display a directory of all of the functions in a given module.

4 Explain how to display help information on a particular function in a
given module.

Summary
� The waterfall model describes the software development process in

terms of several phases. Analysis determines what the software will do.
Design determines how the software will accomplish its purposes.
Implementation involves coding the software in a particular program-
ming language. Testing and integration demonstrate that the software
does what it is intended to do as it is put together for release.
Maintenance locates and fixes errors after release and adds new fea-
tures to the software.

� Literals are data values that can appear in a program. They evaluate to
themselves.

� The string data type is used to represent text for input and output.
Strings are sequences of characters. String literals are enclosed in pairs
of single or double quotation marks. Two strings can be combined by
concatenation to form a new string.

� Escape characters begin with a backslash and represent special charac-
ters such as the delete key and the newline.

� A docstring is a string enclosed by triple quotation marks and provides
program documentation.

� Comments are pieces of code that are not evaluated by the interpreter
but can be read by programmers to obtain information about a program.

CHAPTER 2 Software Development, Data Types, and Expressions[70]

C6840_02 11/19/08 11:41 AM Page 70

May not be copied, scanned, or duplicated, in whole or in part.

� Variables are names that refer to values. The value of a variable is ini-
tialized and can be reset by an assignment statement. In Python, any
variable can name any value.

� The int and long data types represent integers. The float data type
represents floating-point numbers. The magnitude of an integer or a
floating-point number is limited by the memory of the computer, as is
the number’s precision in the case of floating-point numbers.

� Arithmetic operators are used to form arithmetic expressions.
Operands can be numeric literals, variables, function calls, or other
expressions.

� The operators are ranked in precedence. In descending order, they are
exponentiation, negation, multiplication (*, /, and % are the same),
addition (+ and – are the same), and assignment. Operators with a
higher precedence are evaluated before those with a lower precedence.
Normal precedence can be overridden by parentheses.

� Mixed-mode operations involve operands of different numeric data
types. They result in a value of the more inclusive data type. The type
conversion functions can be used to convert a value of one type to a
value of another type.

� A function call consists of a function’s name and its arguments or
parameters. When it is called, the function’s arguments are evaluated
and these values are passed to the function’s code for processing.
When the function completes its work, it may return a result value to
the caller.

� Python is a strongly typed language. The interpreter checks the types
of all operands within expressions and halts execution with an error if
they are not as expected for the given operators.

� A module is a set of resources, such as function definitions.
Programmers access these resources by importing them from their
modules.

� A semantic error occurs when the computer cannot perform the
requested operation, such as an attempt to divide by 0. Python pro-
grams with semantic errors halt with an error message.

� A logic error occurs when a program runs to a normal termination
but produces incorrect results.

Summary [71]

C6840_02 11/19/08 11:41 AM Page 71

CHAPTER 2 Software Development, Data Types, and Expressions[72]

REVIEW QUESTIONS
1 What does a programmer do during the analysis phase of software

development?

a Codes the program in a particular programming language
b Writes the algorithms for solving a problem
c Decides what the program will do and determines its user interface
d Tests the program to verify its correctness

2 What must a programmer use to test a program?

a All possible sets of legitimate inputs
b All possible sets of inputs
c A single set of legitimate inputs
d A reasonable set of legitimate inputs

3 What must you use to create a multi-line string?

a A single pair of double quotation marks
b A single pair of single quotation marks
c A single pair of three consecutive double quotation marks
d Embedded newline characters

4 What is used to begin an end-of-line comment?

a / symbol
b # symbol
c % symbol

5 Which of the following lists of operators is ordered by decreasing
precedence?

a +, *, **
b *, /, %
c **, *, +

6 The expression 2 ** 3 ** 2 evaluates to which of the following values?

a 64
b 512
c 8

C6840_02 11/19/08 11:41 AM Page 72

May not be copied, scanned, or duplicated, in whole or in part.

7 The expression round(23.67) evaluates to which of the following values?

a 23
b 23.7
c 24.0

8 Assume that the variable name has the value 33. What is the value of
name after the assignment statement name = name * 2 executes?

a 35
b 33
c 66

9 Write an import statement that imports just the functions sqrt and log
from the math module.

10 What is the purpose of the dir function and the help function?

PROJECTS
In each of the projects that follow, you should write a program that contains an
introductory docstring. This documentation should describe what the program will
do (analysis) and how it will do it (design the program in the form of a pseudocode
algorithm). Include suitable prompts for all inputs and label all outputs appropri-
ately. After you have coded a program, be sure to test it with a reasonable set of
legitimate inputs.

1 The tax calculator program of the case study outputs a floating-point
number that might show more than two digits of precision. Use the
round function to modify the program to display at most two digits of
precision in the output number.

2 You can calculate the surface area of a cube if you know the length of an
edge. Write a program that takes the length of an edge (an integer) as
input and prints the cube’s surface area as output.

PROJECTS [73]

C6840_02 11/19/08 11:41 AM Page 73

CHAPTER 2 Software Development, Data Types, and Expressions[74]

3 Five Star Video rents new videos for $3.00 a night, and oldies for $2.00
night. Write a program that the clerks at Five Star Video can use to calculate
the total charge for a customer’s video rentals. The program should prompt
the user for the number of each type of video and output the total cost.

4 Write a program that takes the radius of a sphere (a floating-point num-
ber) as input and outputs the sphere’s diameter, circumference, surface
area, and volume.

5 An object’s momentum is its mass multiplied by its velocity. Write a pro-
gram that accepts an object’s mass (in kilograms) and velocity (in meters
per second) as inputs and then outputs its momentum.

6 The kinetic energy of a moving object is given by the formula
KE=(1/2)mv2, where m is the object’s mass and v is its velocity. Modify
the program you created in Project 5 so that it prints the object’s kinetic
energy as well as its momentum.

7 Write a program that calculates and prints the number of minutes in a year.

8 Light travels at 3 * 108 meters per second. A light-year is the distance a
light beam travels in one year. Write a program that calculates and dis-
plays the value of a light-year.

9 Write a program that takes as input a number of kilometers and prints the
corresponding number of nautical miles. Use the following approximations:

� A kilometer represents 1/10,000 of the distance between the North
Pole and the equator.

� There are 90 degrees, containing 60 minutes of arc each, between
the North Pole and the equator.

� A nautical mile is 1 minute of an arc.

10 An employee’s total weekly pay equals the hourly wage multiplied by the
total number of regular hours plus any overtime pay. Overtime pay equals
the total overtime hours multiplied by 1.5 times the hourly wage. Write a
program that takes as inputs the hourly wage, total regular hours, and
total overtime hours and displays an employee’s total weekly pay.

C6840_02 11/19/08 11:41 AM Page 74

May not be copied, scanned, or duplicated, in whole or in part.

After completing this chapter, you will be able to:
� Write a loop to repeat a sequence of actions a fixed number

of times
� Write a loop to traverse the sequence of characters in a string
� Write a loop that counts down and a loop that counts up
� Write an entry-controlled loop that halts when a condition

becomes false
� Use selection statements to make choices in a program
� Construct appropriate conditions for condition-controlled

loops and selection statements
� Use logical operators to construct compound Boolean

expressions
� Use a selection statement and a break statement to exit a loop

that is not entry-controlled
All the programs you have studied so far in this book have con-

sisted of short sequences of instructions that are executed one after
the other. Even if we allowed the sequence of instructions to be
quite long, this type of program would not be very useful. Like
human beings, computers must be able to repeat a set of actions.
They also must be able to select an action to perform in a particular
situation. This chapter focuses on control statements—statements
that allow the computer to select or repeat an action.

[CHAPTER] Control Statements 3

C6840_03 11/19/08 11:41 AM Page 75

3.1 Definite Iteration: The for Loop
We begin our study of control statements with repetition statements, also known
as loops, which repeat an action. Each repetition of the action is known as a pass
or an iteration. There are two types of loops—those that repeat an action a pre-
defined number of times (definite iteration) and those that perform the action
until the program determines that it needs to stop (indefinite iteration). In this
section, we examine Python’s for loop, the control statement that most easily
supports definite iteration.

3.1.1 Executing a Statement a Given Number of Times

When Dr. Frankenstein’s monster came to life, the good doctor exclaimed, “It’s
alive! It’s alive!” A computer can easily print these exclamations not just twice,
but a dozen or a hundred times. Here is a for loop that does so 4 times:

>>> for eachPass in xrange(4):
ƒƒƒƒƒƒƒprintƒ“It'sƒalive!”,

It'sƒalive!ƒIt'sƒalive!ƒIt'sƒalive!ƒIt'sƒalive!
>>>

This loop repeats one statement—the print statement. The constant 4 on the
first line tells the loop how many times to execute the print statement. If we
want to print 10 or 100 exclamations, we just change the 4 to 10 or to 100. The
form of this type of loop is

for <variable> in xrange(<an integer expression>):
ƒƒƒƒ<statement-1>
ƒƒƒƒ
ƒƒƒƒ<statement-n>

The first line of code in a loop is sometimes called the loop header. For
now, the only relevant information in the header is the integer expression, which
denotes the number of iterations that the loop performs. The colon (:) ends the
loop header. The loop body comprises the statements in the remaining lines of
code, below the header. Note that the statements in the loop body must be
indented and aligned in the same column. These statements are executed in sequence
on each pass through the loop.

CHAPTER 3 Control Statements[76]

C6840_03 11/19/08 11:41 AM Page 76

May not be copied, scanned, or duplicated, in whole or in part.

Now let’s explore how Python’s exponentiation operator might be imple-
mented in a loop. Recall that this operator raises a number to a given power. For
instance, the expression 2 ** 3 computes the value of 23, or 2 * 2 * 2. The
following session uses a loop to compute an exponentiation for a non-negative
exponent. We use three variables to designate the number, the exponent, and the
product. The product is initially 1. On each pass through the loop, the product is
multiplied by the number and reset to the result. To allow us to trace this
process, the value of the product is also printed on each pass.

>>>ƒnumberƒ=ƒ2
>>>ƒexponentƒ=ƒ3
>>>ƒproductƒ=ƒ1
>>>ƒforƒeachPassƒinƒxrange(exponent):
ƒƒƒƒƒƒƒproductƒ=ƒproductƒ*ƒnumber
ƒƒƒƒƒƒƒprintƒproduct,

2ƒ4ƒ8
>>>ƒproduct
8

As you can see, if the exponent were 0, the loop body would not execute and
the value of product would remain as 1, which is the value of any number raised
to the zero power.

The use of variables in the preceding example demonstrates that our expo-
nentiation loop is an algorithm that solves a general class of problems. The user of
this particular loop not only can raise 2 to the 3rd power, but also can raise any
number to any non-negative power, just by substituting different values for the
variables number and exponent.

3.1.2 Count-Controlled Loops

When Python executes the type of for loop just discussed, it actually counts
from 0 to the value of the header’s integer expression minus 1. On each pass

3.1 Definite Iteration: The for Loop [77]

C6840_03 11/19/08 11:41 AM Page 77

through the loop, the header’s variable is bound to the current value of this
count. The next code segment demonstrates this fact:

>>>ƒforƒcountƒinƒxrange(4):
ƒƒƒƒƒƒƒprintƒcount,

0ƒ1ƒ2ƒ3
>>>

Loops that count through a range of numbers are also called count-
controlled loops. The value of the count on each pass is often used in computa-
tions. For example, consider the factorial of 4, which is 1 * 2 * 3 * 4 = 24. A code
segment to compute this value starts with a product of 1 and resets this variable
to the result of multiplying it and the loop’s count plus 1 on each pass, as follows:

>>>ƒproductƒ=ƒ1
>>>ƒforƒcountƒinƒxrange(4):
ƒƒƒƒƒƒƒproductƒ=ƒproductƒ*ƒ(countƒ+ƒ1)

>>>ƒproduct
24

Note that the value of count + 1 is used on each pass, to ensure that the
numbers used are 1 through 4 rather than 0 through 3.

To count from an explicit lower bound, the programmer can supply a second
integer expression in the loop header. When two arguments are supplied to xrange,
the count ranges from the first argument to the second argument minus 1. The next
code segment uses this variation to simplify the code in the loop body:

>>>ƒproductƒ=ƒ1
>>>ƒforƒcountƒinƒxrange(1,ƒ5):
ƒƒƒƒƒƒƒproductƒ=ƒproductƒ*ƒcount

>>>ƒproduct
24
>>>

CHAPTER 3 Control Statements[78]

C6840_03 11/19/08 11:41 AM Page 78

May not be copied, scanned, or duplicated, in whole or in part.

The only thing in this version to be careful about is the second argument of
xrange, which should specify an integer greater by one than the desired upper
bound of the count. Here is the form of this version of the for loop:

forƒ<variable>ƒinƒxrange(<lowerƒbound>,ƒ<upperƒboundƒ+ƒ1>):
ƒƒƒƒ<loopƒbody>

Accumulating a single result value from a series of values is a common opera-
tion in computing. Here is an example of a summation, which accumulates the
sum of a sequence of numbers from a lower bound through an upper bound:

>>>ƒlowerƒ=ƒinput(“Enterƒtheƒlowerƒbound:ƒ“)
Enterƒtheƒlowerƒbound:ƒ1
>>>ƒupperƒ=ƒinput(“Enterƒtheƒupperƒbound:ƒ“)
Enterƒtheƒupperƒbound:ƒ10
>>>ƒsumƒ=ƒ0
>>>ƒforƒcountƒinƒxrange(lower,ƒupperƒ+ƒ1):
ƒƒƒƒƒƒƒsumƒ=ƒsumƒ+ƒcount

>>>ƒsum
55
>>>

3.1.3 Augmented Assignment

Expressions such as x = x + 1 or x = x + 2 occur so frequently in loops that
Python includes abbreviated forms for them. The assignment symbol can be
combined with the arithmetic and concatenation operators to provide
augmented assignment operations. Following are several examples:

aƒ=ƒ17
sƒ=ƒ“hi”

aƒ+=ƒ3ƒƒƒƒƒƒƒƒƒƒƒ#ƒEquivalentƒtoƒaƒ=ƒaƒ+ƒ3
aƒ-=ƒ3ƒƒƒƒƒƒƒƒƒƒƒ#ƒEquivalentƒtoƒaƒ=ƒaƒ-ƒ3
aƒ*=ƒ3ƒƒƒƒƒƒƒƒƒƒƒ#ƒEquivalentƒtoƒaƒ=ƒaƒ*ƒ3
aƒ/=ƒ3ƒƒƒƒƒƒƒƒƒƒƒ#ƒEquivalentƒtoƒaƒ=ƒaƒ/ƒ3
aƒ%=ƒ3ƒƒƒƒƒƒƒƒƒƒƒ#ƒEquivalentƒtoƒaƒ=ƒaƒ%ƒ3
sƒ+=ƒ“ƒthere”ƒƒƒƒ#ƒEquivalentƒtoƒsƒ=ƒsƒ+ƒ“ƒthere”

3.1 Definite Iteration: The for Loop [79]

C6840_03 11/19/08 11:41 AM Page 79

All these examples have the format

<variable>ƒ<operator>=ƒ<expression>

which is equivalent to

<variable>ƒ=ƒ<variable>ƒ<operator>ƒ<expression>

Note that there is no space between <operator> and =. The augmented
assignment operations and the standard assignment operation have the same
precedence.

3.1.4 Loop Errors: Off-by-One Error

The for loop is not only easy to write, but also fairly easy to write correctly. Once
we get the syntax correct, we need to be concerned about only one other possible
error: the loop fails to perform the expected number of iterations. Because this
number is typically off by one, the error is called an off-by-one error. For the
most part, off-by-one errors result when the programmer incorrectly specifies the
upper bound of the loop. The programmer might intend the following loop to
count from 1 through 4, but it actually counts from 1 through 3:

forƒcountƒinƒxrange(1,ƒ4):ƒƒƒ#ƒCountƒfromƒ1ƒthroughƒ4
ƒƒƒƒprintƒcount

Note that this is not a syntax error, but rather a logic error. Unlike syntax errors,
logic errors are not detected by the Python interpreter, but only by the eyes of a
programmer who carefully inspects a program’s output.

3.1.5 Traversing the Contents of a Data Sequence

Although we have been using the for loop as a simple count-controlled loop, the
loop itself actually visits each number in a sequence of numbers generated by the

CHAPTER 3 Control Statements[80]

C6840_03 11/19/08 11:41 AM Page 80

May not be copied, scanned, or duplicated, in whole or in part.

xrange function. Evaluating some calls to the function range, a distant cousin of
xrange, shows what these sequences look like:

>>>ƒrange(4)
[0,ƒ1,ƒ2,ƒ3]
>>>ƒrange(1,ƒ5)
[1,ƒ2,ƒ3,ƒ4]
>>>

In this example, range returns a special type of Python sequence called a
list. Strings are also sequences of characters. The values contained in any
sequence can be visited by running a for loop, as follows:

forƒ<variable>ƒinƒ<sequence>:
ƒƒƒ<doƒsomethingƒwithƒvariable>

On each pass through the loop, the variable is bound to or assigned the next
value in the sequence, starting with the first one and ending with the last one.
The following code segment traverses or visits all the elements in two sequences
and prints the values contained in them on single lines:

>>>ƒforƒnumberƒinƒ[1,ƒ2,ƒ3]:
ƒƒƒƒƒƒƒprintƒnumber,

1ƒ2ƒ3
>>>ƒforƒcharacterƒinƒ“Hiƒthere!”:
ƒƒƒƒƒƒƒprintƒcharacter,

Hƒiƒƒƒtƒhƒeƒrƒeƒ!
>>>

For loops that merely count, the function range is sometimes used instead of
xrange in the loop’s header, but because xrange is slightly faster, we continue to
use it in this book.

3.1.6 Specifying the Steps in the Range

The count-controlled loops we have seen thus far count through consecutive
numbers in a series. However, in some programs we might want a loop to skip
some numbers, perhaps visiting every other one or every third one. A variant of

3.1 Definite Iteration: The for Loop [81]

C6840_03 11/19/08 11:41 AM Page 81

Python’s xrange and range functions expects a third argument that allows you
to nicely skip some numbers. The third argument specifies a step value, or the
interval between the numbers used in the range, as shown in the examples that
follow:

>>>ƒrange(1,ƒ6,ƒ1)ƒƒƒƒ#ƒSameƒasƒusingƒtwoƒarguments
[1,ƒ2,ƒ3,ƒ4,ƒ5]
>>>ƒrange(1,ƒ6,ƒ2)ƒƒƒƒ#ƒUseƒeveryƒotherƒnumber
[1,ƒ3,ƒ5]
>>>ƒrange(1,ƒ6,ƒ3)ƒƒƒƒ#ƒUseƒeveryƒthirdƒnumber
[1,ƒ4]
>>>

Now, suppose you had to compute the sum of the even numbers between 1
and 10. Here is the code that solves this problem:

>>>ƒsumƒ=ƒ0
>>>ƒforƒcountƒinƒxrange(2,ƒ11,ƒ2):
ƒƒƒƒƒƒƒsumƒ+=ƒcount

>>>ƒsum
30
>>>

3.1.7 Loops That Count Down

All of our loops until now have counted up from a lower bound to an upper
bound. Once in a while, a problem calls for counting in the opposite direction,
from the upper bound down to the lower bound. For example, when the top-ten
singles tunes are released, they might be presented in order from lowest (10th) to
highest (1st) rank. In the next session, a loop displays the count from 10 down to 1
to show how this would be done:

>>>ƒforƒcountƒinƒxrange(10,ƒ0,ƒ-1):
ƒƒƒƒƒƒƒprintƒcount,

10ƒ9ƒ8ƒ7ƒ6ƒ5ƒ4ƒ3ƒ2ƒ1
>>>ƒrange(10,ƒ0,ƒ-1)
[10,ƒ9,ƒ8,ƒ7,ƒ6,ƒ5,ƒ4,ƒ3,ƒ2,ƒ1]

CHAPTER 3 Control Statements[82]

C6840_03 11/19/08 11:41 AM Page 82

May not be copied, scanned, or duplicated, in whole or in part.

When the step argument is a negative number, the range function generates a
sequence of numbers from the first argument down to the second argument plus 1.
Thus, in this case, the first argument should express the upper bound and the
second argument should express the lower bound minus 1.

3.1 Exercises
1 Write the outputs of the following loops:

a forƒcountƒinƒxrange(5):
ƒƒƒprintƒcountƒ+ƒ1,

b forƒcountƒinƒxrange(1,ƒ4):
ƒƒƒprintƒcount,

c forƒcountƒinƒxrange(1,ƒ6,ƒ2):
ƒƒƒprintƒcount,

d forƒcountƒinƒxrange(6,ƒ1,ƒ-1):
ƒƒƒprintƒcount,

2 Write a loop that prints your name 100 times. Each output should begin
on a new line.

3 Explain the role of the variable in the header of a for loop.

4 Write a loop that prints the first 128 ASCII values followed by the
corresponding characters (see the section on characters in Chapter 2).

5 Assume that the variable testString refers to a string. Write a loop
that prints each character in this string, followed by its ASCII value.

3.2 Formatting Text for Output
Before turning to our next case study, we need to examine more closely the for-
mat of text for output. Many data-processing applications require output that has
a tabular format. In this format, numbers and other information are aligned in
columns that can be either left-justified or right-justified. A column of data is
left-justified if its values are vertically aligned beginning with their leftmost char-
acters. A column of data is right-justified if its values are vertically aligned begin-
ning with their rightmost characters. To maintain the margins between columns

3.2 Formatting Text for Output [83]

C6840_03 11/19/08 11:41 AM Page 83

of data, left-justification requires the addition of spaces to the right of the datum,
whereas right-justification requires adding spaces to the left of the datum. A col-
umn of data is centered if there are an equal number of spaces on either side of
the data within that column.

The total number of data characters and additional spaces for a given datum
in a formatted string is called its field width.

The print statement automatically begins printing an output datum in the
first available column. The next example, which displays the exponents 7 through
10 and the values of 107 through 1010, shows the format of two columns pro-
duced by the print statement:

>>>ƒforƒexponentƒinƒxrange(7,ƒ11):
ƒƒƒƒƒƒƒprintƒexponent,ƒ10ƒ**ƒexponent

7ƒ10000000
8ƒ100000000
9ƒ1000000000
10ƒ10000000000
>>>

Note that when the exponent reaches 10, the output of the second column shifts
over by a space and looks ragged. The output would look neater if the left col-
umn were left-justified and the right column were right-justified. When we for-
mat floating-point numbers for output, we often would like to specify the
number of digits of precision to be displayed as well as the field width. This is
especially important when displaying financial data in which exactly two digits of
precision are required.

Python includes a general formatting mechanism that allows the programmer
to specify field widths for different types of data. The next session shows how to
right-justify and left-justify the string “four” within a field width of 6:

>>>ƒ“%6s”ƒ%ƒ“four”ƒƒƒƒƒƒƒƒ#ƒRightƒjustify
'ƒƒfour'
>>>ƒ“%-6s”ƒ%ƒ“four”ƒƒƒƒƒƒƒ#ƒLeftƒjustify
'fourƒƒ'

The first line of code right-justifies the string by padding it with two spaces to
its left. The next line of code left-justifies by placing two spaces to the string’s right.

CHAPTER 3 Control Statements[84]

C6840_03 11/19/08 11:41 AM Page 84

May not be copied, scanned, or duplicated, in whole or in part.

The simplest form of this operation is the following:

<formatƒstring>ƒ%ƒ<datum>

This version contains a format string, the format operator %, and a single
data value to be formatted. The format string can contain string data and other
information about the format of the datum. To format the string data value in our
example, we used the notation %<field width>s in the format string. When the
field width is positive, the datum is right-justified; when the field width is nega-
tive, you get left-justification. If the field width is less than or equal to the datum’s
print length in characters, no justification is added. The % operator works with
this information to build and return a formatted string.

To format integers, the letter d is used instead of s. To format a sequence of
data values, you construct a format string that includes a format code for each
datum and place the data values in a tuple following the % operator. The form of
the second version of this operation follows:

<formatƒstring>ƒ%ƒ(<datum-1>,ƒ…,ƒ<datum-n>)

Armed with the format operation, our powers of 10 loop can now display the
numbers in nicely aligned columns. The first column is left-justified in a field
width of 3 and the second column is right-justified in a field width of 12.

>>>ƒforƒexponentƒinƒxrange(7,ƒ11):
ƒƒƒƒƒƒƒprintƒ“%-3d%12d”ƒ%ƒ(exponent,ƒ10ƒ**ƒexponent)

7ƒƒƒƒƒƒ10000000
8ƒƒƒƒƒ100000000
9ƒƒƒƒ1000000000
10ƒƒ10000000000

The format information for a data value of type float has the form:

%<fieldƒwidth>.<precision>f

3.2 Formatting Text for Output [85]

C6840_03 11/19/08 11:41 AM Page 85

where .<precision> is optional. The next session shows the output of a floating-
point number without, and then with, a format string:

>>>ƒsalaryƒ=ƒ100.00
>>>ƒprintƒ“Yourƒsalaryƒisƒ$”ƒ+ƒstr(salary)
Yourƒsalaryƒisƒ$100.0
>>>ƒprintƒ“Yourƒsalaryƒisƒ$%0.2f”ƒ%ƒsalary
Yourƒsalaryƒisƒ$100.00
>>>

Here is another, minimal, example of the use of a format string, which says to use
a field width of 6 and a precision of 3 to format the float value 3.14:

>>>ƒ“%6.3f”ƒ%ƒ3.14
'ƒ3.140'

Note that Python adds a digit of precision to the number’s string and pads it with
a space to the left to achieve the field width of 6. This width includes the place
occupied by the decimal point.

3.2 Exercises
1 Assume that the variable amount refers to 24.325. Write the outputs of

the following statements:

a print “Your salary is $%0.2f” % amount

b print “The area is %0.1f” % amount

c print “%7f” % amount

2 Write a code segment that displays the values of the integers x, y, and z
on a single line, such that each value is right-justified in 6 columns.

3 Write a format operation that builds a string for the float variable
amount that has exactly two digits of precision and a field width of zero.

4 Write a loop that outputs the numbers in a list named salaries. The
outputs should be formatted in a column that is right-justified, with a
field width of 12 and a precision of 2.

CHAPTER 3 Control Statements[86]

C6840_03 11/19/08 11:41 AM Page 86

May not be copied, scanned, or duplicated, in whole or in part.

3.3 Case Study: An Investment Report
It has been said that compound interest is the eighth wonder of the world. Our
next case study, which computes an investment report, shows why.

3.3.1 Request

Write a program that computes an investment report.

3.3.2 Analysis

The inputs to this program are the following:
� An initial amount to be invested (a floating-point number)
� A period of years (an integer)
� An interest rate (a percentage expressed as an integer)
The program uses a simplified form of compound interest, in which the

interest is computed once each year and added to the total amount invested. The
output of the program is a report in tabular form that shows, for each year in the
term of the investment, the year number, the initial balance in the account, the
interest earned for that year, and the ending balance for that year. The columns
of the table are suitably labeled with a header in the first row. Following the out-
put of the table, the program prints the total amount of the investment balance
and the total amount of interest earned for the period. The proposed user inter-
face is shown in Figure 3-1.

[FIGURE 3.1] The user interface for the investment report program

Enter the investment amount: 10000.00
Enter the number of years: 5
Enter the rate as a %: 5
Year Starting balance Interest Ending balance
 1 10000.00 500.00 10500.00
 2 10500.00 525.00 11025.00
 3 11025.00 551.25 11576.25
 4 11576.25 578.81 12155.06
 5 12155.06 607.75 12762.82
Ending balance: $12762.82
Total interest earned: $2762.82

3.3 Case Study: An Investment Report [87]

C6840_03 11/19/08 11:41 AM Page 87

3.3.3 Design

The four principal parts of the program perform the following tasks:

1 Receive the user’s inputs and initialize data.

2 Display the table’s header.

3 Compute the results for each year and display them as a row in the table.

4 Display the totals.
The third part of the program, which computes and displays the results, is a

loop. The following is a slightly simplified version of the pseudocode for the pro-
gram, without the details related to formatting the outputs:

Input the starting balance, number of years, and interest rate
Set the total interest to 0.0
Print the table’s heading
For each year

compute the interest
compute the ending balance
print the year, starting balance, interest, and ending balance
update the starting balance
update the total interest

print the ending balance and the total interest

Ignoring the details of the output at this point allows us to focus on getting
the computations correct. We can translate this pseudocode to a Python program
to check our computations. A rough draft of a program is called a prototype.
Once we are confident that the prototype is producing the correct numbers, we
can return to the design and work out the details of formatting the outputs.

The format of the outputs is guided by the requirement that they be aligned
nicely in columns. We use a format string to right-justify all of the numbers on each
row of output. We also use a format string for the string labels in the table’s header.
After some trial and error, we come up with field widths of 4, 18, 10, and 16 for the
year, starting balance, interest, and ending balance, respectively. We can also use
these widths in the format string for the header.

3.3.4 Implementation (Coding)

The code for this program shows each of the major parts described in the design,
set off by end-of-line comments. Note the use of the many variables to track the

CHAPTER 3 Control Statements[88]

C6840_03 11/19/08 11:41 AM Page 88

May not be copied, scanned, or duplicated, in whole or in part.

3.3 Case Study: An Investment Report [89]

various amounts of money used by the program. Wisely, we have chosen names
for these variables that clearly describe their purpose. The format strings in the
print statements are rather complex, but we have made an effort to format them
so the information they contain is still fairly readable.

“””
Program:ƒinvestment.py
Author:ƒKen

Computeƒanƒinvestmentƒreport.

1.ƒTheƒinputsƒare
ƒƒƒƒƒƒƒstartingƒinvestmentƒamount
ƒƒƒƒƒƒƒnumberƒofƒyears
ƒƒƒƒƒƒƒinterestƒrateƒ(anƒintegerƒpercent)

2.ƒTheƒreportƒisƒdisplayedƒinƒtabularƒformƒwithƒaƒheader.

3.ƒComputationsƒandƒoutputs:
ƒƒƒƒƒƒƒforƒeachƒyear
ƒƒƒƒƒƒƒƒƒƒcomputeƒtheƒinterestƒandƒaddƒitƒtoƒtheƒinvestment
ƒƒƒƒƒƒƒƒƒƒprintƒaƒformattedƒrowƒofƒresultsƒforƒthatƒyear

4.ƒTheƒendingƒinvestmentƒandƒinterestƒearnedƒareƒalsoƒdisplayed.
“””

Accept the inputs
startBalanceƒ=ƒinput(“Enterƒtheƒinvestmentƒamount:ƒ“)
yearsƒ=ƒinput(“Enterƒtheƒnumberƒofƒyears:ƒ“)
rateƒ=ƒinput(“Enterƒtheƒrateƒasƒaƒ%:ƒ“)

#ƒConvertƒtheƒrateƒtoƒaƒdecimalƒnumber
rateƒ=ƒrateƒ/ƒ100.0

#ƒInitializeƒtheƒaccumulatorƒforƒtheƒinterest
totalInterestƒ=ƒ0.0

#ƒDisplayƒtheƒheaderƒforƒtheƒtable
printƒ“%4s%18s%10s%16s”ƒ%ƒ\
ƒƒƒƒƒƒ(“Year”,ƒ“Startingƒbalance”,
ƒƒƒƒƒƒƒ“Interest”,ƒ“Endingƒbalance”)
#ƒComputeƒandƒdisplayƒtheƒresultsƒforƒeachƒyear
forƒyearƒinƒxrange(1,ƒyearsƒ+ƒ1):
ƒƒƒƒinterestƒ=ƒstartBalanceƒ*ƒrate
ƒƒƒƒendBalanceƒ=ƒstartBalanceƒ+ƒinterest
ƒƒƒƒprintƒ“%4d%18.2f%10.2f%16.2f”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒ(year,ƒstartBalance,ƒinterest,ƒendBalance)

continued

C6840_03 11/19/08 11:41 AM Page 89

CHAPTER 3 Control Statements[90]

ƒƒƒƒstartBalanceƒ=ƒendBalance
ƒƒƒƒtotalInterestƒ+=ƒinterest

#ƒDisplayƒtheƒtotalsƒforƒtheƒperiod
printƒ“Endingƒbalance:ƒ$%0.2f”ƒ%ƒendBalance
printƒ“Totalƒinterestƒearned:ƒ$%0.2f”ƒ%ƒtotalInterest

3.3.5 Testing

When testing a program that contains a loop, we should focus first on the input
that determines the number of iterations. In our program, this value is the number
of years. We enter a value that yields the smallest possible number of iterations,
then increase this number by 1, then use a slightly larger number, such as 5, and
finally we use a number close to the maximum expected, such as 50 (in our problem
domain, probably the largest realistic period of an investment). The values of the
other inputs, such as the investment amount and the rate in our program, should
be reasonably small and stay fixed for this phase of the testing. If the program pro-
duces correct outputs for all of these inputs, we can be confident that the loop is
working correctly.

In the next phase of testing, we examine the effects of the other inputs on the
results, including their format. We know that the other two inputs to our pro-
grams, the investment and the rate, already produce correct results for small val-
ues. A reasonable strategy might be to test a large investment amount with the
smallest and largest number of years and a small rate, and then with the largest
number of years and the largest reasonable rate. Table 3-1 organizes these sets of
test data for the program.

[TABLE 3.1] The data sets for testing the investment program

INVESTMENT YEARS RATE

100.00 1 5

100.00 2 5

100.00 5 5

100.00 50 5

10000.00 1 5

10000.00 50 5

10000.00 50 20

C6840_03 11/19/08 11:41 AM Page 90

May not be copied, scanned, or duplicated, in whole or in part.

3.4 Selection: if and if-else Statements
We have seen that computers can plow through long sequences of instructions
and that they can do so repeatedly. However, not all problems can be solved in
this manner. In some cases, instead of moving straight ahead to execute the next
instruction, the computer might be faced with two alternative courses of action.
The computer must pause to examine or test a condition, which expresses a
hypothesis about the state of its world at that point in time. If the condition is
true, the computer executes the first alternative action and skips the second alter-
native. If the condition is false, the computer skips the first alternative action and
executes the second alternative. In other words, instead of moving blindly ahead,
the computer exercises some intelligence by responding to conditions in its envi-
ronment. In this section, we explore several types of selection statements, or
control statements, that allow a computer to make choices. But first, we need to
examine how a computer can test conditions.

3.4.1 The Boolean Type, Comparisons, and Boolean
Expressions

Before you can test conditions in a Python program, you need to understand the
Boolean data type, which is named for the nineteenth century British mathe-
matician George Boole. The Boolean data type consists of only two data values—
true and false. In Python, Boolean literals can be written in several ways, but
most programmers prefer the use of the standard values True and False.

Simple Boolean expressions consist of the Boolean values True or False,
variables bound to those values, function calls that return Boolean values, or
comparisons. The condition in a selection statement often takes the form of a
comparison. For example, you might compare value A to value B to see which
one is greater. The result of the comparison is a Boolean value. It is either true or
false that value A is greater than value B. To write expressions that make compar-
isons, you have to be familiar with Python’s comparison operators, which are
listed in Table 3-2.

3.4 Selection: if and if-else Statements [91]

C6840_03 11/19/08 11:41 AM Page 91

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 3.2] The comparison operators

The following session shows some example comparisons and their values:

>>>ƒ4ƒ==ƒ4
True
>>>ƒ4ƒ!=ƒ4
False
>>>ƒ4ƒ<ƒ5
True
>>>ƒ4ƒ>=ƒ3
True
>>>ƒ“A”ƒ<ƒ“B”
True
>>>

Note that == means equals, whereas = means assignment. As you learned in
Chapter 2, when evaluating expressions in Python, you need to be aware of
precedence—that is, the order in which operators are applied in complex expres-
sions. The comparison operators are applied after addition but before assignment.

3.4.2 if-else Statements

The if-else statement is the most common type of selection statement. It is
also called a two-way selection statement, because it directs the computer to
make a choice between two alternative courses of action.

The if-else statement is often used to check inputs for errors and to respond
with error messages if necessary. The alternative is to go ahead and perform the
computation if the inputs are valid.

COMPARISON OPERATOR MEANING

== Equals

!= Not equals

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

CHAPTER 3 Control Statements[92]

C6840_03 11/19/08 11:41 AM Page 92

May not be copied, scanned, or duplicated, in whole or in part.

For example, suppose a program inputs the area of a circle and computes and out-
puts its radius. Legitimate inputs for this program would be positive numbers.
But, by mistake, the user could still enter a zero or a negative number. Because the
program has no choice but to use this value to compute the radius, it might crash
(stop running) or produce a meaningless output. The next code segment shows
how to use an if-else statement to locate (trap) this error and respond to it:

importƒmath

areaƒ=ƒinput(“Enterƒtheƒarea:ƒ“)
ifƒareaƒ>ƒ0:
ƒƒƒƒradiusƒ=ƒmath.sqrt(areaƒ/ƒmath.pi)
ƒƒƒƒprintƒ“Theƒradiusƒis”,ƒradius
else:
ƒƒƒƒprintƒ“Error:ƒtheƒareaƒmustƒbeƒaƒpositiveƒnumber”

Here is the Python syntax for the if-else statement:

ifƒ<condition>:
ƒƒƒƒ<sequenceƒofƒstatements-1>
else:
ƒƒƒƒ<sequenceƒofƒstatements-2>

The condition in the if-else statement must be a Boolean expression—that
is, an expression that evaluates to either true or false. The two possible actions
each consist of a sequence of statements. Note that each sequence must be
indented at least one space beyond the symbols if and else. Lastly, note the use of
the colon (:) following the condition and the word else. Figure 3-2 shows a flow
diagram of the semantics of the if-else statement. In that diagram, the dia-
mond containing the question mark indicates the condition.

[FIGURE 3.2] The semantics of the if-else statement

true

false
?

sequence of statements 1 sequence of statements 2

3.4 Selection: if and if-else Statements [93]

C6840_03 11/19/08 11:41 AM Page 93

May not be copied, scanned, or duplicated, in whole or in part.

Our next example prints the maximum and minimum of two input numbers.

firstƒ=ƒraw_input(“Enterƒtheƒfirstƒnumber:ƒ“)
secondƒ=ƒraw_input(“Enterƒtheƒsecondƒnumber:ƒ“)
ifƒfirstƒ>ƒsecond:
ƒƒƒƒmaximumƒ=ƒfirst
ƒƒƒƒminimumƒ=ƒsecond
else:
ƒƒƒƒmaximumƒ=ƒsecond
ƒƒƒƒminimumƒ=ƒfirst
printƒ“Maximum:”,ƒmaximum
printƒ“Minimum:”,ƒminimum

Python includes two functions, max and min, that make the if-else statement
in this example unnecessary. In the following example, the function max returns the
largest of its arguments, whereas min returns the smallest of its arguments:

firstƒ=ƒraw_input(“Enterƒtheƒfirstƒnumber:ƒ“)
secondƒ=ƒraw_input(“Enterƒtheƒsecondƒnumber:ƒ“)
printƒ“Maximum:”,ƒmax(first,ƒsecond)
printƒ“Minimum:”,ƒmin(first,ƒsecond)

3.4.3 One-Way Selection Statements

The simplest form of selection is the if statement. This type of control state-
ment is also called a one-way selection statement, because it consists of a con-
dition and just a single sequence of statements. If the condition is True, the
sequence of statements is run. Otherwise, control proceeds to the next statement
following the entire selection statement. Here is the syntax for the if statement:

ifƒ<condition>:
ƒƒƒƒ<sequenceƒofƒstatements>

Figure 3-3 shows a flow diagram of the semantics of the if statement.

CHAPTER 3 Control Statements[94]

C6840_03 11/19/08 11:41 AM Page 94

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 3.3] The semantics of the if statement

Simple if statements are often used to prevent an action from being per-
formed if a condition is not right. For example, the absolute value of a negative
number is the arithmetic negation of that number, otherwise it is just that num-
ber. The next session uses a simple if statement to reset the value of a variable to
its absolute value:

>>>ƒifƒxƒ<ƒ0:
ƒƒƒxƒ=ƒ-x
>>>

3.4.4 Multi-way if Statements

Occasionally, a program is faced with testing several conditions that entail more
than two alternative courses of action. For example, consider the problem of con-
verting numeric grades to letter grades. Table 3-3 shows a simple grading scheme
that is based on two assumptions: that numeric grades can range from 0 to 100
and that the letter grades are A, B, C, and F.

[TABLE 3.3] A simple grading scheme

LETTER GRADE RANGE OF NUMERIC GRADES

A All grades above 89

B All grades above 79 and below 90

C All grades above 69 and below 80

F All grades below 70

true

false
?

sequence of statements

3.4 Selection: if and if-else Statements [95]

C6840_03 11/19/08 11:41 AM Page 95

May not be copied, scanned, or duplicated, in whole or in part.

Expressed in English, an algorithm that uses this scheme would state that if
the numeric grade is greater than 89, then the letter grade is A, else if the
numeric grade is greater than 79, then the letter grade is B, …, else (as a default
case) the letter grade is F.

The process of testing several conditions and responding accordingly can be
described in code by a multi-way selection statement. Here is a short Python
script that uses such a statement to determine and print the letter grade corre-
sponding to an input numeric grade:

numberƒ=ƒinput(“Enterƒtheƒnumeric grade:ƒ“)
ifƒnumberƒ>ƒ89:
ƒƒƒƒletterƒ=ƒ'A'
elifƒnumberƒ>ƒ79:
ƒƒƒƒletterƒ=ƒ'B'
elifƒnumberƒ>ƒ69:
ƒƒƒƒletterƒ=ƒ'C'
else:
ƒƒƒƒletterƒ=ƒ'F'
printƒ“Theƒletterƒgradeƒis”,ƒletter

The multi-way if statement considers each condition until one evaluates to True
or they all evaluate to False. When a condition evaluates to True, the corre-
sponding action is performed and control skips to the end of the entire selection
statement. If no condition evaluates to True, then the action after the trailing
else is performed.

The syntax of the multi-way if statement is the following:

ifƒ<condition-1>:
ƒƒƒƒ<sequenceƒofƒstatements-1>

elifƒ<condition-n>:
ƒƒƒƒ<sequenceƒofƒstatements-n>
else:
ƒƒƒƒ<defaultƒsequenceƒofƒstatements>

Once again, indentation helps the human reader and the Python interpreter
to see the logical structure of this control statement.

CHAPTER 3 Control Statements[96]

C6840_03 11/19/08 11:41 AM Page 96

May not be copied, scanned, or duplicated, in whole or in part.

3.4.5 Logical Operators and Compound Boolean Expressions

Often a course of action must be taken if either of two conditions is true. For exam-
ple, valid inputs to a program often lie within a given range of values. Any input
above this range should be rejected with an error message, and any input below this
range should be dealt with in a similar fashion. The next code segment accepts only
valid inputs for our grade conversion script and displays an error message otherwise:

numberƒ=ƒinput(“Enterƒtheƒnumericƒgrade:ƒ“)
ifƒnumberƒ>ƒ100:
ƒƒƒƒprintƒ“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”
elifƒnumberƒ<ƒ0:
ƒƒƒƒprintƒ“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”
else:
ƒƒƒƒ#ƒTheƒcodeƒtoƒcomputeƒandƒprintƒtheƒresultƒgoesƒhere

Note that the first two conditions are associated with identical actions. Put
another way, if either the first condition is true or the second condition is true,
the program outputs the same error message. The two conditions can be com-
bined in a Boolean expression that uses the logical operator or. The resulting
compound Boolean expression simplifies the code somewhat, as follows:

numberƒ=ƒinput(“Enterƒtheƒnumericƒgrade:ƒ“)
ifƒnumberƒ>ƒ100ƒorƒnumberƒ<ƒ0:
ƒƒƒƒprintƒ“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”
else:
ƒƒƒƒ#ƒTheƒcodeƒtoƒcomputeƒandƒprintƒtheƒresultƒgoesƒhere

Yet another way to describe this situation is to say that if the number is
greater than or equal to 0 and less than or equal to 100, then we want the pro-
gram to perform the computations and output the result; otherwise, it should
output an error message. The logical operator and can be used to construct a
different compound Boolean expression to express this logic:

numberƒ=ƒinput(“Enterƒtheƒnumericƒgrade:ƒ“)
ifƒnumberƒ>=ƒ0ƒandƒnumberƒ<=ƒ100:
ƒƒƒƒ#ƒTheƒcodeƒtoƒcomputeƒandƒprintƒtheƒresultƒgoesƒhere
else:
ƒƒƒƒprintƒ“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”

3.4 Selection: if and if-else Statements [97]

C6840_03 11/19/08 11:41 AM Page 97

May not be copied, scanned, or duplicated, in whole or in part.

Python actually includes all three Boolean or logical operators, and, or, and
not. Both the and operator and the or operator expect two operands. The and
operator returns True if and only if both of its operands are true, and returns
False otherwise. The or operator returns False if and only if both of its
operands are false, and returns True otherwise. The not operator expects a single
operand and returns its logical negation, True, if it’s false, and False if it’s true.

The behavior of each operator can be completely specified in a truth table for
that operator. Each row below the first one in a truth table contains one possible
combination of values for the operands and the value resulting from applying the
operator to them. The first row contains labels for the operands and the expression
being computed. Figure 3-4 shows the truth tables for and, or, and not.

[FIGURE 3.4] The truth tables for and, or, and not

A not A

True False

False True

A B A or B

True True True

True False True

False True True

False False False

A B A and B

True True True

True False False

False True False

False False False

CHAPTER 3 Control Statements[98]

C6840_03 11/19/08 11:41 AM Page 98

May not be copied, scanned, or duplicated, in whole or in part.

The next example verifies some of the claims made in the truth tables in
Figure 3-4:

>>>ƒAƒ=ƒTrue
>>>ƒBƒ=ƒFalse
>>>ƒAƒandƒB
False
>>>ƒAƒorƒB
True
>>>ƒnotƒA
False

The logical operators are evaluated after comparisons but before the assign-
ment operator. The not operator has a higher precedence than both the and
operator and the or operator, which have the same precedence. Thus, in our
example, not A and B evaluates to False, whereas not (A and B) evaluates
to True. Table 3-4 summarizes the precedence of the operators discussed thus far
in this book.

[TABLE 3-4] Operator precedence, from highest to lowest

3.4.6 Short-Circuit Evaluation

The Python virtual machine sometimes knows the value of a Boolean expression
before it has evaluated all of its parts. For instance, in the expression (A and B),
if A is false, then so is the expression, and there is no need to evaluate B.

TYPE OF OPERATOR OPERATOR SYMBOL

Exponentiation **

Arithmetic negation -

Multiplication, division, remainder *, /, %

Addition, subtraction +, -

Comparison ==, !=, <, >, <=, >=

Logical negation not

Logical conjunction and disjunction and, or

Assignment =

3.4 Selection: if and if-else Statements [99]

C6840_03 11/19/08 11:41 AM Page 99

May not be copied, scanned, or duplicated, in whole or in part.

Likewise, in the expression (A or B), if A is true, then so is the expression, and
again there is no need to evaluate B. This approach, in which evaluation stops as
soon as possible, is called short-circuit evaluation.

There are times when short-circuit evaluation is advantageous. Consider the
following example:

countƒ=ƒinput(“Enterƒtheƒcount:ƒ“)
sumƒ=ƒinput(“Enterƒtheƒsum:ƒ“)
ifƒcountƒ>ƒ0ƒandƒsumƒ/ƒcountƒ>ƒ10:
ƒƒƒƒprintƒ“averageƒ>ƒ10”
else:
ƒƒƒƒprintƒ“countƒ=ƒ0ƒorƒaverageƒ<=ƒ10”

If the user enters 0 for the count, the condition contains a potential division by
zero; however, because of short-circuit evaluation the division by zero is avoided.

3.4.7 Testing Selection Statements

Because selection statements add extra logic to a program, the door is opened for
extra logic errors. Thus, special care should be taken when testing programs that
contain selection statements.

The first rule of thumb is to make sure that all of the possible branches or
alternatives in a selection statement are exercised. This will happen if the test
data include values that make each condition true and also each condition false.
In our grade-conversion example, the test data should definitely include numbers
that produce each of the letter grades.

After testing all of the actions, you should also examine all of the conditions.
For example, when a condition contains a single comparison of two numbers, try
testing the program with operands that are equal, with a left operand that is less
by one, and with a left operand that is greater by one, to catch errors in the
boundary cases.

Finally, you need to test conditions that contain compound Boolean expres-
sions using data that produce all of the possible combinations of values of the
operands. As a blueprint for testing a compound Boolean expression, use the
truth table for that expression.

CHAPTER 3 Control Statements[100]

C6840_03 11/19/08 11:41 AM Page 100

May not be copied, scanned, or duplicated, in whole or in part.

3.4 Exercises
1 Assume that x is 3 and y is 5. Write the values of the following

expressions:

a x == y

b x > y - 3

c x <= y - 2

d x == y or x > 2

e x != 6 and y > 10

f x > 0 and x < 100

2 Assume that x refers to a number. Write a code segment that prints the
number’s absolute value without using Python’s abs function.

3 Write a loop that counts the number of space characters in a string.
Recall that the space character is represented as ' '.

4 Assume that the variables x and y refer to strings. Write a code segment
that prints these strings in alphabetical order. You should assume that
they are not equal.

5 Explain how to check for an invalid input number and prevent it being
used in a program. You may assume that the user enters a number.

6 Construct truth tables for the following Boolean expressions:

a not (A or B)

b not A and not B

7 Explain the role of the trailing else part of an extended if statement.

8 The variables x and y refer to numbers. Write a code segment that
prompts the user for an arithmetic operator and prints the value
obtained by applying that operator to x and y.

9 Does the Boolean expression count > 0 and total / count > 0
contain a potential error? If not, why not?

3.4 Selection: if and if-else Statements [101]

C6840_03 11/19/08 11:41 AM Page 101

May not be copied, scanned, or duplicated, in whole or in part.

3.5 Conditional Iteration: The while Loop
Earlier we examined the for loop, which executes a set of statements a definite
number of times specified by the programmer. In many situations, however, the
number of iterations in a loop is unpredictable. The loop eventually completes its
work, but only when a condition changes. For example, the user might be asked
for a set of input values. In that case, only the user knows the number she will
enter. The program’s input loop accepts these values until the user enters a spe-
cial value or sentinel that terminates the input. This type of process is called
conditional iteration. In this section, we explore the use of the while loop to
describe conditional iteration.

3.5.1 The Structure and Behavior of a while Loop

Conditional iteration requires that a condition be tested within the loop to deter-
mine whether the loop should continue. Such a condition is called the loop’s
continuation condition. If the continuation condition is false, the loop ends. If
the continuation condition is true, the statements within the loop are executed
again. The while loop is tailor-made for this type of control logic. Here is
its syntax:

while <condition>:
<sequence of statements>

The form of this statement is almost identical to that of the one-way selec-
tion statement. However, the use of the reserved word while instead of if indi-
cates that the sequence of statements might be executed many times, as long as
the condition remains true.

Clearly, something eventually has to happen within the body of the loop to
make the loop’s continuation condition become false. Otherwise, the loop will
continue forever, an error known as an infinite loop. At least one statement in
the body of the loop must update a variable that affects the value of the condi-
tion. Figure 3-5 shows a flow diagram for the semantics of a while loop.

CHAPTER 3 Control Statements[102]

C6840_03 11/19/08 11:41 AM Page 102

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 3.5] The semantics of a while loop

The following example is a short script that prompts the user for a series of
numbers, computes their sum, and outputs this result. Instead of forcing the user
to enter a definite number of values, the program stops the input process when
the user simply presses the return or enter key. The program recognizes this
value as the empty string. We first present a rough draft in the form of a
pseudocode algorithm:

set the sum to 0.0
input a string
while the string is not the empty string

convert the string to a float
add the float to the sum
input a string

print the sum

Note that there are two input statements, one just before the loop header and
one at the bottom of the loop body. The first input statement initializes a variable
to a value that the loop condition can test. This variable is also called the loop
control variable. The second input statement obtains all of the other input val-
ues, including one that will terminate the loop. Note also that the input must be
received as a string, not a number, so the program can test for an empty string. If
the string is not empty, we assume that it represents a number and we convert it

true

false
?

statement

3.5 Conditional Iteration: The while Loop [103]

C6840_03 11/19/08 11:41 AM Page 103

May not be copied, scanned, or duplicated, in whole or in part.

to a float. Here is the Python code for this script, followed by a trace of a sam-
ple run:

sumƒ=ƒ0.0
dataƒ=ƒraw_input(“Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ“)
whileƒdataƒ!=ƒ“”:
ƒƒƒƒnumberƒ=ƒfloat(data)
ƒƒƒƒsumƒ+=ƒnumber
ƒƒƒƒdataƒ=ƒraw_input(“Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ“)
printƒ“Theƒsumƒis”,ƒsum

Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ3
Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ4
Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ5
Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:
Theƒsumƒisƒ12.0

On this run, there are four inputs, including the empty string. Now, suppose we
run the script again and the user enters the empty string at the first prompt. The
while loop’s condition is immediately false, and its body does not execute at all!
The sum prints as 0.0, which is just fine.

The while loop is also called an entry-control loop, because its condition is
tested at the top of the loop. This implies that the statements within the loop can
execute zero or more times.

3.5.2 Count Control with a while Loop

A while loop can also be used for a count-controlled loop. The next two code
segments show the same summations with a for loop and a while loop,
respectively.

sumƒ=ƒ0
forƒcountƒinƒxrange(1,ƒ100001):
ƒƒƒƒsumƒ+=ƒcount
printƒsum

sumƒ=ƒ0
countƒ=ƒ1
whileƒcountƒ<=ƒ100000:
ƒƒƒƒsumƒ+=ƒcount
ƒƒƒƒcountƒ+=ƒ1
printƒsum

CHAPTER 3 Control Statements[104]

C6840_03 11/19/08 11:41 AM Page 104

May not be copied, scanned, or duplicated, in whole or in part.

Although both loops produce the same result, there is a tradeoff. The second
code segment is noticeably more complex. It includes a Boolean expression and
two extra statements that refer to the count variable. This loop control variable
must be explicitly initialized before the loop header and incremented in the loop
body. The count variable must also be examined in the explicit continuation con-
dition. This extra manual labor for the programmer is not only time-consuming,
but also potentially a source of new errors in loop logic.

By contrast, a for loop specifies the control information concisely in the header
and automates its manipulation behind the scenes. However, we will soon see prob-
lems for which a while loop is the only solution. Therefore, you must master the
logic of while loops and also be aware of the logic errors that they could produce.

The next example shows two versions of a script that counts down, from an
upper bound of 10 to a lower bound of 1. It’s up to you to decide which one is
easier to understand and write correctly.

forƒcountƒinƒxrange(10,ƒ0,ƒ-1):
ƒƒƒƒprintƒcount,

countƒ=ƒ10
whileƒcountƒ>=ƒ1:
ƒƒƒƒprintƒcount,
ƒƒƒƒcountƒ-=ƒ1

3.5.3 The while True Loop and the break Statement

Although the while loop can be complicated to write correctly, it is possible to
simplify its structure and thus improve its readability. The first example script of
this section, which contained two input statements, is a good candidate for such
improvement. This loop’s structure can be simplified if we receive the first input
inside the loop, and break out of the loop if a test shows that the continuation
condition is false. This implies postponing the actual test until the middle of the
loop. Python includes a break statement that will allow us to make this change in
the program. Here is the modified script:

sumƒ=ƒ0.0
whileƒTrue:
ƒƒƒƒdataƒ=ƒraw_input(“Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ“)

continued

3.5 Conditional Iteration: The while Loop [105]

C6840_03 11/19/08 11:41 AM Page 105

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒifƒdataƒ==ƒ“”:
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒnumberƒ=ƒfloat(data)
ƒƒƒƒsumƒ+=ƒnumber
printƒ“Theƒsumƒis”,ƒsum

The first thing to note is that the loop’s entry condition is the Boolean value
True. Some readers may become alarmed at this condition, which seems to imply
that the loop will never exit. However, this condition is extremely easy to write
and guarantees that the body of the loop will execute at least once. Within this
body, the input datum is received. It is then tested for the loop’s termination
condition in a one-way selection statement. If the user wants to quit, the input
will equal the empty string and the break statement will cause an exit from the
loop. Otherwise, control continues beyond the selection statement to the next
two statements that process the input.

Our next example modifies the input section of the grade-conversion pro-
gram to continue taking input numbers from the user until she enters an accept-
able value. The logic of this loop is similar to that of the previous example.

whileƒTrue:
ƒƒƒƒnumberƒ=ƒinput(“Enterƒtheƒnumericƒgrade:ƒ“)
ƒƒƒƒifƒnumberƒ>=ƒ0ƒandƒnumberƒ<=ƒ100:
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprintƒ“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”
printƒnumberƒƒƒ#ƒJustƒechoƒtheƒvalidƒinput

A trial run with just this segment shows the following interaction:

Enterƒtheƒnumericƒgrade:ƒ101
Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0
Enterƒtheƒnumericƒgrade:ƒ-1
Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0
Enterƒtheƒnumericƒgrade:ƒ45
45

Some computer scientists argue that a while True loop with a delayed exit
violates the spirit of the while loop. However, in cases where the body of the
loop must execute at least once, this technique simplifies the code and actually
makes the program’s logic clearer. If you are not persuaded by this reasoning and
still want to test for the continuation and exit at the top of the loop, you can use a

CHAPTER 3 Control Statements[106]

C6840_03 11/19/08 11:41 AM Page 106

May not be copied, scanned, or duplicated, in whole or in part.

Boolean variable to control the loop. Here is a version of the numeric input loop
that uses a Boolean variable:

doneƒ=ƒFalse
whileƒnotƒdone:
ƒƒƒƒnumberƒ=ƒinput(“Enterƒtheƒnumericƒgrade:ƒ“)
ƒƒƒƒifƒnumberƒ>=ƒ0ƒandƒnumberƒ<=ƒ100:
ƒƒƒƒƒƒƒƒdoneƒ=ƒTrue
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprintƒ“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”
printƒnumberƒƒƒ#ƒJustƒechoƒtheƒvalidƒinput

For an interesting discussion of this issue, see Eric Roberts’s article, “Loop
Exits and Structured Programming: Reopening the Debate”, ACM SIGCSE
Bulletin, Volume 27, Number 1, March 1995, pp. 268–272.

3.5.4 Random Numbers

The choices our algorithms have made thus far have been completely deter-
mined by given conditions that are either true or false. Many situations, such as
games, include some randomness in the choices that are made. For example, we
might toss a coin to see who kicks off in a football game. There is an equal prob-
ability of a coin landing heads-up or tails-up. Likewise, the roll of a die in many
games entails an equal probability of the numbers 1 through 6 landing face-up.
To simulate this type of randomness in computer applications, programming lan-
guages include resources for generating random numbers. Python’s random
module supports several ways to do this, but the easiest is to call the function
randint with two integer arguments. The function randint returns a random
number from among the numbers between the two arguments and including
those numbers. The next session simulates the roll of a die 10 times:

>>>ƒimportƒrandom
>>>ƒforƒrollƒinƒxrange(10):
ƒƒƒƒƒƒƒprintƒrandom.randint(1,ƒ6),

2ƒ4ƒ6ƒ4ƒ3ƒ2ƒ3ƒ6ƒ2ƒ2
>>>

Although some values are repeated in this small set of calls, over the course of a
large number of calls, the distribution of values approaches true randomness.

3.5 Conditional Iteration: The while Loop [107]

C6840_03 11/19/08 11:41 AM Page 107

May not be copied, scanned, or duplicated, in whole or in part.

We can now use randint, selection, and a loop to develop a simple guessing
game. At start-up, the user enters the smallest number and the largest number in
the range. The computer then selects a number from this range. On each pass
through the loop, the user enters a number in an attempt to guess the number
selected by the computer. The program responds by saying “You’ve got it,” “Too
large, try again,” or “Too small, try again.” When the user finally guesses the cor-
rect number, the program congratulations him and tells him the total number of
guesses. Here is the code, followed by a sample run:

importƒrandom

smallerƒ=ƒinput(“Enterƒtheƒsmallerƒnumber:ƒ“)
largerƒ=ƒinput(“Enterƒtheƒlargerƒnumber:ƒ“)
myNumberƒ=ƒrandom.randint(smaller,ƒlarger)
countƒ=ƒ0
whileƒTrue:
ƒƒƒƒcountƒ+=ƒ1
ƒƒƒƒuserNumberƒ=ƒinput(“Enterƒyourƒguess:ƒ“)
ƒƒƒƒifƒuserNumberƒ<ƒmyNumber:
ƒƒƒƒƒƒƒƒprintƒ“Tooƒsmall”
ƒƒƒƒelifƒuserNumberƒ>ƒmyNumber:
ƒƒƒƒƒƒƒƒprintƒ“Tooƒlarge”
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprintƒ“You'veƒgotƒitƒin”,ƒcount,ƒ“tries!”
ƒƒƒƒƒƒƒƒbreak

Enterƒtheƒsmallerƒnumber:ƒ1
Enterƒtheƒlargerƒnumber:ƒ100
Enterƒyourƒguess:ƒ50
Tooƒsmall
Enterƒyourƒguess:ƒ75
Tooƒlarge
Enterƒyourƒguess:ƒ63
Tooƒsmall
Enterƒyourƒguess:ƒ69
Tooƒlarge
Enterƒyourƒguess:ƒ66
Tooƒlarge
Enterƒyourƒguess:ƒ65
You'veƒgotƒitƒinƒ6ƒtries!

CHAPTER 3 Control Statements[108]

C6840_03 11/19/08 11:41 AM Page 108

May not be copied, scanned, or duplicated, in whole or in part.

3.5.5 Loop Logic, Errors, and Testing

Because while loops can be the most complex control statements, to ensure their
correct behavior, careful design and testing are needed. Testing a while loop must
combine elements of testing used with for loops and with selection statements.

Errors to rule out during testing the while loop include an incorrectly initial-
ized loop control variable, failure to update this variable correctly within the loop,
and failure to test it correctly in the continuation condition. Moreover, if one sim-
ply forgets to update the control variable, the result is an infinite loop, which does
not even qualify as an algorithm! To halt a loop that appears to be hung during
testing, type Control+c in the terminal window or in the IDLE shell.

Genuine condition-controlled loops can be easy to design and test. If the
continuation condition is already available for examination at loop entry, check it
there and provide test data that produce 0, 1, and at least 5 iterations.

If the loop must run at least once, use a while True loop and delay the
examination of the termination condition until it becomes available in the body
of the loop. Ensure that something occurs in the loop to allow the condition to
be checked and a break statement to be reached eventually.

3.5 Exercises
1 Translate the following for loops to equivalent while loops:

a for count in xrange(100):
print count

b for count in xrange(1, 101):
print count

c for count in xrange(100, 0, -1):
print count

2 The factorial of an integer N is the product of all of the integers between 1
and N, inclusive. Write a while loop that computes the factorial of a
given integer N.

3 The log2 of a given number N is given by M in the equation N = 2M.
The value of M is approximately equal to the number of times N can be
evenly divided by 2 until it becomes 0. Write a loop that computes this
approximation of the log2 of a given number N.

3.5 Conditional Iteration: The while Loop [109]

C6840_03 11/19/08 11:41 AM Page 109

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 Control Statements[110]

4 Describe the purpose of the break statement and the type of problem
for which it is well suited.

5 What is the maximum number of guesses necessary to guess correctly a
given number between the numbers N and M?

6 What happens when the programmer forgets to update the loop control
variable in a while loop?

3.6 Case Study: Approximating Square Roots
Users of pocket calculators or Python’s math module do not have to think about
how to compute square roots, but the people who built those calculators or wrote
the code for that module certainly did. In this case study, we open the hood and
see how this might be done.

3.6.1 Request

Write a program that computes square roots.

3.6.2 Analysis

The input to this program is a positive floating-point number or an integer. The
output is a floating-point number representing the square root of the input num-
ber. For purposes of comparison, we also output Python’s estimate of the square
root using math.sqrt. Here is the proposed user interface:

Enterƒaƒpositiveƒnumber:ƒ3
Theƒprogram'sƒestimate:ƒ1.73205081001
Python'sƒestimate:ƒƒƒƒƒƒ1.73205080757

3.6.3 Design

In the seventeenth century, Sir Isaac Newton discovered an algorithm for approx-
imating the square root of a positive number. Recall that the square root y of a
positive number x is the number y such that y2 = x. Newton discovered that if

C6840_03 11/19/08 11:41 AM Page 110

May not be copied, scanned, or duplicated, in whole or in part.

3.6 Case Study: Approximating Square Roots [111]

one’s initial estimate of y is z, then a better estimate of y can be obtained by tak-
ing the average of z together with x/z. The estimate can be transformed by this
rule again and again, until a satisfactory estimate is reached.

A quick session with the Python interpreter shows this method of successive
approximations in action. We let x be 25 and our initial estimate, z, be 1. We
then use Newton’s method to reset z to a better estimate and examine z to check
it for closeness to the actual square root, 5. Here is a transcript of our interaction:

>>>ƒxƒ=ƒ25
>>>ƒyƒ=ƒ5ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTheƒactualƒsquareƒrootƒofƒx
>>>ƒzƒ=ƒ1ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒOurƒinitialƒapproximation
>>>ƒzƒ=ƒ(zƒ+ƒxƒ/ƒz)ƒ/ƒ2ƒƒƒƒ#ƒOurƒfirstƒimprovement
>>>ƒz
13
>>>ƒzƒ=ƒ(zƒ+ƒxƒ/ƒz)ƒ/ƒ2ƒƒƒƒ#ƒOurƒsecondƒimprovement
>>>ƒz
7
>>>ƒzƒ=ƒ(zƒ+ƒxƒ/ƒz)ƒ/ƒ2ƒƒƒƒ#ƒOurƒthirdƒimprovementƒ–ƒgotƒit!
>>>ƒz
5
>>>

After three transformations, the value of z is exactly equal to 5, the square root
of 25. To include cases of numbers, such as 2 and 10, with irrational square
roots, we can use an initial guess of 1.0 to produce floating-point results.

We now develop an algorithm to automate the process of successive transfor-
mations, because there might be many of them and we don’t want to write them
all. Exactly how many of these operations are required depends on how close we
want our final approximation to be to the actual square root. This closeness
value, called the tolerance, can be compared to the difference between and the
value of x and the square of our estimate at any given time. While this difference
is greater than the tolerance, the process continues; otherwise, it stops. The tol-
erance is typically a small value, such as 0.000001.

Our algorithm allows the user to input the number, uses a loop to apply
Newton’s method to compute the square root, and prints this value. Here is the
pseudocode, followed by an explanation:

set x to the user’s input value
set tolerance to 0.000001
set estimate to 1.0
while True

set estimate to (estimate + x / estimate) / 2

C6840_03 11/19/08 11:41 AM Page 111

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 Control Statements[112]

set difference to abs(x - estimate ** 2)
if difference <= tolerance:

break
output the estimate

Because our initial estimate is 1.0, the loop must compute at least one new
estimate. Therefore, we use a while True loop. This loop transforms the esti-
mate before determining whether it is close enough to the tolerance value to stop
the process. The process should stop when the difference between the square of
our estimate and the original number becomes less than or equal to the tolerance
value. Note that this difference may be positive or negative, so we use the abs
function to obtain its absolute value before examining it.

A more orthodox use of the while loop would compare the difference to the
tolerance in the loop header. However, the difference must then be initialized
before the loop to a large and rather meaningless value. The algorithm presented
here captures the logic of the method of successive approximations more cleanly
and simply.

3.6.4 Implementation (Coding)

The code for this program is straightforward.

“””
Program:ƒnewton.py
Author:ƒKen

Computeƒtheƒsquareƒrootƒofƒaƒnumber.

1.ƒTheƒinputƒisƒaƒnumber.

2.ƒTheƒoutputsƒareƒtheƒprogram'sƒestimateƒofƒtheƒsquareƒroot
ƒƒƒusingƒNewton'sƒmethodƒofƒsuccessiveƒapproximations,ƒand
ƒƒƒPython'sƒownƒestimateƒusingƒmath.sqrt.
“””

importƒmath

#ƒReceiveƒtheƒinputƒnumberƒfromƒtheƒuser
xƒ=ƒinput(“Enterƒaƒpositiveƒnumber:ƒ“)

#ƒInitializeƒtheƒtoleranceƒandƒestimate
toleranceƒ=ƒ0.000001
estimateƒ=ƒ1.0

continued

C6840_03 11/19/08 11:41 AM Page 112

May not be copied, scanned, or duplicated, in whole or in part.

Summary [113]

#ƒPerformƒtheƒsuccessiveƒapproximations
whileƒTrue:
ƒƒƒƒestimateƒ=ƒ(estimateƒ+ƒxƒ/ƒestimate)ƒ/ƒ2
ƒƒƒƒdifferenceƒ=ƒabs(xƒ-ƒestimateƒ**ƒ2)
ƒƒƒƒifƒdifferenceƒ<=ƒtolerance:
ƒƒƒƒƒƒƒƒbreak

#ƒOutputƒtheƒresult
printƒ“Theƒprogram'sƒestimate:”,ƒestimate
printƒ“Python'sƒestimate:ƒƒƒƒƒ“,ƒmath.sqrt(x)

3.6.5 Testing

The valid inputs to this program are positive integers and floating-point numbers.
The display of Python’s own most accurate estimate of the square root provides a
benchmark for assessing the correctness of our own algorithm. We should at least
provide a couple of perfect squares, such as 4 and 9, as well as numbers whose
square roots are inexact, such as 2 and 3. A number between 1 and 0, such as .25,
should also be included. Because the accuracy of our algorithm also depends on
the size of the tolerance, we might alter this value during testing as well.

Summary
� Control statements determine the order in which other statements are

executed in a program.
� Definite iteration is the process of executing a set of statements a

fixed, predictable number of times. The for loop is an easy and con-
venient control statement for describing a definite iteration.

� The for loop consists of a header and a set of statements called the
body. The header contains information that controls the number of
times that the body executes.

� The for loop can count through a series of integers. Such a loop is
called a count-controlled loop.

C6840_03 11/19/08 11:41 AM Page 113

May not be copied, scanned, or duplicated, in whole or in part.

� During the execution of a count-controlled for loop, the statements
in the loop’s body can reference the current value of the count using
the loop header’s variable.

� Python’s xrange function generates the sequence of numbers in a
count-controlled for loop. This function can receive one, two, or
three arguments. A single argument M specifies a sequence of num-
bers 0 through M – 1. Two arguments M and N specify a sequence of
numbers M through N – 1. Three arguments M, N, and S specify a
sequence of numbers M up through N – 1, stepping by S, when S is
positive, or M down through N + 1, stepping by S, when S is negative.

� The for loop can traverse and visit the values in a sequence. Example
sequences are a string of characters and a list of numbers.

� A format string and its operator % allow the programmer to format
data using a field width and a precision.

� An off-by-one error occurs when a loop does not perform the
intended number of iterations, there being one too many or one too
few. This error can be caused by an incorrect lower bound or upper
bound in a count-controlled loop.

� Boolean expressions contain the values True or False, variables bound
to these values, comparisons using the relational operators, or other
Boolean expressions using the logical operators. Boolean expressions
evaluate to True or False and are used to form conditions in programs.

� The logical operators and, or, and not are used to construct com-
pound Boolean expressions. The values of these expressions can be
determined by constructing truth tables.

� Python uses short-circuit evaluation in compound Boolean expressions.
The evaluation of the operands of or stops at the first true value, whereas
the evaluation of the operands of and stops at the first false value.

� Selection statements are control statements that enable a program to
make choices. A selection statement contains one or more conditions
and the corresponding actions. Instead of moving straight ahead to
the next action, the computer examines a condition. If the condition is
true, the computer performs the corresponding action and then moves
to the action following the selection statement. Otherwise, the com-
puter moves to the next condition if there is one or to the action fol-
lowing the selection statement.

CHAPTER 3 Control Statements[114]

C6840_03 11/19/08 11:41 AM Page 114

May not be copied, scanned, or duplicated, in whole or in part.

� A two-way selection statement, also called an if-else statement, has
a single condition and two alternative courses of action. A one-way
selection statement, also called an if statement, has a single condition
and a single course of action. A multi-way selection statement, also
called an extended if statement, has at least two conditions and three
alternative courses of action.

� Conditional iteration is the process of executing a set of statements
while a condition is true. The iteration stops when the condition
becomes false. Because it cannot always be anticipated when this will
occur, the number of iterations usually cannot be predicted.

� A while loop is used to describe conditional iteration. This loop con-
sists of a header and a set of statements called the body. The header
contains the loop’s continuation condition. The body executes as long
as the continuation condition is true.

� The while loop is an entry-control loop. This means that the contin-
uation condition is tested at loop entry, and if it is false, the loop’s
body will not execute. Thus, the while loop can describe zero or
more iterations.

� The break statement can be used to exit a while loop from its body.
The break statement is usually used when the loop must perform at
least one iteration. The loop header’s condition in that case is the
value True. The break statement is nested in an if statement that
tests for a termination condition.

� Any for loop can be converted to an equivalent while loop. In a
count-controlled while loop, the programmer must initialize and
update a loop control variable.

� An infinite loop occurs when the loop’s continuation condition never
becomes false and no other exit points are provided. The primary
cause of infinite loops is the programmer’s failure to update a loop
control variable properly.

� The function random.randint returns a random number in the
range specified by its two arguments.

Summary [115]

C6840_03 11/19/08 11:41 AM Page 115

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 Control Statements[116]

REVIEW QUESTIONS
1 How many times does a loop with the header for count in

xrange(10): execute the statements in its body?

a 9 times
b 10 times
c 11 times

2 A for loop is convenient for

a making choices in a program
b running a set of statements a predictable number of times
c counting through a sequence of numbers
d describing conditional iteration

3 What is the output of the loop for count in xrange(5):
print count?

a 1 2 3 4 5
b 1 2 3 4
c 0 1 2 3 4

4 When the function xrange receives two arguments, what does the
second argument specify?

a the last value of a sequence of integers
b the last value of a sequence of integers plus 1
c the last value of a sequence of integers minus 1

5 Consider the following code segment:

xƒ=ƒ5
yƒ=ƒ4
ifƒxƒ>ƒy:
ƒƒƒprintƒy
else:
ƒƒƒprintƒx

What value does this code segment print?

a 4
b 5

C6840_03 11/19/08 11:41 AM Page 116

May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS [117]

6 A Boolean expression using the and operator returns True when

a both operands are true
b one operand is true
c neither operand is true

7 By default the while loop is an

a entry-controlled loop
b exit-controlled loop

8 Consider the following code segment:

ƒƒƒcountƒ=ƒ5
ƒƒƒwhileƒcountƒ>ƒ1:
ƒƒƒƒƒƒprintƒcount,
ƒƒƒƒƒƒcountƒ-=ƒ1

What is the output produced by this code?

a 1 2 3 4 5
b 2 3 4 5
c 5 4 3 2 1
d 5 4 3 2

9 Consider the following code segment:

ƒƒƒcountƒ=ƒ1
ƒƒƒwhileƒcountƒ<=ƒ10:
ƒƒƒƒƒƒprintƒcount,

Which of the following describes the error in this code?

a The loop is off by 1.
b The loop control variable is not properly initialized.
c The comparison points the wrong way.
d The loop is infinite.

10 Consider the following code segment:

ƒƒƒsumƒ=ƒ0.0
ƒƒƒwhileƒtrue:

C6840_03 11/19/08 11:41 AM Page 117

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 Control Statements[118]

ƒƒƒƒƒƒnumberƒ=ƒraw_input(“Enterƒaƒnumber:ƒ“)
ƒƒƒƒƒƒifƒnumberƒ==ƒ“”:
ƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒsumƒ+=ƒfloat(number)

How many iterations does this loop perform?

a none
b at least one
c zero or more
d ten

PROJECTS
1 Write a program that accepts the lengths of three sides of a triangle as

inputs. The program output should indicate whether or not the triangle
is an equilateral triangle.

2 Write a program that accepts the lengths of three sides of a triangle as
inputs. The program output should indicate whether or not the triangle
is a right triangle. Recall from the Pythagorean theorem that in a right
triangle, the square of one side equals the sum of the squares of the other
two sides.

3 Modify the guessing-game program of Section 3.5 so that the user thinks
of a number that the computer must guess. The computer must make no
more than the minimum number of guesses.

4 A standard science experiment is to drop a ball and see how high it
bounces. Once the “bounciness” of the ball has been determined, the
ratio gives a bounciness index. For example, if a ball dropped from a
height of 10 feet bounces 6 feet high, the index is 0.6 and the total dis-
tance traveled by the ball is 16 feet after one bounce. If the ball were to
continue bouncing, the distance after two bounces would be 10 ft + 6 ft +
6 ft + 3.6 ft = 25.6 ft. Note that the distance traveled for each successive
bounce is the distance to the floor plus 0.6 of that distance as the ball
comes back up. Write a program that lets the user enter the initial height
of the ball and the number of times the ball is allowed to continue
bouncing. Output should be the total distance traveled by the ball.

C6840_03 11/19/08 11:41 AM Page 118

May not be copied, scanned, or duplicated, in whole or in part.

5 A local biologist needs a program to predict population growth. The
inputs would be the initial number of organisms, the rate of growth (a
real number greater than 0), the number of hours it takes to achieve this
rate, and a number of hours during which the population grows. For
example, one might start with a population of 500 organisms, a growth
rate of 2, and a growth period to achieve this rate of 6 hours. Assuming
that none of the organisms die, this would imply that this population
would double in size every 6 hours. Thus, after allowing 6 hours for
growth, we would have 1000 organisms, and after 12 hours, we would
have 2000 organisms. Write a program that takes these inputs and dis-
plays a prediction of the total population.

6 The German mathematician Gottfried Leibniz developed the following
method to approximate the value of π:

π/4 = 1 – 1/3 + 1/5 – 1/7 + . . .

Write a program that allows the user to specify the number of iterations
used in this approximation and that displays the resulting value.

7 Teachers in most school districts are paid on a schedule that provides a
salary based on their number of years of teaching experience. For exam-
ple, a beginning teacher in the Lexington School District might be paid
$30,000 the first year. For each year of experience after this first year, up
to 10 years, the teacher receives a 2% increase over the preceding value.
Write a program that displays a salary schedule, in tabular format, for
teachers in a school district. The inputs are the starting salary, the per-
centage increase, and the number of years in the schedule. Each row in
the schedule should contain the year number and the salary for that year.

8 The greatest common divisor of two positive integers, A and B, is the
largest number that can be evenly divided into both of them. Euclid’s
algorithm can be used to find the greatest common divisor (GCD) of two
positive integers. You can use this algorithm in the following manner:

a Compute the remainder of dividing the larger number by the
smaller number.

b Replace the larger number with the smaller number and the smaller
number with the remainder.

c Repeat this process until the smaller number is zero.

The larger number at this point is the GCD of A and B. Write a pro-
gram that lets the user enter two integers and then prints each step in
the process of using the Euclidean algorithm to find their GCD.

PROJECTS [119]

C6840_03 11/19/08 11:41 AM Page 119

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 3 Control Statements[120]

9 Write a program that receives a series of numbers from the user and
allows the user to press the Enter key to indicate that he or she is fin-
ished providing inputs. After the user presses the Enter key, the program
should print the sum of the numbers and their average.

10 The credit plan at TidBit Computer Store specifies a 10% down pay-
ment and an annual interest rate of 12%. Monthly payments are 5% of
the listed purchase price, minus the down payment. Write a program
that takes the purchase price as input. The program should display a
table, with appropriate headers, of a payment schedule for the lifetime of
the loan. Each row of the table should contain the following items:

� the month number (beginning with 1)
� the current total balance owed
� the interest owed for that month
� the amount of principal owed for that month
� the payment for that month
� the balance remaining after payment

The amount of interest for a month is equal to balance * rate / 12. The
amount of principal for a month is equal to the monthly payment minus
the interest owed.

11 In the game of Lucky Sevens, the player rolls a pair of dice. If the dots
add up to 7, the player wins $4; otherwise, the player loses $1. Suppose
that, to entice the gullible, a casino tells players that there are lots of
ways to win: (1, 6), (2, 5), etc. A little mathematical analysis reveals that
there are not enough ways to win to make the game worthwhile; how-
ever, because many people’s eyes glaze over at the first mention of math-
ematics, your challenge is to write a program that demonstrates the
futility of playing the game. Your program should take as input the
amount of money that the player wants to put into the pot, and play the
game until the pot is empty. At that point, the program should print the
number of rolls it took to break the player, as well as maximum amount
of money in the pot.

C6840_03 11/19/08 11:41 AM Page 120

May not be copied, scanned, or duplicated, in whole or in part.

After completing this chapter, you will be able to:
� Access individual characters in a string
� Retrieve a substring from a string
� Search for a substring in a string
� Convert a string representation of a number from one base to

another base
� Use string methods to manipulate strings
� Open a text file for output and write strings or numbers to

the file
� Open a text file for input and read strings or numbers from

the file
� Use library functions to access and navigate a file system
Much about computation is concerned with manipulating text.

Word processing and program editing are obvious examples, but text
also forms the basis of e-mail, Web pages, and text messaging. In
this chapter, we explore strings and text files, which are useful data
structures for organizing and processing text.

[CHAPTER] Strings and Text Files4

C6840_04 11/19/08 1:41 PM Page 121

May not be copied, scanned, or duplicated, in whole or in part.

4.1 Accessing Characters and Substrings in
Strings
In Chapters 1 and 2 we used strings for input and output. We also combined
strings via concatenation to form new strings. In Chapter 3, you learned how to
format a string and to visit each of its characters with a for loop. In this section,
we examine the internal structure of a string more closely, and you will learn how
to extract portions of a string called substrings.

4.1.1 The Structure of Strings

Unlike an integer, which cannot be factored into more primitive parts, a string is
a data structure. A data structure is a compound unit that consists of several
smaller pieces of data. A string is a sequence of zero or more characters. When
working with strings, the programmer sometimes must be aware of a string’s
length and the positions of the individual characters within the string. A string’s
length is the number of characters it contains. Python’s len function returns this
value when it is passed a string, as shown in the following session:

>>>ƒlen(“Hiƒthere!”)
9
>>>ƒlen(“”)
0
>>>ƒ

The positions of a string’s characters are numbered from 0, on the left, to the
length of the string minus one, on the right. Figure 4.1 illustrates the sequence of
characters and their positions in the string “Hi there!”. Note that the ninth
and last character, '!', is at position 8.

[FIGURE 4.1] Characters and their positions in a string

The string is an immutable data structure. This means that its internal data
elements, the characters, can be accessed, but the structure itself cannot be modified.

H rehti e

0 654321 7

!

8

CHAPTER 4 Strings and Text Files[122]

C6840_04 11/19/08 1:41 PM Page 122

May not be copied, scanned, or duplicated, in whole or in part.

4.1.2 The Subscript Operator

Although a simple for loop can access any of the characters in a string, some-
times you just want to inspect one character at a given position without visiting
them all. The subscript operator makes this possible. The form of a subscript
operator is the following:

<aƒstring>[<anƒintegerƒexpression>]

The first part of the subscript operator is the string you want to inspect. The
integer expression in brackets indicates the position of the particular character in
the string that you want to inspect. The integer expression is also called an index.
In the following examples, the subscript operator is used to access characters in
the string “Alan Turing:”

>>>ƒnameƒ=ƒ“AlanƒTuring”
>>>ƒname[0]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒExamineƒtheƒfirstƒcharacter
'A'
>>>ƒname[3]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒExamineƒtheƒfourthƒcharacter
'n'
>>>ƒname[len(name)]ƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒOops!ƒAnƒindexƒerror!
Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<stdin>”,ƒlineƒ1,ƒinƒ<module>
IndexError:ƒstringƒindexƒoutƒofƒrange
>>>ƒname[len(name)ƒ-ƒ1]ƒƒƒƒƒƒƒƒƒ#ƒExamineƒtheƒlastƒcharacter
'g'
>>>ƒname[-1]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒShorthandƒforƒtheƒlastƒone
'g'
>>>ƒ

Note that attempting to access a character using a position that equals the string’s
length results in an error. The positions usually range from 0 to the length minus 1.
However, Python allows negative subscript values to access characters at or near
the end of a string. The programmer counts backward from -1 to access charac-
ters from the right end of the string.

4.1 Accessing Characters and Substrings in Strings [123]

C6840_04 11/19/08 1:41 PM Page 123

May not be copied, scanned, or duplicated, in whole or in part.

The subscript operator is also useful in loops where you want to use the
positions as well as the characters in a string. The next code segment uses a
count-controlled loop to display the characters and their positions:

>>>ƒdataƒ=ƒ“Hiƒthere!”
>>>ƒforƒindexƒinƒxrange(len(data)):
ƒƒƒƒƒƒƒprintƒindex,ƒdata[index]
ƒ
0ƒH
1ƒi
2ƒƒ
3ƒt
4ƒh
5ƒe
6ƒr
7ƒe
8ƒ!
>>>

4.1.3 Slicing for Substrings

Some applications extract portions of strings called substrings. For example, an
application that sorts filenames according to type might use the last three charac-
ters in a filename, called its extension, to determine the file’s type (exceptions to
this rule, such as the extensions “.py” and “.html”, will be considered later in
this chapter). On a Windows file system, a filename ending in “.txt” denotes a
human-readable text file, whereas a filename ending in “.exe” denotes an exe-
cutable file of machine code. Python’s subscript operator can also be used to
obtain a substring through a process called slicing. To extract a substring, the
programmer places a colon (:) in the subscript. An integer value can appear on
either side of the colon. Here are some examples that show how slicing is used:

>>>ƒnameƒ=ƒ“myfile.txt”
>>>ƒname[0:]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTheƒentireƒstringƒ
'myfile.txt'
>>>ƒname[0:1]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTheƒfirstƒcharacter
'm'

continued

CHAPTER 4 Strings and Text Files[124]

C6840_04 11/19/08 1:41 PM Page 124

May not be copied, scanned, or duplicated, in whole or in part.

>>>ƒname[0:2]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTheƒfirstƒtwoƒcharacters
'my'
>>>ƒname[:len(name)]ƒƒƒƒƒƒƒ#ƒTheƒentireƒstring
'myfile.txt'
>>>ƒname[-3:]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTheƒlastƒthreeƒcharacters
'txt'
>>>ƒ

Generally, when two integer positions are included in the slice, the range of char-
acters in the substring extends from the first position up to but not including the
second position. When the integer is omitted on either side of the colon, all of
the characters extending to the end or the beginning are included in the sub-
string. Note that the last line of code provides the correct range to obtain the
filename’s three-character extension.

4.1.4 Testing for a Substring with the in Operator

Another problem involves picking out strings that contain known substrings.
For example, you might want to separate filenames with a .txt extension. A slice
would work for this, but using Python’s in operator is much simpler. When used
with strings, the left operand of in is a target substring and the right operand is
the string to be searched. The operator in returns True if the target string is
somewhere in the search string, or False otherwise. The next code segment
traverses a list of filenames and prints just the filenames that have a .txt
extension:

>>>ƒfileListƒ=ƒ[“myfile.txt”,ƒ“myprogram.exe”,ƒ“yourfile.txt”]
>>>ƒforƒfileNameƒinƒfileList:
ƒƒƒƒƒƒƒifƒ“.txt”ƒinƒfileName:
ƒƒƒƒƒƒƒƒƒƒprintƒfileName
ƒ
myfile.txt
yourfile.txt
>>>ƒ

4.1 Accessing Characters and Substrings in Strings [125]

C6840_04 11/19/08 1:41 PM Page 125

May not be copied, scanned, or duplicated, in whole or in part.

4.1 Exercises
1 Assume that the variable data refers to the string “myprogram.exe”.

Write the values of the following expressions:

a data[2]

b data[-1]

c len(data)

d data[0:8]

e “gram” in data and “pro” in data

2 Assume that the variable data refers to the string “myprogram.exe”.
Write the expressions that perform the following tasks:

a Extract the substring “gram” from data.

b Truncate the extension “.exe” from data.

c Extract the character at the middle position from data.

3 Assume that the variable myString refers to a string. Write a code seg-
ment that uses a loop to print the characters of the string in reverse order.

4 Assume that the variable myString refers to a string and the variable
reversedString refers to an empty string. Write a loop that adds the
characters from myString to reversedString in reverse order.

4.2 Data Encryption
As you might imagine, data traveling on the information highway is vulnerable to
spies and potential thieves. It is easy to observe data crossing a network, particu-
larly now that more and more communications involve wireless transmissions.
For example, a person can sit in a car in the parking lot outside any major hotel
and pick up transmissions between almost any two computers if that person runs
the right sniffing software. For this reason, many applications now use data
encryption to protect information transmitted on networks. Some application
protocols have been updated to include secure versions that use data encryption.
Examples of such versions are FTPS and HTTPS, which are secure versions of
FTP and HTTP for file transfer and Web page transfer, respectively.

CHAPTER 4 Strings and Text Files[126]

C6840_04 11/19/08 1:41 PM Page 126

May not be copied, scanned, or duplicated, in whole or in part.

Encryption techniques are as old as the practice of sending and receiving
messages. The sender encrypts a message by translating it to a secret code, called
a cipher text. At the other end, the receiver decrypts the cipher text back to its
original plain text form. Both parties to this transaction must have at their dis-
posal one or more keys that allow them to encrypt and decrypt messages. To give
you a taste of this process, let us examine an encryption strategy in detail.

A very simple encryption method that has been in use for thousands of years
is called a Caesar cipher. Recall that the character set for text is ordered as a
sequence of distinct values. This encryption strategy replaces each character in
the plain text with the character that occurs a given distance away in the
sequence. For positive distances, the method wraps around to the beginning of
the sequence to locate the replacement characters for those characters near its
end. For example, if the distance value of a Caesar cipher equals five characters,
the string “invaders” would be encrypted as “nsafijwx.” To decrypt this cipher
text back to plain text, you apply a method that uses the same distance value but
looks to the left of each character for its replacement. This decryption method
wraps around to the end of the sequence to find a replacement character for one
near its beginning.

The next two Python scripts implement Caesar cipher methods for any
strings that contain lowercase letters and for any distance values between 0 and
26. Recall that the ord function returns the ordinal position of a character value
in the ASCII sequence, whereas chr is the inverse function.

“””
File:ƒencrypt.py
Encryptsƒanƒinputƒstringƒofƒlowercaseƒlettersƒandƒprints
theƒresult.ƒƒTheƒotherƒinputƒisƒtheƒdistanceƒvalue.
“””

plainTextƒ=ƒraw_input(“Enterƒaƒone-word,ƒlowercaseƒmessage:ƒ“)
distanceƒ=ƒinput(“Enterƒtheƒdistanceƒvalue:ƒ“)
codeƒ=ƒ“”
forƒchƒinƒplainText:
ƒƒƒƒordValueƒ=ƒord(ch)
ƒƒƒƒcipherValueƒ=ƒordValueƒ+ƒdistance
ƒƒƒƒifƒcipherValueƒ>ƒord('z'):
ƒƒƒƒƒƒƒƒcipherValueƒ=ƒord('a')ƒ+ƒdistanceƒ-ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(ord('z')ƒ-ƒordValueƒ+ƒ1)
ƒƒƒƒcodeƒ+=ƒƒchr(cipherValue)
printƒcode

4.2 Data Encryption [127]

continued

C6840_04 11/19/08 1:41 PM Page 127

May not be copied, scanned, or duplicated, in whole or in part.

“””
File:ƒdecrypt.py
Decryptsƒanƒinputƒstringƒofƒlowercaseƒlettersƒandƒprints
theƒresult.ƒƒTheƒotherƒinputƒisƒtheƒdistanceƒvalue.
“””

codeƒ=ƒraw_input(“Enterƒtheƒcodedƒtext:ƒ“)
distanceƒ=ƒinput(“Enterƒtheƒdistanceƒvalue:ƒ“)
plainTextƒ=ƒ''
forƒchƒinƒcode:
ƒƒƒƒordValueƒ=ƒord(ch)
ƒƒƒƒcipherValueƒ=ƒordValueƒ-ƒdistance
ƒƒƒƒifƒcipherValueƒ<ƒord('a'):
ƒƒƒƒƒƒƒƒcipherValueƒ=ƒord('z')ƒ-ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(distanceƒ-ƒ(ord('a')ƒ-ƒordValueƒ+ƒ1))
ƒƒƒƒplainTextƒ+=ƒchr(cipherValue)
printƒplainText

Here are some executions of the two scripts from a terminal command prompt.
The user’s inputs are in italics.

>ƒpythonƒencrypt.py
Enterƒaƒone-word,ƒlowercaseƒmessage:ƒinvaders
Enterƒtheƒdistanceƒvalue:ƒ5
nsafijwx
>ƒpythonƒdecrypt.py
Enterƒtheƒcodedƒtext:ƒnsafijwx
Enterƒtheƒdistanceƒvalue:ƒ5
invaders

These scripts could easily be extended to cover all of the characters, including
spaces and punctuation marks.

Although it worked reasonably well in ancient times, a Caesar cipher would be
no match for a competent spy with a computer. Assuming that there are 128 ASCII
characters, all you would have to do is write a program that would run the same
line of text through the extended decrypt script with the values 0 through 127,
until a meaningful plain text is returned. It would take less than a second to do
that on most modern computers. The main shortcoming of this encryption strat-
egy is that the plain text is encrypted one character at a time, and each encrypted
character depends on that single character and a fixed distance value. In a sense,
the structure of the original text is preserved in the cipher text, so it might not be
hard to discover a key by visual inspection.

CHAPTER 4 Strings and Text Files[128]

C6840_04 11/19/08 1:41 PM Page 128

May not be copied, scanned, or duplicated, in whole or in part.

A more sophisticated encryption scheme is called a block cipher. A block
cipher uses a plaintext character to compute two or more encrypted characters,
and each encrypted character is computed using two or more plaintext characters.
This is accomplished by using a mathematical structure known as an invertible
matrix to determine the values of the encrypted characters. The matrix provides
the key in this method. The receiver uses the same matrix to decrypt the cipher
text. The fact that information used to determine each character comes from a
block of data makes it more difficult to determine the key.

4.2 Exercises
1 Write the encrypted text of each of the following words using a Caesar

cipher with a distance value of 3:

a python

b hacker

c wow

2 Consult the Table of ASCII values in Chapter 2 and suggest how you
would modify the encryption and decryption scripts in this section to
work with strings containing all of the printable characters.

3 You are given a string that was encoded by a Caesar cipher with an
unknown distance value. The text can contain any of the printable ASCII
characters. Suggest an algorithm for cracking this code.

4.3 Strings and Number Systems
When you perform arithmetic operations, you use the decimal number system.
This system, also called the base ten number system, uses the ten characters 0,
1, 2, 3, 4, 5, 6, 7, 8, and 9 as digits. As we saw in Chapter 1, the binary number
system is used to represent all information in a digital computer. The two digits in
this base two number system are 0 and 1. Because binary numbers can be long
strings of 0s and 1s, computer scientists often use other number systems, such as
octal (base eight) and hexadecimal (base 16) as shorthand for these numbers.

4.3 Strings and Number Systems [129]

C6840_04 11/19/08 1:41 PM Page 129

May not be copied, scanned, or duplicated, in whole or in part.

To identify the system being used, you attach the base as a subscript to the num-
ber. For example, the following numbers represent the quantity 41510 in the
binary, octal, decimal, and hexadecimal systems:

415ƒinƒbinaryƒnotationƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ1100111112
415ƒinƒoctalƒnotationƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ6378
415ƒinƒdecimalƒnotationƒƒƒƒƒƒƒƒƒƒƒƒƒƒ41510
415ƒinƒhexadecimalƒnotationƒƒƒƒƒƒƒƒƒƒ19F16

The digits used in each system are counted from 0 to n - 1, where n is the
system’s base. Thus, the digits 8 and 9 do not appear in the octal system. To rep-
resent digits with values larger than 910, systems such as base 16 use letters.
Thus, A16 represents the quantity 1010, whereas 1016 represents the quantity 1610.
In this section, we examine how these systems actually represent numeric quanti-
ties and how to translate from one notation to another.

4.3.1 The Positional System for Representing Numbers

All of the number systems we have examined use positional notation—that is, the
value of each digit in a number is determined by the digit’s position in the number.
In other words, each digit has a positional value. The positional value of a digit is
determined by raising the base of the system to the power specified by the position
(baseposition). For an n-digit number, the positions (and exponents) are numbered
from n - 1 down to 0, starting with the leftmost digit and moving to the right. For
example, as Figure 4.2 illustrates, the positional values of the three-digit number
41510 are 100 (102), 10 (101), and 1 (100), moving from left to right in the number.

[FIGURE 4.2] The first three positional values in the base 10 number system

To determine the quantity represented by a number in any system from base 2
through base 10, you multiply each digit (as a decimal number) by its positional

Positional values 100 10 1
Positions 2 1 0

CHAPTER 4 Strings and Text Files[130]

C6840_04 11/19/08 1:41 PM Page 130

May not be copied, scanned, or duplicated, in whole or in part.

value and add the results. The following example shows how this is done for a
three-digit number in base 10:

41510ƒ=

4ƒ*ƒ102ƒ+ƒ1ƒ*ƒ101ƒ+ƒ5ƒ*ƒ100ƒ=

4ƒ*ƒ100ƒ+ƒ1ƒ*ƒ10ƒ+ƒ5ƒ*ƒ1ƒƒƒ=

400ƒƒƒƒƒ+ƒ10ƒƒƒƒƒ+ƒ5ƒƒƒƒƒƒƒ=ƒ415

4.3.2 Converting Binary to Decimal

Like the decimal system, the binary system also uses positional notation. However,
each digit or bit in a binary number has a positional value that is a power of 2. In
the discussion that follows, we occasionally refer to a binary number as a string of
bits or a bit string. You determine the integer quantity that a string of bits repre-
sents in the usual manner: multiply the value of each bit (0 or 1) by its positional
value and add the results. Let’s do that for the number 11001112:

11001112ƒ=

1ƒ*ƒ26ƒ+ƒ1ƒ*ƒ25ƒ+ƒ0ƒ*ƒ24ƒ+ƒ0ƒ*ƒ23ƒ+ƒ1ƒ*ƒ22ƒ+ƒ1ƒ*ƒ21ƒ+ƒ1ƒ*ƒ20ƒ=

1ƒ*ƒ64ƒ+ƒ1ƒ*ƒ32ƒ+ƒ0ƒ*ƒ16ƒ+ƒ0ƒ*ƒ8ƒ+ƒ1ƒ*ƒ4ƒ+ƒ1ƒ*ƒ2ƒ+ƒ1ƒ*ƒ1ƒ=

64ƒƒƒƒƒ+ƒ32ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ+ƒ4ƒƒƒƒƒ+ƒ2ƒƒƒƒƒ+ƒ1ƒƒƒƒƒ=ƒ103

Not only have we determined the integer value of this binary number, but
we have also converted it to decimal in the process! In computing the value of a
binary number, we can ignore the values of the positions occupied by 0s and sim-
ply add the positional values of the positions occupied by 1s.

We can code an algorithm for the conversion of a binary number to the
equivalent decimal number as a Python script. The input to the script is a string
of bits, and its output is the integer that the string represents. The algorithm uses
a loop that accumulates the sum of a set of integers. The sum is initially 0. The
exponent that corresponds to the position of the string’s leftmost bit is the length
of the bit string minus 1. The loop visits the digits in the string from the first to
the last (left to right), also counting from the largest exponent of 2 down to 0 as

4.3 Strings and Number Systems [131]

C6840_04 11/19/08 1:41 PM Page 131

May not be copied, scanned, or duplicated, in whole or in part.

it goes. Each digit is converted to its integer value (1 or 0), multiplied by its posi-
tional value, and the result is added to the ongoing total. A positional value is
computed by using the ** operator. Here is the code for the script, followed by
some example sessions at a terminal prompt:

“””
File:ƒbinarytodecimal.py
Convertsƒaƒstringƒofƒbitsƒtoƒaƒdecimalƒinteger.
“””

bstringƒ=ƒraw_input(“Enterƒaƒstringƒofƒbits:ƒ“)
decimalƒ=ƒ0
exponentƒ=ƒlen(bstring)ƒ-ƒ1
forƒdigitƒinƒbstring:
ƒƒƒƒdecimalƒ=ƒdecimalƒ+ƒint(digit)ƒ*ƒ2ƒ**ƒexponent
ƒƒƒƒexponentƒ=ƒexponentƒ-ƒ1
printƒ“Theƒintegerƒvalueƒis”,ƒdecimal

>ƒpythonƒbinarytodecimal.py
Enterƒaƒstringƒofƒbits:ƒ1111
Theƒintegerƒvalueƒisƒ15
>ƒpythonƒbinarytodecimal.py
Enterƒaƒstringƒofƒbits:ƒ101
Theƒintegerƒvalueƒisƒ5

4.3.3 Converting Decimal to Binary

How are integers converted from decimal to binary? One algorithm uses division
and subtraction instead of multiplication and addition. This algorithm repeatedly
divides the decimal number by 2. After each division, the remainder (either a 0 or
a 1) is placed at the beginning of a string of bits. The quotient becomes the next
dividend in the process. The string of bits is initially empty, and the process con-
tinues while the decimal number is greater than 0.

Let’s code this algorithm as a Python script and run it to display the interme-
diate results in the process. The script expects a non-negative decimal integer as
an input and prints the equivalent bit string. The script checks first for a 0 and
prints the string '0' as a special case. Otherwise, the script uses the algorithm

CHAPTER 4 Strings and Text Files[132]

C6840_04 11/19/08 1:41 PM Page 132

May not be copied, scanned, or duplicated, in whole or in part.

just described. On each pass through the loop, the values of the quotient, remain-
der, and result string are displayed. Here is the code for the script, followed by a
session to convert the number 30:

“””
File:ƒdecimaltobinary.py
Convertsƒaƒdecimalƒintegerƒtoƒaƒstringƒofƒbits.
“””

decimalƒ=ƒinput(“Enterƒaƒdecimalƒinteger:ƒ“)
ifƒdecimalƒ==ƒ0:ƒ
ƒƒƒƒprintƒ0
else:
ƒƒƒƒprintƒ“QuotientƒRemainderƒBinary”
ƒƒƒƒbstringƒ=ƒ“”
ƒƒƒƒwhileƒdecimalƒ>ƒ0:
ƒƒƒƒƒƒƒƒremainderƒ=ƒdecimalƒ%ƒ2
ƒƒƒƒƒƒƒƒdecimalƒ=ƒdecimalƒ/ƒ2
ƒƒƒƒƒƒƒƒbstringƒ=ƒstr(remainder)ƒ+ƒbstring
ƒƒƒƒƒƒƒƒprintƒ“%5d%8d%12s”ƒ%ƒ(decimal,ƒremainder,ƒbstring)
ƒƒƒƒprintƒ“Theƒbinaryƒrepresentationƒis”,ƒbstring
>ƒpythonƒdecimalToBinary.py
Enterƒaƒdecimalƒinteger:ƒ34
QuotientƒRemainderƒBinary
ƒƒƒ17ƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒƒƒƒƒ0
ƒƒƒƒ8ƒƒƒƒƒƒƒ1ƒƒƒƒƒƒƒƒƒƒ10
ƒƒƒƒ4ƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒƒƒ010
ƒƒƒƒ2ƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒƒ0010
ƒƒƒƒ1ƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒ00010
ƒƒƒƒ0ƒƒƒƒƒƒƒ1ƒƒƒƒƒƒ100010ƒ
Theƒbinaryƒrepresentationƒisƒ100010

4.3.4 Conversion Shortcuts

There are various shortcuts for determining the decimal integer values of some
binary numbers. One useful method involves learning to count through the num-
bers corresponding to the decimal values 0 through 8, as shown in Table 4.1.

4.3 Strings and Number Systems [133]

C6840_04 11/19/08 1:41 PM Page 133

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 4.1] The numbers 0 through 8 in binary

Note the rows that contain exact powers of 2 (2, 4, and 8 in decimal). Each
of the corresponding binary numbers in that row contains a 1 followed by a num-
ber of zeroes that equal the exponent used to compute that power of 2. Thus, a
quick way to compute the decimal value of the number 100002 is 24 or 1610.

The rows whose binary numbers contain all ones correspond to decimal
numbers that are one less than the next exact power of 2. For example, the num-
ber 1112 equals 23 - 1, or 710. Thus, a quick way to compute the decimal value of
the number 111112 is 25 - 1, or 3110.

4.3.5 Octal and Hexadecimal Numbers

The octal system uses a base of 8 and the digits 0…7. Conversions of octal to
decimal and decimal to octal use algorithms similar to those discussed thus far
(using powers of 8 and dividing by 8, instead of 2). But the real benefit of the
octal system is the ease of converting octal numbers to and from binary. With
practice, you can learn to do these conversions quite easily by hand, and in many
cases by eye. To convert from octal to binary, you start by assuming that each
digit in the octal number represents three digits in the corresponding binary
number. You then start with the leftmost octal digit and write down the corre-
sponding binary digits, padding these to the left with 0s to the count of 3, if

DECIMAL BINARY

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

CHAPTER 4 Strings and Text Files[134]

C6840_04 11/19/08 1:41 PM Page 134

May not be copied, scanned, or duplicated, in whole or in part.

necessary. You proceed in this manner until you have converted all of the octal
digits. Figure 4.3 shows such a conversion:

[FIGURE 4.3] The conversion of octal to binary

To convert binary to octal, you begin at the right and factor the bits into
groups of three bits each. You then convert each group of three bits to the octal
digit they represent.

As the size of a number system’s base increases, so does the system’s expres-
sive power, its ability to say more with less. As bit strings get longer, the octal
system becomes a less useful shorthand for expressing them. The hexadecimal or
base-16 system (called “hex” for short), which uses 16 different digits, provides a
more concise notation than octal for larger numbers. Base 16 uses the digits 0…9
for the corresponding integer quantities and the letters A...F for the integer
quantities 10...15.

The conversion between numbers in the two systems works as follows. Each
digit in the hexadecimal number is equivalent to four digits in the binary number.
Thus, to convert from hexadecimal to binary, you replace each hexadecimal digit
with the corresponding 4-bit binary number. To convert from binary to hexadeci-
mal, you factor the bits into groups of 4 and look up the corresponding hex dig-
its. (This is the kind of stuff that hackers memorize). Figure 4.4 shows a mapping
of hexadecimal digits to binary digits.

[FIGURE 4.4] The conversion of hexadecimal to binary

Hexadecimal

Binary

43F

0100 0011 1111

Octal

Binary

437

100 011 111

4.3 Strings and Number Systems [135]

C6840_04 11/19/08 1:41 PM Page 135

May not be copied, scanned, or duplicated, in whole or in part.

4.3 Exercises
1 Translate each of the following numbers to decimal numbers:

a 110012

b 1000002

c 111112

2 Translate each of the following numbers to binary numbers:

a 4710

b 12710

c 6410

3 Translate each of the following numbers to binary numbers:

a 478

b 1278

c 648

4 Translate each of the following numbers to decimal numbers:

a 478

b 1278

c 648

5 Translate each of the following numbers to decimal numbers:

a 4716

b 12716

c AA16

4.4 String Methods
Text processing involves many different operations on strings. For example,
consider the problem of analyzing someone’s writing style. Short sentences con-
taining short words are generally considered more readable than long sentences
containing long words. A program to compute a text’s average sentence length
and the average word length might provide a rough analysis of style.

CHAPTER 4 Strings and Text Files[136]

C6840_04 11/19/08 1:41 PM Page 136

May not be copied, scanned, or duplicated, in whole or in part.

Let’s start with counting the words in a single sentence and finding the aver-
age word length. This task requires locating the words in a string. Fortunately,
Python includes a set of string operations called methods that make tasks like
this one easy. In the next session, we use the string method split to obtain a list
of the words contained in an input string. We then print the length of the list,
which equals the number of words, and compute and print the average of the
lengths of the words in the list.

>>>ƒsentenceƒ=ƒraw_input(“Enterƒaƒsentence:ƒ“)
Enterƒaƒsentence:ƒThisƒsentenceƒhasƒnoƒlongƒwords.
>>>ƒlistOfWordsƒ=ƒsentence.split()
>>>ƒprintƒ“Thereƒare”,ƒlen(listOfWords),ƒ“words.”
Thereƒareƒ6ƒwords.
>>>ƒsumƒ=ƒ0
>>>ƒforƒwordƒinƒlistOfWords:
ƒƒƒƒƒƒƒsumƒ+=ƒlen(word)

>>>ƒprintƒ“Theƒaverageƒwordƒlengthƒis”,ƒsumƒ/ƒlen(listOfWords)
Theƒaverageƒwordƒlengthƒisƒ4
>>>

A method behaves like a function, but has a slightly different syntax. Unlike a
function, a method is always called with a given data value called an object,
which is placed before the method name in the call. The syntax of a method call
is the following:

<anƒobject>.<methodƒname>(<argument-1>,ƒ…,ƒ<argument-n>)

Methods can also expect arguments and return values. A method knows
about the internal state of the object with which it is called. Thus, the method
split in our example builds a list of the words in the string object to which
sentence refers and returns it.

In short, methods are as useful as functions, but you need to get used to the
dot notation, which you have already seen when using a function associated with
a module. In Python, all data values are in fact objects, and every data type
includes a set of methods to use with objects of that type.

Table 4.2 lists some useful string methods. You can view the complete list and
the documentation of the string methods by entering dir(str) or help(str) at
a shell prompt. Note that some arguments are enclosed in square brackets ([]).
These indicate that the arguments are optional and may be omitted when the
method is called.

4.4 String Methods [137]

C6840_04 11/19/08 1:41 PM Page 137

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 4.2] Some useful string methods, with the code letter s used to refer to any string

STRING METHOD WHAT IT DOES

s.center(width) Returns a copy of s centered within the
given number of columns.

s.count(sub [, start [, end]]) Returns the number of non-overlapping
occurrences of substring sub in s. Optional
arguments start and end are interpreted as
in slice notation.

s.endswith(sub) Returns True if s ends with sub or False
otherwise.

s.find(sub [, start [, end]]) Returns the lowest index in s where
substring sub is found. Optional arguments
start and end are interpreted as in slice
notation.

s.isalpha() Returns True if s contains only letters or
False otherwise.

s.isdigit() Returns True if s contains only digits or
False otherwise.

s.join(sequence) Returns a string that is the concatenation of
the strings in the sequence. The separator
between elements is s.

s.lower() Returns a copy of s converted to lowercase.

s.replace(old, new [, count]) Returns a copy of s with all occurrences
of substring old replaced by new. If the
optional argument count is given, only the
first count occurrences are replaced.

s.split([sep]) Returns a list of the words in s, using sep as
the delimiter string. If sep is not specified,
any whitespace string is a separator.

s.startswith(sub) Returns True if s starts with sub or False
otherwise.

s.strip([aString]) Returns a copy of s with leading and trailing
whitespace (tabs, spaces, newlines) removed.
If aString is given, remove characters in
aString instead.

s.upper() Returns a copy of s converted to uppercase.

CHAPTER 4 Strings and Text Files[138]

C6840_04 11/19/08 1:41 PM Page 138

May not be copied, scanned, or duplicated, in whole or in part.

The next session shows these methods in action:

>>>ƒsƒ=ƒ“Hiƒthere!”
>>>ƒlen(s)ƒƒƒ
9
>>>ƒs.center(11)
'ƒHiƒthere!ƒ'
>>>ƒs.count('e')
2
>>>ƒs.endswith(“there!”)
True
>>>ƒs.startswith(“Hi”)
True
>>>ƒs.find('the')
3
>>>ƒs.isalpha()
False
>>>ƒ'abc'.isalpha()
True
>>>ƒ“326”.isdigit()
True
>>>ƒwordsƒ=ƒs.split()
>>>ƒwords
['Hi',ƒ'there!']
>>>ƒ“”.join(words)
'Hithere!'
>>>ƒ“ƒ“.join(words)
'Hiƒthere!'
>>>ƒs.lower()
'hiƒthere!'
>>>ƒs.upper()
'HIƒTHERE!'
>>>ƒs.replace('i',ƒ'o')
'Hoƒthere!'
>>>ƒ“ƒHiƒthere!ƒ“.strip()
'Hiƒthere!'
>>>

Now that you know about the string method split, you are in a position
to use a more general strategy for extracting a filename’s extension than the one
used earlier in this chapter. The method split returns a list of words in the
string upon which it is called. This method assumes that the default separator

4.4 String Methods [139]

C6840_04 11/19/08 1:41 PM Page 139

May not be copied, scanned, or duplicated, in whole or in part.

character between the words is a space. You can override this assumption by
passing a period as an argument to split, as shown in the next session:

>>>ƒ“myfile.txt”.split(“.”)
['myfile',ƒ'txt']
>>>ƒ“myfile.py”.split(“.”)
['myfile',ƒ'py']
>>>ƒ“myfile.html”.split(“.”)
['myfile',ƒ'html']
>>>

Note that the extension, regardless of its length, is the last string in each list. The
subscript [-1], which also extracts the last element in a list, can now be used to
write a general expression for obtaining any filename’s extension, as follows:

filename.split(“.”)[-1]

4.4 Exercises
1 Assume that the variable data refers to the string “Python rules!”.

Use a string method from Table 4.2 to perform the following tasks:

a Obtain a list of the words in the string.

b Convert the string to uppercase.

c Locate the position of the string “rules”.

d Replace the exclamation point with a question mark.

2 Using the value of data from Exercise 1, write the values of the follow-
ing expressions:

a data.endswith('i')

b “ totally “.join(data.split())

CHAPTER 4 Strings and Text Files[140]

C6840_04 11/19/08 1:41 PM Page 140

May not be copied, scanned, or duplicated, in whole or in part.

4.5 Text Files
Thus far in this book, we have seen examples of programs that have taken input
data from users at the keyboard. Most of these programs can receive their
input from text files as well. A text file is a software object that stores data on a
permanent medium such as a disk, CD, or flash memory. When compared to
keyboard input from a human user, the main advantages of taking input data
from a file are the following:

� The data set can be much larger.
� The data can be input much more quickly and with less chance of error.
� The data can be used repeatedly with the same program or with different

programs.

4.5.1 Text Files and Their Format

Using a text editor such as Notepad or TextEdit, you can create, view, and
save data in a text file. Your Python programs can output data to a text file, a
procedure explained later in this section. The data in a text file can be viewed as
characters, words, numbers, or lines of text, depending on the text file’s format
and on the purposes for which the data are used. When the data are treated as
numbers (either integers or floating-points), they must be separated by white-
space characters—spaces, tabs, and newlines. For example, a text file containing
six floating-point numbers might look like

34.6ƒ22.33ƒ66.75
77.12ƒ21.44ƒ99.01

when examined with a text editor. Note that this format includes a space or a
newline as a separator of items in the text.

All data output to or input from a text file must be strings. Thus, numbers
must be converted to strings before output, and these strings must be converted
back to numbers after input.

4.5 Text Files [141]

C6840_04 11/19/08 1:41 PM Page 141

May not be copied, scanned, or duplicated, in whole or in part.

4.5.2 Writing Text to a File

Data can be output to a text file using a file object. Python’s open function,
which expects a file pathname and a mode string as arguments, opens a connec-
tion to the file on disk and returns a file object. The mode string is 'r' for
input files and 'w' for output files. Thus, the following code opens a file object
on a file named myfile.txt for output:

>>>ƒfƒ=ƒopen(“myfile.txt”,ƒ'w')

If the file does not exist, it is created with the given pathname. If the file already
exists, Python opens it. When data are written to the file and the file is closed,
any data previously existing in the file are erased.

String data are written (or output) to a file using the method write with the
file object. The write method expects a single string argument. If you want
the output text to end with a newline, you must include the escape character \n
in the string. The next statement writes two lines of text to the file:

>>>ƒf.write(“Firstƒline.\nSecondƒline.\n”)

When all of the outputs are finished, the file should be closed using the method
close, as follows:

>>>ƒf.close()

Failure to close an output file can result in data being lost.

4.5.3 Writing Numbers to a File

The file method write expects a string as an argument. Therefore, other types
of data, such as integers or floating-point numbers, must first be converted to
strings before being written to an output file. In Python, the values of most data
types can be converted to strings by using the str function. The resulting strings
are then written to a file with a space or a newline as a separator character.

CHAPTER 4 Strings and Text Files[142]

C6840_04 11/19/08 1:41 PM Page 142

May not be copied, scanned, or duplicated, in whole or in part.

The next code segment illustrates the output of integers to a text file. Five
hundred random integers between 1 and 500 are generated and written to a text
file named integers.txt. The newline character is the separator.

importƒrandom
fƒ=ƒopen(“integers.txt”,ƒ'w')
forƒcountƒinƒxrange(500):
ƒƒƒƒnumberƒ=ƒrandom.randint(1,ƒ500)
ƒƒƒƒf.write(str(number)ƒ+ƒ“\n”)
f.close()

4.5.4 Reading Text from a File

You open a file for input in a manner similar to opening a file for output. The
only thing that changes is the mode string, which, in the case of opening a file for
input, is 'r'. However, if the pathname is not accessible from the current work-
ing directory, Python raises an error. Here is the code for opening myfile.txt
for input:

>>>ƒfƒ=ƒopen(“myfile.txt”,ƒ'r')

There are several ways to read data from an input file. The simplest way is to
use the file method read to input the entire contents of the file as a single
string. If the file contains multiple lines of text, the newline characters will be
embedded in this string. The next session shows how to use the method read:

>>>ƒtextƒ=ƒf.read()
>>>ƒtext
'Firstƒline.\nSecondƒline.\n'
>>>ƒprintƒtext
Firstƒline.
Secondƒline.

>>>

After input is finished, another call to read would return an empty string, to
indicate that the end of the file has been reached. To repeat an input, the file
must be re-opened. It is not necessary to close the file.

4.5 Text Files [143]

C6840_04 11/19/08 1:41 PM Page 143

May not be copied, scanned, or duplicated, in whole or in part.

Alternatively, an application might read and process the text one line at a
time. A for loop accomplishes this nicely. The for loop views a file object as a
sequence of lines of text. On each pass through the loop, the loop variable is
bound to the next line of text in the sequence. Here is a session that re-opens our
example file and visits the lines of text in it:

>>>ƒfƒ=ƒopen(“myfile.txt”,ƒ'r')
>>>ƒforƒlineƒinƒf:
ƒƒƒƒƒƒƒprintƒline

Firstƒline.

Secondƒline.

>>>ƒ

Note that print appears to output an extra newline. This is because each line of
text input from the file retains its newline character.

In cases where you might want to read a specified number of lines from a file
(say, the first line only) the file method readline can be used. The readline
method consumes a line of input and returns this string, including the newline. If
readline encounters the end of the file, it returns the empty string. The next
code segment uses our old friend the while True loop to input all of the lines of
text with readline:

>>>ƒfƒ=ƒopen(“myfile.txt”,ƒ'r')
>>>ƒwhileƒTrue:
ƒƒƒƒƒƒƒlineƒ=ƒf.readline()
ƒƒƒƒƒƒƒifƒlineƒ==ƒ“”:
ƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒprintƒline

Firstƒline.

Secondƒline.

>>>ƒ

CHAPTER 4 Strings and Text Files[144]

C6840_04 11/19/08 1:41 PM Page 144

May not be copied, scanned, or duplicated, in whole or in part.

4.5.5 Reading Numbers from a File

All of the file input operations return data to the program as strings. If these strings
represent other types of data, such as integers or floating-point numbers, the program-
mer must convert them to the appropriate types before manipulating them further. In
Python, the string representations of integers and floating-point numbers can be con-
verted to the numbers themselves by using the functions int and float, respectively.

When reading data from a file, another important consideration is the format of
the data items in the file. Earlier, we showed an example code segment that output
integers separated by newlines to a text file. During input, these data can be read with
a simple for loop. This loop accesses a line of text on each pass. To convert this line
to the integer contained in it, the programmer runs the string method strip to
remove the newline and then runs the int function to obtain the integer value.

The next code segment illustrates this technique. It opens the file of random
integers written earlier, reads them, and prints their sum.

fƒ=ƒopen(“integers.txt”,ƒ'r')
sumƒ=ƒ0
forƒlineƒinƒf:
ƒƒƒƒlineƒ=ƒline.strip()
ƒƒƒƒnumberƒ=ƒint(line)
ƒƒƒƒsumƒ+=ƒnumber
printƒ“Theƒsumƒis”,ƒsum

Obtaining numbers from a text file in which they are separated by spaces is a
bit trickier. One method proceeds by reading lines in a for loop, as before. But
each line now can contain several integers separated by spaces. You can use the
string method split to obtain a list of the strings representing these integers,
and then process each string in this list with another for loop.

The next code segment modifies the previous one to handle integers sepa-
rated by spaces and/or newlines.

fƒ=ƒopen(“integers.txt”,ƒ'r')
sumƒ=ƒ0
forƒlineƒinƒf:
ƒƒƒƒwordlistƒ=ƒline.split()
ƒƒƒƒforƒwordƒinƒwordlist:
ƒƒƒƒƒƒƒƒnumberƒ=ƒint(word)
ƒƒƒƒƒƒƒƒsumƒ+=ƒnumber
printƒ“Theƒsumƒis”,ƒsum

4.5 Text Files [145]

C6840_04 11/19/08 1:41 PM Page 145

May not be copied, scanned, or duplicated, in whole or in part.

Note that the line does not have to be stripped of the newline, because split
takes care of that automatically.

Table 4.3 summarizes the file operations discussed in this section. Note
that the dot notation is not used with open, which returns a new file object.

[TABLE 4.3] Some file operations

4.5.6 Accessing and Manipulating Files and Directories
on Disk

When designing Python programs that interact with files, it’s a good idea to
include error recovery. For example, before attempting to open a file for input,
the programmer should check to see if a file with the given pathname exists on
the disk. Tables 4.4 and 4.5 explain some file system functions, including a func-
tion (os.path.exists) that supports this checking. They also list some func-
tions that allow your programs to navigate to a given directory in the file system,
as well as perform some disk housekeeping. The functions listed in Tables 4.4 and
4.5 are self-explanatory and you are encouraged to experiment. For example, the

METHOD WHAT IT DOES

open(pathname, mode) Opens a file at the given pathname and returns a
file object. The mode can be 'r', 'w', 'rw', or
'a'. The last two values, 'rw' and 'a', mean
read/write and append, respectively.

f.close() Closes an output file. Not needed for input files.

f.write(aString) Outputs aString to a file.

f.read() Inputs the contents of a file and returns them as a
single string. Returns '' if the end of file is
reached.

f.readline() Inputs a line of text and returns it as a string,
including the newline. Returns '' if the end of file
is reached.

CHAPTER 4 Strings and Text Files[146]

C6840_04 11/19/08 1:41 PM Page 146

May not be copied, scanned, or duplicated, in whole or in part.

following code segment will print all of the names of files in the current working
directory that have a .py extension:

importƒos
currentDirectoryPathƒ=ƒos.getcwd()
listOfFileNamesƒ=ƒos.listdir(currentDirectoryPath)
forƒnameƒinƒlistOfFileNames:
ƒƒƒƒifƒ“.py”ƒinƒname:
ƒƒƒƒƒƒƒƒprintƒname

[TABLE 4.4] Some file system functions

[TABLE 4.5] More file system functions

os.path MODULE FUNCTION WHAT IT DOES

exists(path) Returns True if path exists and False otherwise.

isdir(path) Returns True if path names a directory and
False otherwise.

isfile(path) Returns True if path names a file and False
otherwise.

getsize(path) Returns the size of the object names by path
in bytes.

os MODULE FUNCTION WHAT IT DOES

chdir(path) Changes the current working directory to path.

getcwd() Returns the path of the current working directory.

listdir(path) Returns a list of the names in directory
named path.

mkdir(path) Creates a new directory named path and places it
in the current working directory.

remove(path) Removes the file named path from the current
working directory.

rename(old, new) Renames the file or directory named old to new.

rmdir(path) Removes the directory named path from the
current working directory.

4.5 Text Files [147]

C6840_04 11/19/08 1:41 PM Page 147

May not be copied, scanned, or duplicated, in whole or in part.

4.5 Exercises
1 Write a code segment that opens a file named myfile.txt for input and

prints the number of lines in the file.

2 Write a code segment that opens a file for input and prints the number
of four-letter words in the file.

3 Assume that a file contains integers separated by newlines. Write a code
segment that opens the file and prints the average value of the integers.

4 Write a code segment that prints the names of all of the items in the
current working directory.

5 Write a code segment that prompts the user for a filename. If the file
exists, the program should print its contents on the terminal. Otherwise,
it should print an error message.

4.6 Case Study: Text Analysis
In 1949, Dr. Rudolf Flesch published The Art of Readable Writing, in which he
proposed a measure of text readability known as the Flesch Index. This index is
based on the average number of syllables per word and the average number of
words per sentence in a piece of text. Index scores usually range from 0 to 100,
and indicate readable prose for the following grade levels:

In this case study, we develop a program that computes the Flesch Index for a
text file.

FLESCH INDEX GRADE LEVEL OF READABILITY

0–30 College

50–60 High School

90–100 Fourth Grade

CHAPTER 4 Strings and Text Files[148]

C6840_04 11/19/08 1:41 PM Page 148

May not be copied, scanned, or duplicated, in whole or in part.

4.6.1 Request

Write a program that computes the Flesch index and grade level for text stored in
a text file.

4.6.2 Analysis

The input to this program is the name of a text file. The outputs are the number
of sentences, words, and syllables in the file, as well as the file’s Flesch index and
grade-level equivalent.

During analysis, we consult experts in the problem domain to learn any
information that might be relevant in solving the problem. For our problem, this
information includes the definitions of sentence, word, and syllable. For the pur-
poses of this program, these terms are defined in Table 4.6.

[TABLE 4.6] Definitions of items used in the text-analysis program

Note that the definitions of word and sentence are approximations. Some
words, such as “doubles” and “syllables,” end in “es” but will be counted as hav-
ing one syllable, and an ellipse (“…”) will be counted as three sentences.

Flesch’s formula to calculate the index F is the following:

F = 206.835 – 1.015 � (words / sentences) – 84.6 � (syllables / words)

The Flesch-Kincaid Grade Level Formula is used to compute the
Equivalent Grade Level G:

G = 0.39 � (words / sentences) + 11.8 � (syllables / words) – 15.59

Word Any sequence of non-whitespace characters.

Sentence Any sequence of words ending in a period, ques-
tion mark, exclamation point, colon, or semicolon.

Syllable Any word of three characters or less; or any vowel
(a, e, i, o, u) or pair of consecutive vowels, except
for a final -es, -ed, or -e that is not -le.

4.6 Case Study: Text Analysis [149]

C6840_04 11/19/08 1:41 PM Page 149

May not be copied, scanned, or duplicated, in whole or in part.

4.6.3 Design

This program will perform the following tasks:

1 Receive the filename from the user, open the file for input, and input
the text.

2 Count the sentences in the text.

3 Count the words in the text.

4 Count the syllables in the text.

5 Compute the Flesch Index.

6 Compute the Grade Level Equivalent.

7 Print these two values with the appropriate labels, as well as the counts
from tasks 2–4.

The first and last tasks require no design. Let’s assume that the text is input as a
single string from the file and is then processed in tasks 2–4. These three tasks can
be designed as code segments that use the input string and produce an integer value.
Task 5, computing the Flesch Index, uses the three integer results of tasks 2–4 to
compute the Flesch Index. Lastly, task 6 is a code segment that uses the same integers
and computes the Grade Level Equivalent. The five tasks are listed in Table 4.7,
where text is a variable that refers to the string read from the file.

[TABLE 4.7] The tasks defined in the text analysis program

TASK WHAT IT DOES

count the sentences Counts the number of sentences in text.

count the words Counts the number of words in text.

count the syllables Counts the number of syllables in text.

compute the Flesch Index Computes the Flesch Index for the given
numbers of sentences, words, and syllables.

compute the grade level Computes the grade level equivalent for the
given numbers of sentences, words, and
syllables.

CHAPTER 4 Strings and Text Files[150]

C6840_04 11/19/08 1:41 PM Page 150

May not be copied, scanned, or duplicated, in whole or in part.

4.6 Case Study: Text Analysis [151]

All the real work is done in the tasks that count the items:
� Add the number of characters in text that end the sentences. These char-

acters were specified in analysis, and the string method count is used to
count them in the algorithm.

� Split text into a list of words and determine the text length.
� Count the syllables in each word in text.

The last task is the most complex. For each word in the text, we must count
the syllables in that word. From analysis, we know that each distinct vowel counts
as a syllable, unless it is in the endings -ed, -es, or -e (but not -le). For now, we
ignore the possibility of consecutive vowels.

4.6.4 Implementation (Coding)

The main tasks are marked off in the program code with a blank line and a
comment.

“””
Program:ƒtextanalysis.py
Author:ƒKen
ComputesƒandƒdisplaysƒtheƒFleschƒIndexƒandƒtheƒGrade
LevelƒEquivalentƒforƒtheƒreadabilityƒofƒaƒtextƒfile.
“””

#ƒTakeƒtheƒinputs
fileNameƒ=ƒraw_input(“Enterƒtheƒfileƒname:ƒ“)
inputFileƒ=ƒopen(fileName,ƒ'r')
textƒ=ƒinputFile.read()

#ƒCountƒtheƒsentences
sentencesƒ=ƒtext.count('.')ƒ+ƒtext.count('?')ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒtext.count(':')ƒ+ƒtext.count(';')ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒtext.count('!')

#ƒCountƒtheƒwords
wordsƒ=ƒlen(text.split())

#ƒCountƒtheƒsyllables
syllablesƒ=ƒ0
forƒwordƒinƒtext.split():
ƒƒƒƒforƒvowelƒinƒ['a',ƒ'e',ƒ'i',ƒ'o',ƒ'u']:
ƒƒƒƒƒƒƒƒsyllablesƒ+=ƒword.count(vowel)

continued

C6840_04 11/19/08 1:41 PM Page 151

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Strings and Text Files[152]

ƒƒƒƒforƒendingƒinƒ['es',ƒ'ed',ƒ'e']:
ƒƒƒƒƒƒƒƒifƒword.endswith(ending):
ƒƒƒƒƒƒƒƒƒƒƒƒsyllablesƒ-=ƒ1
ƒƒƒƒifƒword.endswith('le'):
ƒƒƒƒƒƒƒƒsyllablesƒ+=ƒ1

#ƒComputeƒtheƒFleschƒIndexƒandƒGradeƒLevel
indexƒ=ƒ206.835ƒ-ƒ1.015ƒ*ƒ(wordsƒ/ƒfloat(sentences))ƒ-ƒ\
ƒƒƒƒƒƒƒƒ84.6ƒ*ƒ(syllablesƒ/ƒwords)
levelƒ=ƒint(round(0.39ƒ*ƒ(wordsƒ/ƒfloat(sentences))ƒ+ƒ11.8ƒ*ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(syllablesƒ/ƒfloat(words))ƒ-ƒ15.59))

#ƒOutputƒtheƒresults
printƒ“TheƒFleschƒIndexƒis”,ƒindex
printƒ“TheƒGradeƒLevelƒEquivalentƒis”,ƒlevel
printƒsentences,ƒ“sentences”
printƒwords,ƒ“words”
printƒsyllables,ƒ“syllables”

4.6.5 Testing

Although the main tasks all collaborate in the text analysis program, they can be
tested more or less independently, before the entire program is tested. After all,
there is no point in running the complete program if you are unsure that even
one of the tasks does not work correctly.

This kind of procedure is called bottom-up testing. Each task is coded and
tested before it is integrated into the overall program. After you have written
code for one or two tasks, you can test them in a short script. This script is called
a driver. For example, here is a driver that tests the code for computing the
Flesch Index and the Grade Level Equivalent without using a text file:

“””
Program:ƒfleschdriver.py
Author:ƒKen
TestƒdriverƒforƒFleschƒIndexƒandƒGradeƒlevel.
“””

sentencesƒ=ƒinput(“Sentences:ƒ“)
wordsƒ=ƒinput(“Words:ƒ“)
syllablesƒ=ƒinput(“Syllables:ƒ“)

continued

C6840_04 11/19/08 1:41 PM Page 152

May not be copied, scanned, or duplicated, in whole or in part.

Summary [153]

indexƒ=ƒ206.835ƒ-ƒ1.015ƒ*ƒ(wordsƒ/ƒsentences)ƒ-ƒ\
ƒƒƒƒƒƒƒƒ84.6ƒ*ƒ(syllablesƒ/ƒwords)
printƒ“FleschƒIndex:”,ƒindex
levelƒ=ƒint(round(0.39ƒ*ƒ(wordsƒ/ƒsentences)ƒ+ƒ11.8ƒ*ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(syllablesƒ/ƒwords)ƒ-ƒ15.59))
printƒ“GradeƒLevel:ƒ“,ƒlevel

This driver allows the programmer not only to verify the two tasks, but also to
obtain some data to use when testing the complete program later on. For exam-
ple, the programmer can supply a text file that contains the number of sentences,
words, and syllables already tested in the driver, and then compare the two test
results.

In bottom-up testing, the lower-level tasks must be developed and tested
before those tasks that depend on the lower-level tasks.

When all of the parts have been tested, they can be integrated into the com-
plete program. The test data at that point should be short files that produce the
expected results. Then, longer files should be used. For example, you might see if
plain text versions of Dr. Seuss’s Green Eggs and Ham and Shakespeare’s Hamlet
produce grade levels of 5th grade and 12th grade, respectively. Or you could test
the program with its own source program file—but we predict that its readability
will seem quite low, because it lacks most of the standard end-of-sentence marks!

Summary
� A string is a sequence of zero or more characters. The len function

returns the number of characters in its string argument. Each charac-
ter occupies a position in the string. The positions range from 0 to
the length of the string minus 1.

� A string is an immutable data structure. Its contents can be accessed,
but its structure cannot be modified.

� The subscript operator [] can be used to access a character at a given
position in a string. The operand or index inside the subscript opera-
tor must be an integer expression whose value is less than the string’s
length. A negative index can be used to access a character at or near
the end of the string, starting with -1.

C6840_04 11/19/08 1:41 PM Page 153

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Strings and Text Files[154]

� A subscript operator can also be used for slicing—to fetch a substring
from a string. When the subscript has the form [<start>:], the sub-
string contains the characters from the start position to the end of
the string. When the form is [:<end>], the positions range from the
first one to end - 1. When the form is [<start>:<end>], the posi-
tions range from start to end - 1.

� The in operator is used to detect the presence or absence of a sub-
string in a string. Its usage is <substring> in <a string>.

� A method is an operation that is used with an object. A method can
expect arguments and return a value.

� The string type includes many useful methods for use with string
objects.

� A text file is a software object that allows a program to transfer data to
and from permanent storage on disk, CDs, or flash memory.

� A file object is used to open a connection to a text file for input
or output.

� The file method write is used to output a string to a text file.
� The file method read inputs the entire contents of a text file as a

single string.
� The file method readline inputs a line of text from a text file as

a string.
� The for loop treats an input file as a sequence of lines. On each pass

through the loop, the loop’s variable is bound to a line of text read
from the file.

REVIEW QUESTIONS
For questions 1–6, assume that the variable data refers to the string “No way!”.

1 The expression len(data) evaluates to

a 8

b 7

c 6

C6840_04 11/19/08 1:41 PM Page 154

May not be copied, scanned, or duplicated, in whole or in part.

[155]

2 The expression data[1] evaluates to

a 'N'

b 'o'

3 The expression data[-1] evaluates to

a '!'

b 'y'

4 The expression data[3:6] evaluates to

a 'way!'

b 'way'

c ' wa'

5 The expression data.replace(“No”, “Yes”) evaluates to

a 'No way!'

b 'Yo way!'

c 'Yes way!'

6 The expression data.find(“way!”) evaluates to

a 2

b 3

c True

7 A Caesar cipher locates the coded text of a plain text character

a A given distance to the left or the right in the sequence of characters
b In an inversion matrix

8 The binary number 111 represents the decimal integer

a 111

b 3

c 7

REVIEW QUESTIONS

C6840_04 11/19/08 1:41 PM Page 155

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 4 Strings and Text Files[156]

9 Which of the following binary numbers represents the decimal integer
value 8?

a 11111111

b 100

c 1000

10 Which file method is used to read the entire contents of a file in a
single operation?

a readline

b read

c a for loop

PROJECTS
1 Write a script that inputs a line of plain text and a distance value and

outputs an encrypted text using a Caesar cipher. The script should work
for any printable characters.

2 Write a script that inputs a line of encrypted text and a distance value
and outputs a plain text using a Caesar cipher. The script should work
for any printable characters.

3 Modify the scripts of Projects 1 and 2 to encrypt and decrypt entire files
of text.

4 Octal numbers have a base of 8 and the digits 0–7. Write the scripts
octalToDecimal.py and decimalToOctal.py, which convert numbers
between the octal and decimal representations of integers. These scripts
use algorithms similar to those of the binaryToDecimal and
decimalToBinary scripts developed in Section 4.3.

5 A bit shift is a procedure whereby the bits in a bit string are moved to the
left or to the right. For example, we can shift the bits in the string 1011
two places to the left to produce the string 1110. Note that the leftmost
two bits are wrapped around to the right side of the string in this opera-
tion. Define two scripts, shiftLeft.py and shiftRight.py, that expect
a bit string as an input. The script shiftLeft shifts the bits in its input
one place to the left, wrapping the leftmost bit to the rightmost position.

C6840_04 11/19/08 1:41 PM Page 156

May not be copied, scanned, or duplicated, in whole or in part.

[157]PROJECTS

The script shiftRight performs the inverse operation. Each script
prints the resulting string.

6 Use the strategy of the decimal to binary conversion and the bit shift left
operation defined in Project 5 to code a new encryption algorithm. The
algorithm should add 1 to each character’s numeric ASCII value, convert
it to a bit string, and shift the bits of this string one place to the left. A
single-space character in the encrypted string separates the resulting bit
strings.

7 Write a script that decrypts a message coded by the method used in
Project 6.

8 Write a script named copyfile.py. This script should prompt the user
for the names of two text files. The contents of the first file should be
input and written to the second file.

9 Write a script named dif.py. This script should prompt the user for the
names of two text files and compare the contents of the two files to see if
they are the same. If they are, the script should simply output “Yes”. If
they are not, the script should output “No”, followed by the first lines of
each file that differ from each other. The input loop should read and
compare lines from each file. The loop should break as soon as a pair of
different lines is found.

10 The Payroll Department keeps a list of employee information for each pay
period in a text file. The format of each line of the file is the following:

<lastƒname>ƒ<hourlyƒwage>ƒ<hoursƒworked>

Write a program that inputs a filename from the user and prints to the
terminal a report of the wages paid to the employees for the given
period. The report should be in tabular format with the appropriate
header. Each line should contain an employee’s name, the hours worked,
and the wages paid for that period.

C6840_04 11/19/08 1:41 PM Page 157

May not be copied, scanned, or duplicated, in whole or in part.

C6840_04 11/19/08 1:41 PM Page 158

This page intentionally left blank

After completing this chapter, you will be able to:
� Construct lists and access items in those lists
� Use methods to manipulate lists
� Perform traversals of lists to process items in the lists
� Define simple functions that expect parameters and return

values
� Construct dictionaries and access entries in those dictionaries
� Use methods to manipulate dictionaries
� Decide whether a list or a dictionary is an appropriate data

structure for a given application
As data-processing problems have become more complex, com-

puter scientists have developed data structures to help solve them. A
data structure combines several data values into a unit so they can be
treated as one thing. The data elements within a data structure are
usually organized in a special way that allows the programmer to
access and manipulate them. As you saw in Chapter 4, a string is a
data structure that organizes text as a sequence of characters. In this
chapter, we explore the use of two other common data structures:
the list and the dictionary. A list allows the programmer to manipu-
late a sequence of data values of any types. A dictionary organizes
data values by association with other data values rather than by
sequential position.

Lists and dictionaries provide powerful ways to organize data in
useful and interesting applications. In addition to exploring the use
of lists and dictionaries, this chapter also introduces the definition of
simple functions. These functions help to organize program code, in
much the same manner as data structures help to organize data.

[CHAPTER] Lists and Dictionaries5

C6840_05 11/19/08 11:42 AM Page 159

May not be copied, scanned, or duplicated, in whole or in part.

5.1 Lists
A list is a sequence of data values called items or elements. An item can be of
any type. Here are some real-world examples of lists:

� A shopping list for the grocery store
� A to-do list
� A roster for an athletic team
� A guest list for a wedding
� A recipe, which is a list of instructions
� A text document, which is a list of lines
� The words in a dictionary
� The names in a phone book

The logical structure of a list is similar to the structure of a string. Each of
the items in a list is ordered by position. Like a character in a string, each item in
a list has a unique index that specifies its position. The index of the first item is 0
and the index of the last item is the length of the list minus 1. As sequences, lists
and strings share many of the same operators, but include different sets of meth-
ods. We now examine these in detail.

5.1.1 List Literals and Basic Operators

In Python, a list is written as a sequence of data values separated by commas. The
entire sequence is enclosed in square brackets ([and]). Here are some example lists:

[1951,ƒ1969,ƒ1984]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒAƒlistƒofƒintegers

['apples',ƒ'oranges',ƒ'cherries']ƒƒƒƒ#ƒAƒlistƒofƒstrings

[]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒAnƒemptyƒlist

You can also use other lists as elements in a list, thereby creating a list of lists.
Here is one example of such a list:

[[5,ƒ9],ƒ[541,ƒ78]]

CHAPTER 5 Lists and Dictionaries[160]

C6840_05 11/19/08 11:42 AM Page 160

May not be copied, scanned, or duplicated, in whole or in part.

It is interesting that when the Python interpreter evaluates a list literal, each
of the elements is evaluated as well. When an element is a number or a string,
that literal is included in the resulting list. However, when the element is a
variable or any other expression, its value is included in the list, as shown in the
following session:

>>>ƒimportƒmath
>>>ƒxƒ=ƒ2
>>>ƒ[x,ƒmath.sqrt(x)]
[2,ƒ1.4142135623730951]
>>>ƒ[xƒ+ƒ1]
[3]
>>>ƒ

Lists of integers can also be built using the range function introduced in
Chapter 3. The next session shows the construction of two lists and their assign-
ment to variables:

>>>ƒfirstƒ=ƒ[1,ƒ2,ƒ3,ƒ4]
>>>ƒsecondƒ=ƒrange(1,ƒ5)
>>>ƒfirst
[1,ƒ2,ƒ3,ƒ4]
>>>ƒsecond
[1,ƒ2,ƒ3,ƒ4]
>>>ƒ

The function len and the subscript operator [] work just as they do for
strings:

>>>ƒlen(first)
4
>>>ƒfirst[0]
1
>>>ƒfirst[2:4]
[3,ƒ4]
>>>

5.1 Lists [161]

C6840_05 11/19/08 11:42 AM Page 161

May not be copied, scanned, or duplicated, in whole or in part.

Concatenation (+) and equality (==) also work as expected for lists:

>>>ƒfirstƒ+ƒ[5,ƒ6]
[1,ƒ2,ƒ3,ƒ4,ƒ5,ƒ6]
>>>ƒfirstƒ==ƒsecond
True
>>>

The print statement strips the quotation marks from a string, but does not
alter the look of a list:

>>>ƒprintƒ“1234”
1234
>>>ƒprintƒ[1,ƒ2,ƒ3,ƒ4]
[1,ƒ2,ƒ3,ƒ4]
>>>ƒ

To print the contents of a list without the brackets and commas, you can use
a for loop, as follows:

>>>ƒforƒelementƒinƒ[1,ƒ2,ƒ3,ƒ4]:
ƒƒƒƒƒƒƒƒprintƒelement,

1ƒ2ƒ3ƒ4
>>>ƒ

Finally, the in operator can be used to detect the presence or absence of a
given element:

>>>ƒ3ƒinƒ[1,ƒ2,ƒ3]
True
>>>ƒ0ƒinƒ[1,ƒ2,ƒ3]
False
>>>ƒ

Table 5.1 summarizes these operators and functions, where L refers to a list.

CHAPTER 5 Lists and Dictionaries[162]

C6840_05 11/19/08 11:42 AM Page 162

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 5.1] Some operators and functions used with lists

5.1.2 Replacing an Element in a List

The examples discussed thus far might lead you to think that a list behaves more or
less like a string. However, there is one huge difference. Because a string is
immutable, its structure and contents cannot be changed. But a list is changeable—
that is, it is mutable. At any point in its lifetime, elements can be inserted, removed,
or replaced. The list itself maintains its identity, but its state—its length and its
contents—can change.

OPERATOR OR FUNCTION WHAT IT DOES

L[<an integer expression>] Subscript used to access an element at the
given index position.

L[<start>:<end>] Slices for a sublist. Returns a new list.

L + L List concatenation. Returns a new list
consisting of the elements of the two
operands.

print L Prints the literal representation of the list.

len(L) Returns the number of elements in the list.

range(<upper>) Returns a list containing the integers in the
range 0 through upper - 1.

==, !=, <, >, <=, >= Compares the elements at the
corresponding positions in the operand
lists. Returns True if all the results are true,
or False otherwise.

for <variable> in L: Iterates through the list, binding the
<statement> variable to each element.

<any value> in L Returns True if the value is in the list or
False otherwise.

5.1 Lists [163]

C6840_05 11/19/08 11:42 AM Page 163

May not be copied, scanned, or duplicated, in whole or in part.

The subscript operator is used to replace an element at a given position, as
shown in the next session:

>>>ƒexampleƒ=ƒ[1,ƒ2,ƒ3,ƒ4]
>>>ƒexample
[1,ƒ2,ƒ3,ƒ4]
>>>ƒexample[3]ƒ=ƒ0
>>>ƒexample
[1,ƒ2,ƒ3,ƒ0]
>>>ƒ

Note that the subscript is used to reference the target of the assignment
statement, which is not the list but an element’s position within it. Much of list
processing involves replacing each element, with the result of applying some
operation to that element. We now present two examples of how this is done.

The first session shows how to replace each number in a list with its square:

>>>ƒnumbersƒ=ƒ[2,ƒ3,ƒ4,ƒ5]
>>>ƒnumbers
[2,ƒ3,ƒ4,ƒ5]
>>>ƒindexƒ=ƒ0
>>>ƒwhileƒindexƒ<ƒlen(numbers):
ƒƒƒƒƒƒƒƒnumbers[index]ƒ=ƒnumbers[index]ƒ**ƒ2ƒ
ƒƒƒƒƒƒƒƒindexƒ+=ƒ1

>>>ƒnumbers
[4,ƒ9,ƒ16,ƒ25]
>>>ƒ

Note that the code uses a while loop over the index rather than a for loop over
the list elements, because the index is needed to access the positions for the
assignments.

The next session uses the string method split to extract a list of the words
in a sentence. These words are then converted to uppercase letters within the list:

>>>ƒsentenceƒ=ƒ“Thisƒexampleƒhasƒfiveƒwords.”
>>>ƒwordsƒ=ƒsentence.split()
>>>ƒwords
['This',ƒ'example',ƒ'has',ƒ'five',ƒ'words.']
>>>ƒindexƒ=ƒ0

continued

CHAPTER 5 Lists and Dictionaries[164]

C6840_05 11/19/08 11:42 AM Page 164

May not be copied, scanned, or duplicated, in whole or in part.

>>>ƒwhileƒindexƒ<ƒlen(words):
ƒƒƒƒƒƒƒƒwords[index]ƒ=ƒwords[index].upper()
ƒƒƒƒƒƒƒƒindexƒ+=ƒ1

>>>ƒwords
['THIS',ƒ'EXAMPLE',ƒ'HAS',ƒ'FIVE',ƒ'WORDS.']
>>>ƒ

A sublist of elements within a list can also be replaced by slicing. The slice
operator appears on the left side of the assignment operator, while the sublist
of replacements appears on the right. The next example replaces the first three
elements of a list with new ones:

>>>ƒnumbersƒ=ƒrange(6)
>>>ƒnumbers
[0,ƒ1,ƒ2,ƒ3,ƒ4,ƒ5]
>>>ƒnumbers[0:3]ƒ=ƒ[11,ƒ12,ƒ13]
>>>ƒnumbers
[11,ƒ12,ƒ13,ƒ3,ƒ4,ƒ5]
>>>ƒ

5.1.3 List Methods for Inserting and Removing Elements
The list type includes several methods for inserting and removing elements.
These methods are summarized in Table 5.2, where L refers to a list. To learn
more about these methods, enter help(list) in a Python shell.

[TABLE 5.2] List methods for inserting and removing elements

LIST METHOD WHAT IT DOES

L.append(element) Adds element to the end of L.

L.extend(aList) Adds the elements of aList to the end
of L.

L.insert(index, element) Inserts element at index if index is less than
the length of L. Otherwise, inserts element at
the end of L.

L.pop() Removes and returns the element at the end
of L.

L.pop(index) Removes and returns the element at index.

5.1 Lists [165]

C6840_05 11/19/08 11:42 AM Page 165

May not be copied, scanned, or duplicated, in whole or in part.

The method insert expects an integer index and the new element as argu-
ments. When the index is less than the length of the list, this method places the
new element before the existing element at that index, after shifting elements
to the right by one position. At the end of the operation, the new element occu-
pies the given index position. When the index is greater than or equal to the
length of the list, the new element is added to the end of the list. The next ses-
sion shows insert in action:

>>>ƒexampleƒ=ƒ[1,ƒ2]
>>>ƒexample
[1,ƒ2]
>>>ƒexample.insert(1,ƒ10)
>>>ƒexample
[1,ƒ10,ƒ2]
>>>ƒexample.insert(3,ƒ25)
>>>ƒexample
[1,ƒ10,ƒ2,ƒ25]
>>>ƒ

The method append is a simplified version of insert. The method append
expects just the new element as an argument and adds the new element to the
end of the list. The method extend performs a similar operation, but adds
the elements of its list argument to the end of the list. The next session shows the
difference between append and extend:

>>>ƒexampleƒ=ƒ[1,ƒ2]
>>>ƒexample
[1,ƒ2]
>>>ƒexample.append(10)
>>>ƒexample
[1,ƒ2,ƒ10]
>>>ƒexample.extend([11,ƒ12,ƒ13])
>>>ƒexample
[1,ƒ2,ƒ10,ƒ11,ƒ12,ƒ13]
>>>ƒ

The method pop is used to remove an element at a given position. If the
position is not specified, pop removes and returns the last element. If the position
is specified, pop removes the element at that position and returns it. In that case,

CHAPTER 5 Lists and Dictionaries[166]

C6840_05 11/19/08 11:42 AM Page 166

May not be copied, scanned, or duplicated, in whole or in part.

the elements that followed the removed element are shifted one position to the
left. The next session removes the last and first elements from the example list:

>>>ƒexample
[1,ƒ2,ƒ10,ƒ11,ƒ12,ƒ13]
>>>ƒexample.pop()
13
>>>ƒexample
[1,ƒ2,ƒ10,ƒ11,ƒ12]
>>>ƒexample.pop(0)
1
>>>ƒexample
[2,ƒ10,ƒ11,ƒ12]
>>>ƒ

5.1.4 Searching a List

After elements have been added to a list, a program can search for a given
element. The in operator determines an element’s presence or absence, but
programmers often are more interested in the position of an element if it is
found (for replacement, removal, or other use). Unfortunately, the list type
does not include the convenient find method that is used with strings. Recall
that find returns either the index of the given substring in a string or -1 if the
substring is not found. Instead of find, you must use the method index to locate
an element’s position in a list. It is unfortunate that index raises an error when
the target element is not found. To guard against this unpleasant consequence,
you must first use the in operator to test for presence and then the index
method if this test returns True. The next code segment shows how this is done
for an example list and target element:

aListƒ=ƒ[34,ƒ45,ƒ67]
targetƒ=ƒ45
ifƒtargetƒinƒaList:
ƒƒƒƒprintƒaList.index(target)
else:
ƒƒƒƒprintƒ-1

5.1 Lists [167]

C6840_05 11/19/08 11:42 AM Page 167

May not be copied, scanned, or duplicated, in whole or in part.

5.1.5 Sorting a List

Although a list’s elements are always ordered by position, it is possible to impose
a natural ordering on them as well. In other words, you can arrange some ele-
ments in numeric or alphabetical order. A list of numbers in ascending order and
a list of names in alphabetical order are sorted lists. When the elements can be
related by comparing them for less than and greater than as well as equality, they
can be sorted. The list method sort mutates a list by arranging its elements in
ascending order. Here is an example of its use:

>>>ƒexampleƒ=ƒ[4,ƒ2,ƒ10,ƒ8]
>>>ƒexample
[4,ƒ2,ƒ10,ƒ8]
>>>ƒexample.sort()
>>>ƒexample
[2,ƒ4,ƒ8,ƒ10]

5.1.6 Mutator Methods and the Value None

All of the functions and methods examined in previous chapters return a value
that the caller can then use to complete its work. Mutable objects (such as lists)
have some methods devoted entirely to modifying the internal state of the object.
Such methods are called mutators. Examples are the list methods insert,
append, extend, and sort. Because a change of state is all that is desired, a
mutator method usually returns no value of interest to the caller. Python never-
theless automatically returns the special value None even when a method does
not explicitly return a value. We mention this now only as a warning against the
following type of error. Suppose you forget that sort mutates a list, and instead
you mistakenly think that it builds and returns a new, sorted list and leaves the
original list unsorted. Then, you might write code like the following to obtain
what you think is the desired result:

>>>ƒaListƒ=ƒaList.sort()

CHAPTER 5 Lists and Dictionaries[168]

C6840_05 11/19/08 11:42 AM Page 168

May not be copied, scanned, or duplicated, in whole or in part.

Unfortunately, after the list object is sorted, this assignment has the result of set-
ting the variable aList to the value None. The next print statement shows that
the reference to the list object is lost:

>>>ƒprintƒaList
None

Later in this book, you will learn how to make something useful out of None.

5.1.7 Aliasing and Side Effects

As you learned earlier, numbers and strings are immutable. That is, you cannot
change their internal structure. However, because lists are mutable, you can
replace, insert, or remove elements. The mutable property of lists leads to some
interesting phenomena, as shown in the following session:

>>>ƒfirstƒ=ƒ[10,ƒ20,ƒ30]
>>>ƒsecondƒ=ƒfirst
>>>ƒfirst
[10,ƒ20,ƒ30]
>>>ƒsecond
[10,ƒ20,ƒ30]
>>>ƒfirst[1]ƒ=ƒ99
>>>ƒfirst
[10,ƒ99,ƒ30]
>>>ƒsecond
[10,ƒ99,ƒ30]
>>>ƒ

In this example, a single list object is created and modified using the sub-
script operator. When the second element of the list named first is replaced,
the second element of the list named second is replaced also. This type of
change is what is known as a side effect. This happens because after the assign-
ment second = first, the variables first and second refer to the exact same
list object. They are aliases for the same object, as shown in Figure 5.1. This
phenomenon is known as aliasing.

5.1 Lists [169]

C6840_05 11/19/08 11:42 AM Page 169

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 5.1] Two variables refer to the same list object

If the data are immutable strings, aliasing can save on memory. But as you
might imagine, aliasing is not always a good thing when side effects are possible.
Assignment creates an alias to the same object rather than a reference to a copy
of the object. To prevent aliasing, a new object can be created and the contents of
the original can be copied to it, as shown in the next session:

>>>ƒthirdƒ=ƒ[]
>>>ƒforƒelementƒinƒfirst:
ƒƒƒƒƒƒƒthird.append(element)
ƒ
>>>ƒfirst
[10,ƒ99,ƒ30]
>>>ƒthird
[10,ƒ99,ƒ30]
>>>ƒfirst[1]ƒ=ƒ100
>>>ƒfirst
[10,ƒ100,ƒ30]
>>>ƒthird
[10,ƒ99,ƒ30]
>>>ƒ

The variables first and third refer to two different list objects, although their
contents are initially the same, as shown in Figure 5.2. The important point is
that they are not aliases, so you don’t have to be concerned about side effects.

[FIGURE 5.2] Two variables refer to different list objects

first

0 1 2

10 99 30

third

0 1 2

10 99 30

first

second
0 1 2

10 99 30

CHAPTER 5 Lists and Dictionaries[170]

C6840_05 11/19/08 11:42 AM Page 170

May not be copied, scanned, or duplicated, in whole or in part.

A simpler way to copy a list is to use a slice over all of the positions, as follows:

>>>ƒthirdƒ=ƒfirst[:]

5.1.8 Equality: Object Identity and Structural Equivalence

Occasionally, programmers need to see whether two variables refer to the exact
same object or to different objects. For example, you might want to determine
whether one variable is an alias for another. The == operator returns True if the
variables are aliases for the same object. Unfortunately, == also returns True if
the contents of two different objects are the same. The first relation is called object
identity, whereas the second relation is called structural equivalence. The ==
operator has no way of distinguishing between these two types of relations.

Python’s is operator can be used to test for object identity. It returns True if the
two operands refer to the exact same object, and it returns False if the operands refer
to distinct objects (even if they are structurally equivalent). The next session shows the
difference between == and is, and Figure 5.3 depicts the objects in question.

>>>ƒfirstƒ=ƒ[20,ƒ30,ƒ40]
>>>ƒsecondƒ=ƒfirst
>>>ƒthirdƒ=ƒ[20,ƒ30,ƒ40]
>>>ƒfirstƒ==ƒsecond
True
>>>ƒfirstƒ==ƒthird
True
>>>ƒfirstƒisƒsecond
True
>>>ƒfirstƒisƒthird
False
>>>ƒ

[FIGURE 5.3] Three variables and two distinct list objects

0 1 2

20 30 40

third

0 1 2

20 30 40

first

second

5.1 Lists [171]

C6840_05 11/19/08 11:42 AM Page 171

May not be copied, scanned, or duplicated, in whole or in part.

5.1.9 Example: Using a List to Find the Median of a Set of
Numbers

Researchers who do quantitative analysis are often interested in the median of a
set of numbers. For example, the U.S. Government often gathers data to deter-
mine the median family income. Roughly speaking, the median is the value which
is less than half the numbers in the set and greater than the other half. If the num-
ber of values in a list is odd, the median of the list is the value at the midpoint
when the set of numbers is sorted; otherwise, the median is the average of the two
values surrounding the midpoint. Thus, the median of the list [1, 3, 3, 5, 7] is 3,
and the median of the list [1, 2, 4, 4] is also 3. The following script inputs a set of
numbers from a text file and prints their median:

“””
File:ƒmedian.py
Printsƒtheƒmedianƒofƒaƒsetƒofƒnumbersƒinƒaƒfile.
“””

fileNameƒ=ƒraw_input(“Enterƒtheƒfilename:ƒ“)
fƒ=ƒopen(fileName,ƒ'r')
ƒƒƒƒ
#ƒInputƒtheƒtext,ƒconvertƒitƒtoƒnumbers,ƒand
#ƒaddƒtheƒnumbersƒtoƒaƒlist
numbersƒ=ƒ[]
forƒlineƒinƒf:
ƒƒƒƒwordsƒ=ƒline.split()
ƒƒƒƒforƒwordƒinƒwords:
ƒƒƒƒƒƒƒƒnumbers.append(float(word))

#ƒSortƒtheƒlistƒandƒprintƒtheƒnumberƒatƒitsƒmidpoint
numbers.sort()
midpointƒ=ƒlen(numbers)ƒ/ƒ2
printƒ“Theƒmedianƒis”,
ifƒlen(numbers)ƒ%ƒ2ƒ==ƒ1:
ƒƒƒƒprintƒnumbers[midpoint]
else:
ƒƒƒƒprintƒ(numbers[midpoint]ƒ+ƒnumbers[midpointƒ-ƒ1])ƒ/ƒ2

Note that the input process is the most complex part of this script. An accumula-
tor list, numbers, is set to the empty list. The for loop reads each line of text
and extracts a list of words from that line. The nested for loop traverses this list
to convert each word to a number. The list method append then adds each

CHAPTER 5 Lists and Dictionaries[172]

C6840_05 11/19/08 11:42 AM Page 172

May not be copied, scanned, or duplicated, in whole or in part.

number to the end of numbers, the accumulator list. The remaining lines of code
locate the median value. When run with an input file whose contents are

3ƒ2ƒ7ƒ
8ƒ2ƒ1
5

the script produces the following output:

Theƒmedianƒisƒ3.0

5.1.10 Tuples

A tuple is a type of sequence that resembles a list, except that, unlike a list, a
tuple is immutable. You indicate a tuple literal in Python by enclosing its ele-
ments in parentheses instead of square brackets. The next session shows how to
create several tuples:

>>>ƒfruitsƒ=ƒ(“apple”,ƒ“banana”)
>>>ƒfruits
('apple',ƒ'banana')
>>>ƒmeatsƒ=ƒ(“fish”,ƒ“poultry”)
>>>ƒmeats
('fish',ƒ'poultry')
>>>ƒfoodƒ=ƒmeatsƒ+ƒfruits
>>>ƒfood
('fish',ƒ'poultry',ƒ'apple',ƒ'banana')
>>>ƒveggiesƒ=ƒ[“celery”,ƒ“beans”]
>>>ƒtuple(veggies)
('celery',ƒ'beans')

Most of the operators and functions used with lists can be used in a similar
fashion with tuples. For the most part, anytime you foresee using a list whose
structure will not change, you can, and should, use a tuple instead. For example,
the set of vowels and the set of punctuation marks in a text-processing application
could be represented as tuples of strings.

5.1 Lists [173]

C6840_05 11/19/08 11:42 AM Page 173

May not be copied, scanned, or duplicated, in whole or in part.

5.1 Exercises
1 Assume that the variable data refers to the list [5, 3, 7]. Write the

values of the following expressions:

a data[2]

b data[-1]

c len(data)

d data[0:2]

e 0 in data

f data + [2, 10, 5]

g tuple(data)

2 Assume that the variable data refers to the list [5, 3, 7]. Write the
expressions that perform the following tasks:

a Replace the value at position 0 in data with that value’s negation.

b Add the value 10 to the end of data.

c Insert the value 22 at position 2 in data.

d Remove the value at position 1 in data.

e Add the values in the list newData to the end of data.

f Locate the index of the value 7 in data, safely.

g Sort the values in data.

3 What is a mutator method? Explain why mutator methods usually return
the value None.

4 Write a loop that accumulates the sum of all of the numbers in a list
named data.

5 Assume that data refers to a list of numbers and result refers to an
empty list. Write a loop that adds the nonzero values in data to the
result list.

6 Write a loop that replaces each number in a list named data with its
absolute value.

7 Describe the costs and benefits of aliasing and explain how it can be avoided.

8 Explain the difference between structural equivalence and object identity.

CHAPTER 5 Lists and Dictionaries[174]

C6840_05 11/19/08 11:42 AM Page 174

May not be copied, scanned, or duplicated, in whole or in part.

5.2 Defining Simple Functions
Thus far, our programs have consisted of short code segments or scripts. Some of
these have used built-in functions to do useful work. Some of our scripts might
also be useful enough to package as functions to be used in other scripts.
Moreover, defining our own functions allows us to organize our code in existing
scripts more effectively. This section provides a brief overview of how to do this.
We’ll examine functions in more detail in Chapter 6.

5.2.1 The Syntax of Simple Function Definitions

Most of the functions used thus far expect one or more arguments and return a
value. Let’s define a function that expects a number as an argument and returns
the square of that number. First, we consider how the function will be used. Its
name is square, so you can call it like this:

>>>ƒsquare(2)
4
>>>ƒsquare(6)
36
>>>ƒ

The definition of this function consists of a header and a body. Here is the code:

defƒsquare(x):
ƒƒƒƒ“””Returnsƒtheƒsquareƒofƒx.ƒ“””
ƒƒƒƒreturnƒxƒ*ƒx

The function’s header contains the function’s name and a parenthesized list of
argument names. The function’s body contains the statements that execute when
the function is called. Our function contains a single return statement, which
simply returns the result of multiplying its argument, named x, by itself. Note
that the argument name, also called a parameter, behaves just like a variable in
the body of the function. This variable does not receive an initial value until the
function is called. For example, when the function is called with the argument 6,
the parameter x will have the value 6 in the function’s body.

5.2 Defining Simple Functions [175]

C6840_05 11/19/08 11:42 AM Page 175

May not be copied, scanned, or duplicated, in whole or in part.

Our function also contains a docstring. This string contains information
about what the function does. It is displayed in the shell when the programmer
enters help(square).

A function can be defined in a Python shell, but it is more convenient to define
it in an IDLE window, where it can be saved to a file. Loading the window into the
shell then loads the function definition as well. Like variables, functions generally
must be defined in a script before they are actually called in that same script.

Our next example function computes the average value in a list of numbers.
The function might be used as follows:

>>>ƒaverage([1,ƒ3,ƒ5,ƒ7])
4.0

Here is the code for the function’s definition:

defƒaverage(list):
ƒƒƒƒ“””Returnsƒtheƒaverageƒofƒtheƒnumbersƒinƒlist.”””
ƒƒƒƒsumƒ=ƒ0
ƒƒƒƒforƒnumberƒinƒlist:
ƒƒƒƒƒƒƒƒsumƒ+=ƒnumber
ƒƒƒƒreturnƒsumƒ/ƒfloat(len(list))

The syntax of a function definition contains a header and a body. The header
consists of the reserved word def, followed by the function’s name, followed by a
parenthesized list of parameters and a colon, as follows:

defƒ<functionƒname>(<parameter-1>,ƒ…,ƒ<parameter-n>):
ƒƒƒƒ<body>

The function’s body contains one or more statements.

5.2.2 Parameters and Arguments

A parameter is the name used in the function definition for an argument that is
passed to the function when it is called. For now, the number and positions of
the arguments of a function call should match the number and positions of the
parameters in that function’s definition. Some functions expect no arguments, so
they are defined with no parameters.

CHAPTER 5 Lists and Dictionaries[176]

C6840_05 11/19/08 11:42 AM Page 176

May not be copied, scanned, or duplicated, in whole or in part.

5.2.3 The return Statement

The programmer places a return statement at each exit point of a function when
that function should explicitly return a value. The syntax of the return state-
ment is the following:

returnƒ<expression>

Upon encountering a return statement, Python evaluates the expression and
immediately transfers control back to the caller of the function. The value of
the expression is also sent back to the caller. If a function contains no return
statement, Python transfers control to the caller after the last statement in the
function’s body is executed, and the special value None is automatically returned.

5.2.4 Boolean Functions

A Boolean function usually tests its argument for the presence or absence of
some property. The function returns True if the property is present, or False
otherwise. The next example shows the use and definition of the Boolean func-
tion odd, which tests a number to see whether it is odd.

>>>ƒodd(5)
True
>>>ƒodd(6)
False

defƒodd(x):
ƒƒƒƒ“””ReturnsƒTrueƒifƒxƒisƒoddƒorƒFalseƒotherwise.”””
ƒƒƒƒifƒxƒ%ƒ2ƒ==ƒ1:
ƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒFalse

Note that this function has two possible exit points, in either of the alternatives
within the if/else statement.

5.2 Defining Simple Functions [177]

C6840_05 11/19/08 11:42 AM Page 177

May not be copied, scanned, or duplicated, in whole or in part.

5.2.5 Defining a main Function

In scripts that include the definitions of several cooperating functions, it is often
useful to define a special function named main that serves as the entry point for
the script. This function usually expects no arguments and returns no value. Its
sole purpose is to take inputs, process them by calling other functions, and print
the results. The definition of the main function and the other function defini-
tions can appear in no particular order in the script, as long as main is called at
the very end of the script.

The next example shows a complete script that is organized in the manner
just described. The main function prompts the user for a number, calls the
square function to compute its square, and prints the result. The main and
the square functions can be defined in any order. When Python loads this
module, the code for both function definitions is loaded and compiled, but not
executed. Note that main is then called as the last step in the script. This has the
effect of transferring control to the first instruction in the main function’s defini-
tion. When square is called from main, control is transferred from main to the
first instruction in square. When a function completes execution, control
returns to the next instruction in the caller’s code.

“””
File:ƒcomputesquare.py
Illustratesƒtheƒdefinitionƒofƒaƒmainƒfunction.
“””

defƒmain():
ƒƒƒƒ“””Theƒmainƒfunctionƒforƒthisƒscript.”””
ƒƒƒƒnumberƒ=ƒinput(“Enterƒaƒnumber:ƒ“)
ƒƒƒƒresultƒ=ƒsquare(number)
ƒƒƒƒprintƒ“Theƒsquareƒof”,ƒnumber,ƒ“is”,ƒresult

defƒsquare(x):
ƒƒƒƒ“””Returnsƒtheƒsquareƒofƒx.”””
ƒƒƒƒreturnƒxƒ*ƒx

#ƒTheƒentryƒpointƒforƒprogramƒexecution
main()

Like all scripts, the preceding script can be run from IDLE, imported into the
shell, or run from a terminal command prompt. We will start defining and using
a main function in most of our case studies from this point forward.

CHAPTER 5 Lists and Dictionaries[178]

C6840_05 11/19/08 11:42 AM Page 178

May not be copied, scanned, or duplicated, in whole or in part.

5.2 Exercises
1 What roles do the parameters and the return statement play in a

function definition?

2 Define a function named even. This function expects a number as an
argument and returns True if the number is divisible by 2, or it returns
False otherwise. (Hint: a number is evenly divisible by 2 if the remain-
der is 0.)

3 Use the function even to simplify the definition of the function odd
presented in this section.

4 Define a function named sum. This function expects two numbers,
named low and high, as arguments. The function computes and returns
the sum of all of the numbers between low and high, inclusive.

5 What is the purpose of a main function?

5.3 Case Study: Generating Sentences
Can computers write poetry? We’ll attempt to answer that question in this case
study by giving a program a few words to play with.

5.3.1 Request

Write a program that generates sentences.

5.3.2 Analysis

Sentences in any language have a structure defined by a set of grammar rules.
They also include a set of words from the vocabulary of the language. The
vocabulary of a language like English consists of many thousands of words, and
the grammar rules are quite complex. For the sake of simplicity, our program will
generate sentences from a simplified subset of English. The vocabulary will con-
sist of sample words from several parts of speech, including nouns, verbs, articles,
and prepositions. From these words, you can build noun phrases, prepositional
phrases, and verb phrases. From these constituent phrases, you can build sen-
tences. For example, the sentence, “The girl hit the ball with the bat,” contains

5.3 Case Study: Generating Sentences [179]

C6840_05 11/19/08 11:42 AM Page 179

May not be copied, scanned, or duplicated, in whole or in part.

three noun phrases, one verb phrase, and one prepositional phrase. Table 5.3
summarizes the grammar rules for our subset of English.

[TABLE 5.3] The grammar rules for the sentence generator

The rule for Noun phrase says that it is an Article followed by (+) a Noun.
Thus, a possible noun phrase is “the bat.” Note that some of the phrases in the
left column of Table 5.3 also appear in the right column as constituents of other
phrases. Although this grammar is much simpler than the complete set of rules
for English grammar, you should still be able to generate sentences with quite a
bit of structure.

The program will prompt the user for the number of sentences to generate.
The proposed user interface follows:

>ƒpythonƒgenerator.py
Enterƒtheƒnumberƒofƒsentences:ƒ3
THEƒBOYƒHITƒTHEƒBATƒWITHƒAƒBOY
THEƒBOYƒHITƒTHEƒBALLƒBYƒAƒBAT
THEƒBOYƒSAWƒTHEƒGIRLƒWITHƒTHEƒGIRL

>ƒpythonƒgenerator.py
Enterƒtheƒnumberƒofƒsentences:ƒ2
AƒBALLƒHITƒAƒGIRLƒWITHƒTHEƒBAT
AƒGIRLƒSAWƒTHEƒBATƒBYƒAƒBOY

5.3.3 Design

Of the many ways to solve the problem in this case study, perhaps the simplest is
to assign the task of generating each phrase to a separate function. Each function
builds and returns a string that represents its phrase. This string contains words
drawn from the parts of speech and also from other phrases. When a function
needs an individual word, it is selected at random from the words in that part of

PHRASE ITS CONSTITUENTS

Sentence Noun phrase + Verb phrase

Noun phrase Article + Noun

Verb phrase Verb + Noun phrase + Prepositional phrase

Prepositional phrase Preposition + Noun phrase

CHAPTER 5 Lists and Dictionaries[180]

C6840_05 11/19/08 11:42 AM Page 180

May not be copied, scanned, or duplicated, in whole or in part.

5.3 Case Study: Generating Sentences [181]

speech. When a function needs another phrase, it calls another function to build
that phrase. The results, all strings, are concatenated with spaces and returned.

The function for Sentence is the easiest. It just calls the functions for Noun
phrase and Verb phrase and concatenates the results, as in the following:

defƒsentence():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒsentence.”””
ƒƒƒƒreturnƒnounPhrase()ƒ+ƒ“ƒ“ƒ+ƒverbPhrase()ƒ+ƒ“.”

The function for Noun phrase picks an article and a noun at random from the
vocabulary, concatenates them, and returns the result. We assume that the vari-
ables articles and nouns refer to collections of these parts of speech, and
develop these later in the design. The function random.choice returns a ran-
dom element from such a collection.

defƒnounPhrase():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒnounƒphrase.”””
ƒƒƒƒreturnƒrandom.choice(articles)ƒ+ƒ“ƒ“ƒ+ƒrandom.choice(nouns)

The design of the remaining two phrase-structure functions is similar.
The main function drives the program with a count-controlled loop:

defƒmain():
ƒƒƒƒ“””Allowsƒtheƒuserƒtoƒinputƒtheƒnumberƒofƒsentences
ƒƒƒƒtoƒgenerate.”””
ƒƒƒƒnumberƒ=ƒinput(“Enterƒtheƒnumberƒofƒsentences:ƒ“)
ƒƒƒƒforƒcountƒinƒxrange(number):
ƒƒƒƒƒƒƒƒprintƒsentence()

The variables articles and nouns used in the program’s functions refer to
the collections of actual words belonging to these two parts of speech. Two other
collections, named verbs and prepositions, also will be used. The data struc-
ture used to represent a collection of words should allow the program to pick one
word at random. Because the data structure does not change during the course of
the program, you can use a tuple of strings. Four tuples serve as a common pool
of data for the functions in the program, and are initialized before the functions
are defined.

C6840_05 11/19/08 11:42 AM Page 181

May not be copied, scanned, or duplicated, in whole or in part.

5.3.4 Implementation (Coding)

When functions use a common pool of data, the data should be defined or initial-
ized before the functions are defined. Thus, the variables for the data are initialized
just below the import statement.

“””
Program:ƒgenerator.py
Author:ƒKen
Generatesƒandƒdisplaysƒsentencesƒusingƒsimpleƒgrammar
andƒvocabulary.ƒƒWordsƒareƒchosenƒatƒrandom.
“””

importƒrandom

articlesƒ=ƒ(“A”,ƒ“THE”)

nounsƒ=ƒ(“BOY”,ƒ“GIRL”,ƒ“BAT”,ƒ“BALL”,)

verbsƒ=ƒ(“HIT”,ƒ“SAW”,ƒ“LIKED”)

prepositionsƒ=ƒ(“WITH”,ƒ“BY”)

defƒsentence():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒsentence.”””
ƒƒƒƒreturnƒnounPhrase()ƒ+ƒ“ƒ“ƒ+ƒverbPhrase()

defƒnounPhrase():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒnounƒphrase.”””
ƒƒƒƒreturnƒrandom.choice(articles)ƒ+ƒ“ƒ“ƒ+ƒrandom.choice(nouns)

defƒverbPhrase():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒverbƒphrase.”””
ƒƒƒƒreturnƒrandom.choice(verbs)ƒ+ƒ“ƒ“ƒ+ƒnounPhrase()ƒ+ƒ“ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒprepositionalPhrase()

defƒprepositionalPhrase():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒprepositionalƒphrase.”””
ƒƒƒƒreturnƒrandom.choice(prepositions)ƒ+ƒ“ƒ“ƒ+ƒnounPhrase()

defƒmain():
ƒƒƒƒ“””Allowsƒtheƒuserƒtoƒinputƒtheƒnumberƒofƒsentences
ƒƒƒƒtoƒgenerate.”””
ƒƒƒƒnumberƒ=ƒinput(“Enterƒtheƒnumberƒofƒsentences:ƒ“)
ƒƒƒƒforƒcountƒinƒxrange(number):
ƒƒƒƒƒƒƒƒprintƒsentence()

main()

CHAPTER 5 Lists and Dictionaries[182]

C6840_05 11/19/08 11:42 AM Page 182

May not be copied, scanned, or duplicated, in whole or in part.

5.3.5 Testing

Poetry it’s not, but testing is still important. The functions developed in this case
study can be tested in a bottom-up manner. To do so, the data must be initialized
first. Then the lowest-level function, nounPhrase, can be run immediately to
check its results, and you can work up to sentences from there.

On the other hand, testing can also follow the design, which took a top-down
path. You might start by writing headers for all of the functions and simple
return statements that return the function’s names. Then you can complete the
code for the sentence function first, test it, and proceed downward from there.
The wise programmer can also mix bottom-up and top-down testing as needed.

5.4 Dictionaries
Lists organize their elements by position. This mode of organization is useful
when you want to locate the first element, the last element, or visit each element
in a sequence. However, in some situations, the position of a datum in a structure
is irrelevant; we’re interested in its association with some other element in the
structure. For example, you might want to look up Ethan’s phone number but
don’t care where that number is in the phone book.

A dictionary organizes information by association, not position. For exam-
ple, when you use a dictionary to look up the definition of “mammal,” you don’t
start at page 1; instead, you turn directly to the words beginning with “M.”
Phone books, address books, encyclopedias, and other reference sources also
organize information by association. In computer science, data structures
organized by association are also called tables or association lists. In Python,
a dictionary associates a set of keys with data values. For example, the keys in
Webster’s Dictionary comprise the set of words, whereas the associated data values
are their definitions. In this section, we examine the use of dictionaries in data
processing.

5.4.1 Dictionary Literals

A Python dictionary is written as a sequence of key/value pairs separated by com-
mas. These pairs are sometimes called entries. The entire sequence of entries is

5.4 Dictionaries [183]

C6840_05 11/19/08 11:42 AM Page 183

May not be copied, scanned, or duplicated, in whole or in part.

enclosed in curly braces ({ and }). A colon (:) separates a key and its value. Here
are some example dictionaries:

{'Savannah':'476-3321', 'Nathaniel':'351-7743'} A Phone book

{'Name':'Molly', 'Age':18} Personal information

You can even create an empty dictionary—that is, a dictionary that contains no
entries. You would create an empty dictionary in a program that builds a diction-
ary from scratch. Here is an example of an empty dictionary:

{}

The keys in a dictionary can be data of any immutable types, including other
data structures, although keys normally are strings or integers. The associated
values can be of any types. Although the entries may appear to be ordered in a
dictionary, this ordering is not significant and the programmer should not rely
on it.

5.4.2 Adding Keys and Replacing Values

You add a new key/value pair to a dictionary by using the subscript operator [].
The form of this operation is the following:

<aƒdictionary>[<aƒkey>]ƒ=ƒ<aƒvalue>

The next code segment creates an empty dictionary and adds two new entries:

>>>ƒinfoƒ=ƒ{}
>>>ƒinfo[“name”]ƒ=ƒ“Sandy”
>>>ƒinfo[“occupation”]ƒ=ƒ“hacker”
>>>ƒinfo
{'name':ƒ'Sandy',ƒ'occupation':ƒ'hacker'}
>>>ƒ

CHAPTER 5 Lists and Dictionaries[184]

C6840_05 11/19/08 11:42 AM Page 184

May not be copied, scanned, or duplicated, in whole or in part.

The subscript is also used to replace a value at an existing key, as follows:

>>>ƒinfo[“occupation”]ƒ=ƒ“manager”
>>>ƒinfo
{'name':ƒ'Sandy',ƒ'occupation':ƒ'manager'}
>>>ƒ

Here is a case of the same operation used for two different purposes, insertion of
a new entry and modification of an existing entry. As a rule, when the key is
absent from the dictionary, it and its value are inserted; when the key already
exists, its associated value is replaced.

5.4.3 Accessing Values

The subscript can also be used to obtain the value associated with a key.
However, if the key is not present in the dictionary, Python raises an error. Here
are some examples, using the info dictionary, which was set up earlier:

>>>ƒinfo[“name”]
'Sandy'
>>>ƒinfo[“job”]
Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<stdin>”,ƒlineƒ1,ƒinƒ<module>
KeyError:ƒ'job'
>>>ƒ

If the existence of a key is uncertain, the programmer can test for it using the dic-
tionary method has_key, but a far easier strategy is to use the method get. This
method expects two arguments, a possible key and a default value. If the key is in
the dictionary, the associated value is returned. However, if the key is absent, the
default value passed to get is returned. Here is an example of the use of get with
a default value of None:

>>>ƒprintƒinfo.get(“job”,ƒNone)
None
>>>ƒ

5.4 Dictionaries [185]

C6840_05 11/19/08 11:42 AM Page 185

May not be copied, scanned, or duplicated, in whole or in part.

5.4.4 Removing Keys

To delete an entry from a dictionary, one removes its key using the method pop.
This method expects a key and an optional default value as arguments. If the key
is in the dictionary, it is removed and its associated value is returned. Otherwise,
the default value is returned. If pop is used with just one argument and this key is
absent from the dictionary, Python raises an error. The next session attempts to
remove two keys and prints the values returned:

>>>ƒprintƒinfo.pop(“job”,ƒNone)
None
>>>ƒprintƒinfo.pop(“occupation”)ƒ
manager
>>>ƒinfo
{'name':ƒ'Sandy'}
>>>ƒ

5.4.5 Traversing a Dictionary

When a for loop is used with a dictionary, the loop’s variable is bound to each
key in an unspecified order. The next code segment prints all of the keys and
their values in our info dictionary:

forƒkeyƒinƒinfo:
ƒƒƒprintƒkey,ƒinfo[key]ƒ

Alternatively, you could use the dictionary method items() to access a list of
the dictionary’s entries. The next session shows a run of this method with a dic-
tionary of grades:

>>>ƒgradesƒ=ƒ{90:”A”,ƒ80:”B”,ƒ70:”C”}
>>>ƒgrades.items()
[(80,ƒ'B'),ƒ(90,ƒ'A'),ƒ(70,ƒ'C')]

CHAPTER 5 Lists and Dictionaries[186]

C6840_05 11/19/08 11:42 AM Page 186

May not be copied, scanned, or duplicated, in whole or in part.

Note that the entries are represented as tuples within the list. A tuple of variables
can then access the key and value of each entry in this list within a for loop:

forƒ(key,ƒvalue)ƒinƒgrades.items():
ƒƒƒprintƒkey,ƒvalueƒ

On each pass through the loop, the variables key and value within the tuple are
assigned the key and value of the current entry in the list.

If a special ordering of the keys is needed, you can obtain a list of keys using
the keys method and process this list to rearrange the keys. For example, you
can sort the list and then traverse it to print the entries of the dictionary in alpha-
betical order:

theKeysƒ=ƒinfo.keys()
theKeys.sort()
forƒkeyƒinƒtheKeys:
ƒƒƒprintƒkey,ƒinfo[key]ƒ

To see the complete documentation for dictionaries, you can run help(dict)
at a shell prompt. Table 5.4 summarizes the commonly used dictionary operations,
where d refers to a dictionary.

continued

DICTIONARY OPERATION WHAT IT DOES

len(d) Returns the number of entries in d.

aDict[key] Used for inserting a new key, replacing a value,
or obtaining a value at an existing key.

d.get(key [, default]) Returns the value if the key exists or returns the
default if the key does not exist. Raises an error if
the default is omitted and the key does not exist.

d.pop(key [, default]) Removes the key and returns the value if the key
exists or returns the default if the key does not
exist. Raises an error if the default is omitted and
the key does not exist.

d.keys() Returns a list of the keys.

d.values() Returns a list of the values.

5.4 Dictionaries [187]

C6840_05 11/19/08 11:42 AM Page 187

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 5.4] Some commonly used dictionary operations

5.4.6 Example: The Hexadecimal System Revisited

In Chapter 4, we discussed a method for converting numbers quickly between the
binary and the hexadecimal systems. Now let’s develop a Python function that
uses that method to convert a hexadecimal number to a binary number. The
algorithm visits each digit in the hexadecimal number, selects the corresponding
four bits that represent that digit in binary, and adds these bits to a result string.
You could express this selection process with a complex if/else statement, but
there is an easier way. If you maintain the set of associations between hexadecimal
digits and binary digits in a dictionary, then you can just look up each hexadeci-
mal digit’s binary equivalent with a primitive operation. Such a dictionary is
sometimes called a lookup table. Here is the definition of the lookup table
required for hex-to-binary conversions:

hexToBinaryTableƒ=ƒ{'0':'0000',ƒ'1':'0001',ƒ'2':'0010',
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ'3':'0011',ƒ'4':'0100',ƒ'5':'0101',
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ'6':'0110',ƒ'7':'0111',ƒ'8':'1000',
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ'9':'1001',ƒ'A':'1010',ƒ'B':'1011',
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ'C':'1100',ƒ'D':'1101',ƒ'E':'1110',
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ'F':'1111'}

DICTIONARY OPERATION WHAT IT DOES

d.items() Returns a list of tuples containing the keys and
values for each entry.

d.has_key(key) Returns True if the key exists or False otherwise.

d.clear() Removes all the keys.

for key in d: key is bound to each key in d in an
unspecified order.

CHAPTER 5 Lists and Dictionaries[188]

C6840_05 11/19/08 11:42 AM Page 188

May not be copied, scanned, or duplicated, in whole or in part.

The function itself, named convert, is simple. It expects two parameters: a string
representing the number to be converted and a table of associations of digits.
Here is the code for the function, followed by a sample session:

defƒconvert(number,ƒtable):
ƒƒƒ“””Buildsƒandƒreturnsƒtheƒbaseƒtwoƒrepresentationƒof
ƒƒƒnumber.”””
ƒƒƒbinaryƒ=ƒ''
ƒƒƒforƒdigitƒinƒnumber:
ƒƒƒƒƒƒbinaryƒ=ƒbinaryƒ+ƒtable[digit]
ƒƒƒreturnƒbinary

>>>ƒconvert(“35A”,ƒhexToBinaryTable)
'001101011111'

Note that you pass hexToBinaryTable as an argument to the function. The
function then uses the associations in this particular table to perform the conver-
sion. The function would serve equally well for conversions from octal to binary,
provided that you set up and pass it an appropriate lookup table.

5.4.7 Example: Finding the Mode of a List of Values

The mode of a list of values is the value that occurs most frequently. The following
script inputs a list of words from a text file and prints their mode. The script uses a
list and a dictionary. The list is used to obtain the words from the file, as in earlier
examples. The dictionary associates each unique word with the number of its occur-
rences in the list. The script also uses the function max, first introduced in Chapter 3,
to compute the maximum of two values. When used with a single list argument, max
returns the largest value contained therein. Here is the code for the script:

fileNameƒ=ƒraw_input(“Enterƒtheƒfilename:ƒ“)
fƒ=ƒopen(fileName,ƒ'r')
ƒƒƒƒ
#ƒInputƒtheƒtext,ƒconvertƒitsƒwordsƒtoƒuppercase,ƒand
#ƒaddƒtheƒwordsƒtoƒaƒlist
wordsƒ=ƒ[]
forƒlineƒinƒf:
ƒƒƒƒwordsInLineƒ=ƒline.split()
ƒƒƒƒforƒwordƒinƒwordsInLine:
ƒƒƒƒƒƒƒƒwords.append(word.upper())

continued

5.4 Dictionaries [189]

C6840_05 11/19/08 11:42 AM Page 189

May not be copied, scanned, or duplicated, in whole or in part.

#ƒObtainƒtheƒsetƒofƒuniqueƒwordsƒandƒtheir
#ƒfrequencies,ƒsavingƒtheseƒassociationsƒin
#ƒaƒdictionary
theDictionaryƒ=ƒ{}
forƒwordƒinƒwords:
ƒƒƒƒnumberƒ=ƒtheDictionary.get(word,ƒNone)
ƒƒƒƒifƒnumberƒ==ƒNone:
ƒƒƒƒƒƒƒƒ#ƒwordƒenteredƒforƒtheƒfirstƒtime
ƒƒƒƒƒƒƒƒtheDictionary[word]ƒ=ƒ1
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒ#ƒwordƒalreadyƒseen,ƒincrementƒitsƒnumber
ƒƒƒƒƒƒƒƒtheDictionary[word]ƒ=ƒnumberƒ+ƒ1

#ƒFindƒtheƒmodeƒbyƒobtainingƒtheƒmaximumƒvalue
#ƒinƒtheƒdictionaryƒandƒdeterminingƒitsƒkey
theMaximumƒ=ƒmax(theDictionary.values())
forƒkeyƒinƒtheDictionary:
ƒƒƒƒifƒtheDictionary[key]ƒ==ƒtheMaximum:
ƒƒƒƒƒƒƒƒprintƒ“Theƒmodeƒis”,ƒkey
ƒƒƒƒƒƒƒƒbreak

5.4 Exercises
1 Give three examples of real-world objects that behave like a dictionary.

2 Assume that the variable data refers to the dictionary {“b”:20, “a”:35}.
Write the values of the following expressions:

a data[“a”]

b data.get(“c”, None)

c len(data)

d data.keys()

e data.values()

f data.pop(“b”)

g data # After the pop above

3 Assume that the variable data refers to the dictionary {“b”:20, “a”:35}.
Write the expressions that perform the following tasks:

a Replace the value at the key “b” in data with that value’s negation.

b Add the key/value pair “c”:40 to data.

c Remove the value at key “b” in data, safely.

d Print the keys in data in alphabetical order.

CHAPTER 5 Lists and Dictionaries[190]

C6840_05 11/19/08 11:42 AM Page 190

May not be copied, scanned, or duplicated, in whole or in part.

5.5 Case Study: Nondirective Psychotherapy
In the early 1960s, the M.I.T computer scientist Joseph Weizenbaum developed a
famous program called doctor that could converse with the computer user, mim-
icking a nondirective style of psychotherapy. The doctor in this kind of therapy is
essentially a good listener who responds to the patient’s statements by rephrasing
them or indirectly asking for more information. To illustrate the use of data
structures, we develop a drastically simplified version of this program.

5.5.1 Request

Write a program that emulates a nondirective psychotherapist.

5.5.2 Analysis

Figure 5.4 shows the program’s interface as it changes throughout a sequence of
exchanges with the user.

[FIGURE 5.4] A session with the doctor program

Good morning, I hope you are well today.
What can I do for you?

>> My mother and I don't get along
Why do you say that your mother and you don't get along

>> she always favors my sister
You seem to think that she always favors your sister

>> my dad and I get along fine
Can you explain why your dad and you get along fine

>> he helps me with my homework
Please tell me more

>> quit
Have a nice day!

5.5 Case Study: Nondirective Psychotherapy [191]

C6840_05 11/19/08 11:42 AM Page 191

May not be copied, scanned, or duplicated, in whole or in part.

When the user enters a statement, the program responds in one of two ways:

1 With a randomly chosen hedge, such as “Please tell me more.”

2 By changing some key words in the user’s input string and appending
this string to a randomly chosen qualifier. Thus, to “My teacher always
plays favorites,” the program might reply, “Why do you say that your
teacher always plays favorites?”

5.5.3 Design

The program consists of a set of collaborating functions that share a common
data pool.

Two of the data sets are the hedges and the qualifiers. Because these collec-
tions do not change and their elements must be selected at random, you can use
tuples to represent them. Their names, of course, are hedges and qualifiers.

The other set of data consists of mappings between first-person pronouns and
second-person pronouns. For example, when the program sees “I” in a patient’s
input, it should respond with a sentence containing “you.” The best type of data
structure to hold these correlations is a dictionary. This dictionary is named
replacements.

The main function displays a greeting, displays a prompt, and waits for user
input. The following is pseudocode for the main loop:

output a greeting to the patient
while True

prompt for and input a string from the patient
if the string equals “Quit”

output a sign-off message to the patient
break

call another function to obtain a reply to this string
output the reply to the patient

Our therapist might not be an expert, but there is no charge for its services.
What’s more, our therapist seems willing to go on forever. However, if the
patient must quit to do something else, she can do so by typing quit to end the
program.

The reply function expects the patient’s string as an argument and returns
another string as the reply. This function implements the two strategies for mak-
ing replies suggested in the analysis phase. A quarter of the time a hedge is war-
ranted. Otherwise, the function constructs its reply by changing the persons in
the patient’s input and appending the result to a randomly selected qualifier. The

CHAPTER 5 Lists and Dictionaries[192]

C6840_05 11/19/08 11:42 AM Page 192

May not be copied, scanned, or duplicated, in whole or in part.

5.5 Case Study: Nondirective Psychotherapy [193]

reply function calls yet another function, changePerson, to perform the com-
plex task of changing persons.

defƒreply(sentence):
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒreplyƒtoƒtheƒsentence.”””
ƒƒƒƒprobabilityƒ=ƒrandom.randint(1,ƒ4)
ƒƒƒƒifƒprobabilityƒ==ƒ1:
ƒƒƒƒƒƒƒƒreturnƒrandom.choice(hedges)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒrandom.choice(qualifiers)ƒ+ƒchangePerson(sentence)

The changePerson function extracts a list of words from the patient’s string. It
then builds a new list wherein any pronoun key in the replacements dictionary is
replaced by its pronoun/value. This list is then converted back to a string and returned.

defƒchangePerson(sentence):
ƒƒƒƒwordsƒ=ƒsentence.split()
ƒƒƒƒreplyWordsƒ=ƒ[]
ƒƒƒƒforƒwordƒinƒwords:
ƒƒƒƒƒƒƒƒreplyWords.append(replacements.get(word,ƒword))
ƒƒƒƒreturnƒ“ƒ“.join(replyWords)ƒ

Note that the attempt to get a replacement from the replacements dictionary
either succeeds and returns an actual replacement pronoun, or the attempt fails
and returns the original word. The string method join glues together the words
from the replyWords list with a space character as a separator.

5.5.4 Implementation (Coding)

The structure of this program is similar to that of the sentence generator devel-
oped in the first case study of this chapter. The three data structures are initial-
ized near the beginning of the program and they never change. The three
functions collaborate in a straightforward manner. Here is the code:

“””
Program:ƒdoctor.py
Author:ƒKen
Conductsƒanƒinteractiveƒsessionƒofƒnondirectiveƒpsychotherapy.
“””

continued

C6840_05 11/19/08 11:42 AM Page 193

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Lists and Dictionaries[194]

importƒrandom

hedgesƒ=ƒ(“Pleaseƒtellƒmeƒmore.”,
ƒƒƒƒƒƒƒƒƒƒ“Manyƒofƒmyƒpatientsƒtellƒmeƒtheƒsameƒthing.”,
ƒƒƒƒƒƒƒƒƒƒ“Pleaseƒcontinue.”)

qualifiersƒ=ƒ(“Whyƒdoƒyouƒsayƒthatƒ“,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Youƒseemƒtoƒthinkƒthatƒ“,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Canƒyouƒexplainƒwhyƒ“)

replacementsƒ=ƒ{“I”:”you”,ƒ“me”:”you”,ƒ“my”:”your”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“we”:”you”,ƒ“us”:”you”,ƒ“mine”:”yours”}ƒ

defƒreply(sentence):
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒreplyƒtoƒtheƒsentence.”””
ƒƒƒƒprobabilityƒ=ƒrandom.randint(1,ƒ4)
ƒƒƒƒifƒprobabilityƒ==ƒ1:
ƒƒƒƒƒƒƒƒreturnƒrandom.choice(hedges)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒrandom.choice(qualifiers)ƒ+ƒchangePerson(sentence)

defƒchangePerson(sentence):
ƒƒƒƒ“””Replacesƒfirstƒpersonƒpronounsƒwithƒsecondƒperson
ƒƒƒƒpronouns.”””
ƒƒƒƒwordsƒ=ƒsentence.split()
ƒƒƒƒreplyWordsƒ=ƒ[]
ƒƒƒƒforƒwordƒinƒwords:
ƒƒƒƒƒƒƒƒreplyWords.append(replacements.get(word,ƒword))
ƒƒƒƒreturnƒ“ƒ“.join(replyWords)ƒ

defƒmain():
ƒƒƒƒ“””Handlesƒtheƒinteractionƒbetweenƒpatientƒandƒdoctor.”””
ƒƒƒƒprintƒ“Goodƒmorning,ƒIƒhopeƒyouƒareƒwellƒtoday.”
ƒƒƒƒprintƒ“WhatƒcanƒIƒdoƒforƒyou?”
ƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒsentenceƒ=ƒraw_input(“\n>>ƒ“)
ƒƒƒƒƒƒƒƒifƒsentence.upper()ƒ==ƒ“QUIT”:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Haveƒaƒniceƒday!”
ƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒprintƒreply(sentence)

main()

C6840_05 11/19/08 11:42 AM Page 194

May not be copied, scanned, or duplicated, in whole or in part.

5.5.5 Testing

As in the sentence-generator program, the functions in this program can be
tested in a bottom-up or a top-down manner. As you will see, the program’s
replies break down when the user addresses the therapist in the second person,
uses contractions (for example, I’m and I’ll) and in many other ways. As you’ll see
in the Projects at the end of this chapter, with a little work you can make the
replies more realistic.

Summary
� A list is a sequence of zero or more elements. The elements can be of

any types. The len function returns the number of elements in its list
argument. Each element occupies a position in the list. The positions
range from 0 to the length of the list minus 1.

� Lists can be manipulated with many of the operators used with
strings, such as the subscript, concatenation, comparison, and in
operators. Slicing a list returns a sublist.

� The list is a mutable data structure. An element can be replaced with
a new element, added to the list, or removed from the list.
Replacement uses the subscript operator. The list type includes
several methods for insertions and removals of elements.

� The method index returns the position of a target element in a list.
If the element is not in the list, an error is raised.

� The elements of a list can be arranged in ascending order by calling
the sort method.

� Mutator methods are called to change the state of an object. These
methods usually return the value None. This value is automatically
returned by any function or method that does not have a return
statement.

� Assignment of one variable to another variable causes both variables to
refer to the same data object. When two or more variables refer to the
same data object, they are aliases. When that data value is a mutable object
such as a list, side effects can occur. A side effect is an unexpected change
to the contents of a data object. To prevent side effects, avoid aliasing by
assigning a copy of the original data object to the new variable.

Summary [195]

C6840_05 11/19/08 11:42 AM Page 195

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Lists and Dictionaries[196]

� A tuple is quite similar to a list, but has an immutable structure.
� A function definition consists of a header and a body. The header con-

tains the function’s name and a parenthesized list of argument names.
The body consists of a set of statements.

� The return statement returns a value from a function definition.
� The number and positions of arguments in a function call must match

the number and positions of required parameters specified in the
function’s definition.

� A dictionary associates a set of keys with values. Dictionaries organize
data by content rather than position.

� The subscript operator is used to add a new key/value pair to a
dictionary or to replace a value associated with an existing key.

� The dict type includes methods to access and remove data in a
dictionary.

� The for loop can traverse the keys of a dictionary. The methods keys
and values return lists of a dictionary’s keys and values, respectively.

� Bottom-up testing of a program begins by testing its lower-level func-
tions and then testing the functions that depend on those lower-level
functions. Top-down testing begins by testing the program’s main
function and then testing the functions on which the main function
depends. These lower-level functions are initially defined to return
their names.

REVIEW QUESTIONS
For questions 1–6, assume that the variable data refers to the list [10, 20, 30].

1 The expression data[1] evaluates to

a 10

b 20

2 The expression data[1:3] evaluates to

a [10, 20, 30]

b [20, 30]

C6840_05 11/19/08 11:42 AM Page 196

May not be copied, scanned, or duplicated, in whole or in part.

3 The expression data.index(20) evaluates to

a 1

b 2

c True

4 The expression data + [40, 50] evaluates to

a [10, 60, 80]

b [10, 20, 30, 40, 50]

5 After the statement data[1] = 5, data evaluates to

a [5, 20, 30]

b [10, 5, 30]

6 After the statement data.insert(1, 15), data evaluates to

a [15, 10, 20, 30]

b [10, 15, 30]

c [10, 15, 20, 30]

For questions 7–10, assume that the variable info refers to the dictionary
{“name”:”Sandy”, “age”:17}.

7 The expression info.keys() evaluates to

a (“name”, “age”)

b [“name”, “age”]

8 The expression info.get(“hobbies”, None) evaluates to

a “knitting”

b None

c 1000

9 The method to remove an entry from a dictionary is named

a delete

b pop

c remove

10 Which of the following are immutable data structures?

a dictionaries and lists
b strings and tuples

REVIEW QUESTIONS [197]

C6840_05 11/19/08 11:42 AM Page 197

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 5 Lists and Dictionaries[198]

PROJECTS
1 A group of statisticians at a local college has asked you to create a set of

functions that compute the median and mode of a set of numbers, as
defined in Section 5.1. Define these functions in a module named
stats.py. Also include a function named mean, which computes the
average of a set of numbers. Each function should expect a list of num-
bers as an argument and return a single number. Each function should
return 0 if the list is empty. Include a main function that tests the three
statistical functions with a given list.

2 Write a program that allows the user to navigate the lines of text in a
file. The program should prompt the user for a filename and input the
lines of text into a list. The program then enters a loop in which it prints
the number of lines in the file and prompts the user for a line number.
Actual line numbers range from 1 to the number of lines in the file. If
the input is 0, the program quits. Otherwise, the program prints the line
associated with that number.

3 Modify the sentence-generator program of Case Study 5.3 so that it
inputs its vocabulary from a set of text files at startup. The filenames are
nouns.txt, verbs.txt, articles.txt, and prepositions.txt.
(Hint: Define a single new function, getWords. This function should
expect a filename as an argument. The function should open an input file
with this name, define a temporary list, read words from the file, and add
them to the list. The function should then convert the list to a tuple and
return this tuple. Call the function with an actual filename to initialize
each of the four variables for the vocabulary.)

4 Make the following modifications to the original sentence-generator
program:

a The prepositional phrase is optional. (It can appear with a certain
probability.)

b A conjunction and a second independent clause are optional: The
boy took a drink and the girl played baseball.

c An adjective is optional: The girl kicked the red ball with a sore foot.

You should add new variables for the sets of adjectives and conjunctions.

5 In Chapter 4, we developed an algorithm for converting from binary to
decimal. You can generalize this algorithm to work for a representation
in any base. Instead of using a power of 2, this time you use a power of

C6840_05 11/19/08 11:42 AM Page 198

May not be copied, scanned, or duplicated, in whole or in part.

the base. Also, you use digits greater than 9, such as A…F, when they
occur. Define a function named repToDecimal that expects two argu-
ments, a string and an integer. The second argument should be the base.
For example, repToDecimal(“10”, 8) returns 8, whereas
repToDecimal(“10”, 16) returns 16. The function should use a
lookup table to find the value of any digit. Make sure that this table (it is
actually a dictionary) is initialized before the function is defined. For its
keys, use the 10 decimal digits (all strings) and the letters A…F (all
uppercase). The value stored with each key should be the integer that the
digit represents. (The letter 'A' associates with the integer value 10, and
so on.) The main loop of the function should convert each digit to
uppercase, look up its value in the table, and use this value in the compu-
tation. Include a main function that tests the conversion function with
numbers in several bases.

6 Define a function decimalToRep that returns the representation of an
integer in a given base. The two arguments should be the integer and the
base. The function should return a string. It should use a lookup table
that associates integers with digits. Include a main function that tests the
conversion function with numbers in several bases.

7 Write a program that inputs a text file. The program should print all of
the unique words in the file in alphabetical order.

8 A file concordance tracks the unique words in a file and their frequen-
cies. Write a program that displays a concordance for a file. The pro-
gram should output the unique words and their frequencies in
alphabetical order.

9 In Case Study 5.5, when the patient addresses the therapist personally,
the therapist’s reply does not change persons appropriately. To see an
example of this problem, test the program with “you are not a helpful
therapist.” Fix this problem by repairing the dictionary of replacements.

10 Conversations often shift focus to earlier topics. Modify the therapist
program to support this capability. Add each patient input to a history
list. Then, occasionally choose an element at random from this list,
change persons, and prepend the qualifier “Earlier you said that” to this
reply. Make sure that this option is triggered only after several exchanges
have occurred.

PROJECTS [199]

C6840_05 11/19/08 11:42 AM Page 199

May not be copied, scanned, or duplicated, in whole or in part.

C6840_05 11/19/08 11:42 AM Page 200

This page intentionally left blank

After completing this chapter, you will be able to:
� Explain why functions are useful in structuring code in a

program
� Employ top-down design to assign tasks to functions
� Define a recursive function
� Explain the use of the namespace in a program and exploit it

effectively
� Define a function with required and optional parameters
� Use higher-order functions for mapping, filtering, and

reducing
Design is important in many fields. The architect who designs a

building, the engineer who designs a bridge or a new automobile,
and the politician, advertising executive, or army general who
designs the next campaign must organize the structure of a system
and coordinate the actors within it to achieve its purpose. Design is
equally important in constructing software systems, some of which
are the most complex artifacts ever built by human beings. In this
chapter, we explore the use of functions to design software systems.

[CHAPTER] Design with Functions6

C6840_06 11/19/08 11:42 AM Page 201

May not be copied, scanned, or duplicated, in whole or in part.

6.1 Functions as Abstraction Mechanisms
Thus far in this book, our programs have consisted of algorithms and data struc-
tures, expressed in the Python programming language. The algorithms in turn
are composed of built-in operators, control statements, calls to built-in functions,
and programmer-defined functions, which were introduced in Chapter 5.

Strictly speaking, functions are not necessary. It is possible to construct any
algorithm using only Python’s built-in operators and control statements.
However, in any significant program, the resulting code would be extremely
complex, difficult to verify, and almost impossible to maintain.

The problem is that the human brain can wrap itself around just a few things
at once (psychologists say three things comfortably, and at most seven). People
cope with complexity by developing a mechanism to simplify or hide it. This
mechanism is called an abstraction. Put most plainly, an abstraction hides detail
and thus allows a person to view many things as just one thing. We use abstrac-
tions to refer to the most common tasks in everyday life. For example, consider
the expression “doing my laundry.” This expression is simple, but refers to a
complex process that involves fetching dirty clothes from the hamper, separating
them into whites and colors, loading them into the washer, transferring them to
the dryer, and folding them and putting them into the dresser. Indeed, without
abstractions, most of our everyday activities would be impossible to discuss, plan
or carry out. Likewise, effective designers must invent useful abstractions to con-
trol complexity. In this section, we examine the various ways in which functions
serve as abstraction mechanisms in a program.

6.1.1 Functions Eliminate Redundancy

The first way that functions serve as abstraction mechanisms is by eliminating
redundant, or repetitious, code. To explore the concept of redundancy, let’s look
at a function named sum, which returns the sum of the numbers within a given
range of numbers. Here is the definition of sum, followed by a session showing
its use:

defƒsum(lower,ƒupper):
ƒƒƒ“””
ƒƒƒArguments:ƒAƒlowerƒboundƒandƒanƒupperƒbound
ƒƒƒReturns:ƒtheƒsumƒofƒtheƒnumbersƒbetweenƒtheƒarguments
ƒƒƒƒƒƒƒƒƒƒƒƒandƒincludingƒthem
ƒƒƒ“””

continued

CHAPTER 6 Design with Functions[202]

C6840_06 11/19/08 11:42 AM Page 202

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒresultƒ=ƒ0
ƒƒƒwhileƒlowerƒ<=ƒupper:
ƒƒƒƒƒƒresultƒ+=ƒlower
ƒƒƒƒƒƒlowerƒ+=ƒ1
ƒƒƒreturnƒresult

>>>ƒsum(1,ƒ4)ƒƒƒƒƒƒ#ƒTheƒsummationƒofƒtheƒnumbersƒ1..4
10
>>>ƒsum(50,ƒ100)ƒƒƒ#ƒTheƒsummationƒofƒtheƒnumbersƒ50..100
3825

If the sum function didn’t exist, the programmer would have to write the
entire algorithm every time a summation is computed. In a program that must
calculate multiple summations, the same code would appear multiple times. In
other words, redundant code would be included in the program. Code redun-
dancy is bad for several reasons. For one thing, it requires the programmer to
laboriously enter or copy the same code over and over again, and to get it correct
every time. Then, if the programmer decides to improve the algorithm by adding
a new feature or making it more efficient, he or she has to revise each instance of
the redundant code throughout the entire program. As you can imagine, this
would be a maintenance nightmare.

By relying on a single function definition, instead of multiple instances of
redundant code, the programmer frees herself to write only a single algorithm in
just one place—say, in a library module. Any other module or program can then
import the function for its use. Once imported, the function can be called as
many times as necessary. When the programmer needs to debug, repair, or
improve the function, she needs to edit and test only the single function defini-
tion. There is no need to edit the parts of the program that call the function.

6.1.2 Functions Hide Complexity

Another way that functions serve as abstraction mechanisms is by hiding compli-
cated details. To understand why this is true, let’s return again to the sum func-
tion. Although the idea of summing a range of numbers is simple, the code for
computing a summation is not. We’re not just talking about the amount or length
of the code, but also about the number of interacting components. There are
three variables to manipulate, as well as count-controlled loop logic to construct.

6.1 Functions as Abstraction Mechanisms [203]

C6840_06 11/19/08 11:42 AM Page 203

May not be copied, scanned, or duplicated, in whole or in part.

Now suppose, somewhat unrealistically, that only one summation is per-
formed in a program, and in no other program, ever again. Who needs a function
now? Well, it all depends on the complexity of the surrounding code. Remember
that the programmers responsible for maintaining a program can wrap their
brains around just a few things at a time. If the code for the summation is placed
in a context of code that is even slightly complex, the increase in complexity
might be enough to result in conceptual overload for the poor programmers.

A function call expresses the idea of a process to the programmer, without
forcing him or her to wade through the complex code that realizes that idea. As
in other areas of science and engineering, the simplest accounts and descriptions
are generally the best.

6.1.3 Functions Support General Methods with Systematic
Variations

An algorithm is a general method for solving a class of problems. The individual
problems that make up a class of problems are known as problem instances.
The problem instances for our summation algorithm are the pairs of numbers
that specify the lower and upper bounds of the range of numbers to be summed.
The problem instances of a given algorithm can vary from program to program,
or even within different parts of the same program. When you design an algo-
rithm, it should be general enough to provide a solution to many problem
instances, not just one or a few of them. In other words, a function should
provide a general method with systematic variations.

The sum function contains both the code for the summation algorithm and
the means of supplying problem instances to this algorithm. The problem
instances are the data sent as arguments to the function. The parameters or argu-
ment names in the function’s header behave like variables waiting to be assigned
data whenever the function is called.

If designed properly, a function’s code captures an algorithm as a general
method for solving a class of problems. The function’s arguments provide the
means for systematically varying the problem instances that its algorithm solves.
Additional arguments can broaden the range of problems that are solvable. For
example, the sum function could take a third argument that specifies the step to
take between numbers in the range. We will examine shortly how to provide
additional arguments that do not add complexity to a function’s default uses.

CHAPTER 6 Design with Functions[204]

C6840_06 11/19/08 11:42 AM Page 204

May not be copied, scanned, or duplicated, in whole or in part.

6.1.4 Functions Support the Division of Labor

In a well-organized system, whether it is a living thing or something created by
humans, each part does its own job or plays its own role in collaborating to
achieve a common goal. Specialized tasks get divided up and assigned to special-
ized agents. Some agents might assume the role of managing the tasks of others
or coordinating them in some way. But, regardless of the task, good agents mind
their own business and do not try to do the jobs of others.

A poorly organized system, by contrast, suffers from agents performing tasks
for which they are not trained or designed, or from agents who are busybodies
who do not mind their own business. Division of labor breaks down.

In a computer program, functions can enforce a division of labor. Ideally,
each function performs a single coherent task, such as computing a summation
or formatting a table of data for output. Each function is responsible for using
certain data, computing certain results, and returning these to the parts of the
program that requested them. Each of the tasks required by a system can be
assigned to a function, including the tasks of managing or coordinating the use of
other functions. In the sections that follow, we examine several design strategies
that employ functions to enforce a division of labor in programs.

6.1 Exercises
1 Anne complains that defining functions to use in her programs is a lot of

extra work. She says she can finish her programs much more quickly if
she just writes them using the basic operators and control statements.
State three reasons why her view is shortsighted.

2 Explain how an algorithm solves a general class of problems and how a
function definition in particular can support this property of an
algorithm.

6.1 Functions as Abstraction Mechanisms [205]

C6840_06 11/19/08 11:42 AM Page 205

May not be copied, scanned, or duplicated, in whole or in part.

6.2 Problem Solving with Top-Down Design
One popular design strategy for programs of any significant size and complexity is
called top-down design. This strategy starts with a global view of the entire prob-
lem and breaks the problem into smaller, more manageable subproblems—a process
known as problem decomposition. As each subproblem is isolated, its solution
is assigned to a function. Problem decomposition may continue down to lower
levels, because a subproblem might in turn contain two or more lower-level
problems to solve. As functions are developed to solve each subproblem, the
solution to the overall problem is gradually filled out in detail. This process is
also called stepwise refinement.

Our early program examples in Chapters 1–4 were simple enough that they
could be decomposed into three parts—the input of data, its processing, and the
output of results. None of these parts required more than one or two statements
of code, and they all appeared in a single sequence of statements.

However, beginning with the text-analysis program of Chapter 4, our case
study problems became complicated enough to warrant decomposition and
assignment to additional programmer-defined functions. Because each problem
had a different structure, the design of the solution took a slightly different path.
This section revisits each program, to explore how their designs took shape.

6.2.1 The Design of the Text-Analysis Program

Although we did not actually structure the text-analysis program (Section 4.7) in
terms of programmer-defined functions, we can now explore how that could have
been done. The program requires fairly simple input and output components, so
these can be expressed as statements within a main function. However, the pro-
cessing of the input is complex enough to decompose into smaller subprocesses,
such as obtaining the counts of the sentences, words, and syllables and calculating
the readability scores. Generally, you develop a new function for each of these
computational tasks. The relationships among the functions in this design are
expressed in the structure chart shown in Figure 6.1. A structure chart is a dia-
gram that shows the relationships among a program’s functions and the passage
of data between them.

CHAPTER 6 Design with Functions[206]

C6840_06 11/19/08 11:42 AM Page 206

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 6.1] A structure chart for the text-analysis program

Each box in the structure chart is labeled with a function name. The main
function at the top is where the design begins, and decomposition leads us to the
lower-level functions on which main depends. The lines connecting the boxes are
labeled with data type names and arrows indicate the flow of data between them.
For example, the function countSentences takes a string as an argument and
returns the number of sentences in that string. Note that all functions except one
are just one level below main. Because this program does not have a deep struc-
ture, the programmer can develop it quickly just by thinking of the results that
main needs to obtain from its collaborators.

6.2.2 The Design of the Sentence-Generator Program
From a global perspective, the sentence-generator program (Section 5.3) consists
of a main loop in which sentences are generated a user-specified number of
times, until the user enters 0. The I/O and loop logic are simple enough to place
in the main function. The rest of the design involves generating a sentence.

string
int

syllablesIn

main

string
int

countSentences

string
int

countWords

string
int

countSyllables

3 ints
float

fleschIndex

3 ints
float

gradeLevel

6.2 Problem Solving with Top-Down Design [207]

C6840_06 11/19/08 11:42 AM Page 207

May not be copied, scanned, or duplicated, in whole or in part.

Here, you decompose the problem by simply following the grammar rules for
phrases. To generate a sentence, you generate a noun phrase followed by a verb
phrase, and so on. Each of the grammar rules poses a problem that is solved by a
single function. The top-down design flows out of the top-down structure of the
grammar. The structure chart for the sentence generator is shown in Figure 6.2.

[FIGURE 6.2] A structure chart for the sentence generator program

The structure of a problem can often give you a pattern for designing the
structure of the program to solve it. In the case of the sentence generator,
the structure of the problem comes from the grammar rules, although they are
not explicit data structures in the program. In later chapters, we will see many
examples of program designs that also mirror the structure of the data being
processed.

The design of the sentence generator differs from the design of the text ana-
lyzer in one other important way. The functions in the text analyzer all receive
data from the main function via parameters or arguments. By contrast, the func-
tions in the sentence generator receive their data from a common pool of data
defined at the beginning of the module and shown at the bottom of Figure 6.2.
This pool of data could equally well have been set up within the main function and
passed as arguments to each of the other functions. However, this alternative also
would require passing arguments to functions that do not actually use them. For

string

string string

string

string

string
string

string
string

string

main

sentence

verbPhrase

prepositionalPhrasenounPhrase

articles nouns

Data Pool

prepositions verbs

CHAPTER 6 Design with Functions[208]

C6840_06 11/19/08 11:42 AM Page 208

May not be copied, scanned, or duplicated, in whole or in part.

example, prepositionalPhrase would have to receive arguments for articles
and nouns as well as prepositions, so that it could transmit the first two struc-
tures to nounPhrase. Using a common pool of data rather than function argu-
ments in this case simplifies the design and makes program maintenance easier.

6.2.3 The Design of the Doctor Program

At the top level, the designs of the doctor program (Section 5.5) and the sentence-
generator program are similar. Both programs have main loops that take a single
user input and print a result. The structure chart for the doctor program is
shown in Figure 6.3.

[FIGURE 6.3] A structure chart for the doctor program

The doctor program actually processes the input by responding to it as an
agent would in a conversation. Thus, the responsibility for responding is dele-
gated to the reply function. Note that the two functions main and reply have
distinct responsibilities. The job of main is to handle user interaction with the
program, whereas reply is responsible for implementing the “doctor logic” of
generating an appropriate reply. The assignment of roles and responsibilities to
different actors in a program is also called responsibility-driven design. The

string

string

string

string
string

string
string

main

hedges

Data Pool

replacements

qualifiers

reply

changePerson

6.2 Problem Solving with Top-Down Design [209]

C6840_06 11/19/08 11:42 AM Page 209

May not be copied, scanned, or duplicated, in whole or in part.

division of responsibility between functions that handle user interaction and func-
tions that handle data processing is one that we will see again and again in the
coming chapters.

If there were only one way to reply to the user, the problem of how to reply
would not be further decomposed. However, because there are at least two
options, reply is given the task of implementing the logic of choosing one of
them, and asks for help from other functions, such as changePerson, to carry
out each option.

Separating the logic of choosing a task from the process of carrying out a
task makes the program more maintainable. To add a new strategy for replying,
you add a new choice to the logic of reply, and then add the function that car-
ries out this option. If you want to alter the likelihood of a given option, you just
modify a line of code in reply.

The data flow scheme used in the doctor program combines the strategies
used in the text analyzer and the sentence generator. The doctor program’s func-
tions receive their data from two sources. The patient’s input string is passed as
an argument to reply and changePerson, whereas the qualifiers, hedges, and
pronoun replacements are looked up in a common pool of data defined at the
beginning of the module. Once again, the use of a common pool of data allows
the program to grow easily, as new data sources, such as the history list suggested
in Programming Project 5.10, are added to the program.

We conclude this section with an old adage that captures the essence of top-
down design. When in doubt about the solution to a problem, pass the buck to
someone else. If you choose the right agents, the buck ultimately stops at an
agent who has no doubt about how to solve the problem.

6.2 Exercises
1 Draw a structure chart for one of the solutions to the programming proj-

ects of Chapters 4 and 5. The program should include at least two func-
tion definitions other than the main function.

2 Describe the processes of top-down design and stepwise refinement.
Where does the design start and how does it proceed?

CHAPTER 6 Design with Functions[210]

C6840_06 11/19/08 11:42 AM Page 210

May not be copied, scanned, or duplicated, in whole or in part.

6.3 Design with Recursive Functions
In top-down design, you decompose a complex problem into a set of simpler
problems and solve these with different functions. In some cases, you can decom-
pose a complex problem into smaller problems of exactly the same form. In these
cases, the subproblems can all be solved by using the same function. This design
strategy is called recursive design, and the resulting functions are called recursive
functions.

6.3.1 Defining a Recursive Function

A recursive function is a function that calls itself. To prevent a function from
repeating itself indefinitely, it must contain at least one selection statement. This
statement examines a condition called a base case to determine whether to stop
or to continue with another recursive step.

Let’s examine how to convert an iterative algorithm to a recursive function.
Here is a definition of a function displayRange that prints the numbers from a
lower bound to an upper bound:

defƒdisplayRange(lower,ƒupper):
ƒƒƒƒ“””Outputsƒtheƒnumbersƒfromƒlowerƒtoƒupper.”””
ƒƒƒƒwhileƒlowerƒ<=ƒupper:
ƒƒƒƒƒƒƒƒprintƒlower
ƒƒƒƒƒƒƒƒlowerƒ=ƒlowerƒ+ƒ1

How would we go about converting this function to a recursive one? First, you
should note two important facts:

1 The loop’s body continues execution while lower <= upper.

2 When the function executes, lower is incremented by 1 but upper
never changes.

The equivalent recursive function performs similar primitive operations, but
the loop is replaced with a selection statement and the assignment statement is

6.3 Design with Recursive Functions [211]

C6840_06 11/19/08 11:42 AM Page 211

May not be copied, scanned, or duplicated, in whole or in part.

replaced with a recursive call of the function. Here is the code with these
changes:

defƒdisplayRange(lower,ƒupper):
ƒƒƒƒ“””Outputsƒtheƒnumbersƒfromƒlowerƒtoƒupper.”””
ƒƒƒƒifƒlowerƒ<=ƒupper:
ƒƒƒƒƒƒƒƒprintƒlower
ƒƒƒƒƒƒƒƒdisplayRange(lowerƒ+ƒ1,ƒupper)

Although the syntax and design of the two functions are different, the same algorith-
mic process is executed. Each call of the recursive function visits the next number in
the sequence, just as the loop does in the iterative version of the function.

Most recursive functions expect at least one argument. This data value is
used to test for the base case that ends the recursive process, and also is modified
in some way before each recursive step. The modification of the data value
should produce a new data value that allows the function to reach the base case
eventually. In the case of displayRange, the value of the argument lower is
incremented before each recursive call so that it eventually exceeds the value of
the argument upper.

Our next example is a recursive function that builds and returns a value.
Earlier in this chapter, we defined an iterative version of the sum function that
expects two arguments named lower and upper. The sum function computes
and returns the sum of the numbers between these two values. In the recursive
version, sum returns 0 if lower exceeds upper (the base case). Otherwise, the
function adds lower to the sum of lower + 1 and upper and returns this result.
Here is the code for this function:

defƒsum(lower,ƒupper):
ƒƒƒƒ“””Returnsƒtheƒsumƒofƒtheƒnumbersƒfromƒlowerƒtoƒupper.”””
ƒƒƒƒifƒlowerƒ>ƒupper:
ƒƒƒƒƒƒƒƒreturnƒ0
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒlowerƒ+ƒsum(lowerƒ+ƒ1,ƒupper)

The recursive call of sum adds up the numbers from lower + 1 through upper.
The function then adds lower to this result and returns it.

CHAPTER 6 Design with Functions[212]

C6840_06 11/19/08 11:42 AM Page 212

May not be copied, scanned, or duplicated, in whole or in part.

6.3.2 Tracing a Recursive Function

To get a better understanding of how recursion works, it is helpful to trace its
calls. Let’s do that for the recursive version of the sum function. You add an
argument for a margin of indentation and print statements to trace the
two arguments and the value returned on each call. The first statement on each
call computes the indentation, which is then used in printing the two arguments.
The value computed is also printed with this indentation just before each call
returns. Here is the code, followed by a session showing its use:

defƒsum(lower,ƒupper,ƒmargin):
ƒƒƒƒ“””Returnsƒtheƒsumƒofƒtheƒnumbersƒfromƒlowerƒtoƒupper,
ƒƒƒƒandƒoutputsƒaƒtraceƒofƒtheƒargumentsƒandƒreturnƒvalues
ƒƒƒƒonƒeachƒcall.”””
ƒƒƒƒblanksƒ=ƒ“ƒ“ƒ*ƒmargin
ƒƒƒƒprintƒblanks,ƒlower,ƒupper
ƒƒƒƒifƒlowerƒ>ƒupper:
ƒƒƒƒƒƒƒƒprintƒblanks,ƒ0
ƒƒƒƒƒƒƒƒreturnƒ0
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒresultƒ=ƒlowerƒ+ƒsum(lowerƒ+ƒ1,ƒupper,ƒmarginƒ+ƒ4)
ƒƒƒƒƒƒƒƒprintƒblanks,ƒresult
ƒƒƒƒƒƒƒƒreturnƒresult
ƒƒƒƒƒ
>>>ƒsum(1,ƒ4,ƒ0)
1ƒ4
ƒƒƒƒ2ƒ4
ƒƒƒƒƒƒƒƒ3ƒ4
ƒƒƒƒƒƒƒƒƒƒƒƒ4ƒ4
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ5ƒ4
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ0
ƒƒƒƒƒƒƒƒƒƒƒƒ4
ƒƒƒƒƒƒƒƒ7
ƒƒƒƒ9
10
10
>>>

The displayed pairs of arguments are indented further to the right as the calls of
sum proceed. Note that the value of lower increases by 1 on each call, whereas
the value of upper stays the same. The final call of sum returns 0. As the recur-
sion unwinds, each value returned is aligned with the arguments above it and
increases by the current value of lower. This type of tracing can be a useful
debugging tool for recursive functions.

6.3 Design with Recursive Functions [213]

C6840_06 11/19/08 11:42 AM Page 213

May not be copied, scanned, or duplicated, in whole or in part.

6.3.3 Using Recursive Definitions to Construct Recursive
Functions

Recursive functions are frequently used to design algorithms for computing values
that have a recursive definition. A recursive definition consists of equations that
state what a value is for one or more base cases and one or more recursive cases.
For example, the Fibonacci sequence is a series of values with a recursive defini-
tion. The first and second numbers in the Fibonacci sequence are 1. Thereafter,
each number in the sequence is the sum of its two predecessors, as follows:

1ƒ1ƒ2ƒ3ƒ5ƒ8ƒ13ƒ.ƒ.ƒ.

More formally, a recursive definition of the nth Fibonacci number is the
following:

Fib(n)ƒ=ƒ1,ƒwhenƒnƒ=ƒ1ƒorƒnƒ=ƒ2
Fib(n)ƒ=ƒFib(nƒ–ƒ1)ƒ+ƒFib(nƒ–ƒ2),ƒforƒallƒnƒ>ƒ2

Given this definition, you can construct a recursive function that computes and
returns the nth Fibonacci number. Here it is:

ƒdefƒfib(n):
ƒƒƒƒƒ“””ReturnsƒtheƒnthƒFibonacciƒnumber.”””
ƒƒƒƒƒifƒnƒ<ƒ3:
ƒƒƒƒƒƒƒƒƒreturnƒ1
ƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒreturnƒfib(nƒ–ƒ1)ƒ+ƒfib(nƒ–ƒ2)

Note that the base case as well as the two recursive steps return values to
the caller.

6.3.4 Recursion in Sentence Structure

Recursive solutions can often flow from the structure of a problem. For example,
the structure of sentences in a language can be highly recursive. A noun phrase
(such as “the ball”) can be modified by a prepositional phrase (such as “on the

CHAPTER 6 Design with Functions[214]

C6840_06 11/19/08 11:42 AM Page 214

May not be copied, scanned, or duplicated, in whole or in part.

bench”), which also contains another noun phrase. If you use this modified version
of the noun phrase rule in the sentence generator (Section 5.3), the nounPhrase
function would call the prepositionalPhrase function, which in turn calls
nounPhrase again. This phenomenon is known as indirect recursion. To keep
this process from going on forever, nounPhrase must also have the option to not
generate a prepositional phrase. Here is a statement of the modified rule, which
expresses an optional phrase within the square brackets:

Nounƒphraseƒ=ƒArticleƒNounƒ[Prepositionalƒphrase]

The code for a revised nounPhrase function generates a modifying prepositional
phrase approximately 25% of the time:

defƒnounPhrase():
ƒƒƒƒ“””Returnsƒaƒnounƒphrase,ƒwhichƒisƒanƒarticleƒfollowed
ƒƒƒƒbyƒaƒnounƒandƒanƒoptionalƒprepositionalƒphrase.”””
ƒƒƒƒphraseƒ=ƒrandom.choice(articles)ƒ+ƒ“ƒ“ƒ+ƒrandom.choice(nouns)
ƒƒƒƒprobƒ=ƒrandom.randint(1,ƒ4)
ƒƒƒƒifƒprobƒ==ƒ1:
ƒƒƒƒƒƒƒƒreturnƒphraseƒ+ƒ“ƒ“ƒ+ƒprepositionalPhrase()
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒphrase

A similar strategy can be used to generate sentences that consist of two or more
independent clauses connected by conjunctions, such as “One programmer uses
recursion and another programmer uses loops.”

6.3.5 Infinite Recursion

Recursive functions tend to be simpler than the corresponding loops, but still
require thorough testing. One design error that might trip up a programmer
occurs when the function can (theoretically) continue executing forever, a situa-
tion known as infinite recursion. Infinite recursion arises when the programmer
fails to specify the base case or to reduce the size of the problem in a way that
terminates the recursive process. In fact, the Python virtual machine eventually

6.3 Design with Recursive Functions [215]

C6840_06 11/19/08 11:42 AM Page 215

May not be copied, scanned, or duplicated, in whole or in part.

runs out of memory resources to manage the process, so it halts execution with
an error message. The next session defines a function that leads to this result:

>>>ƒdefƒrunForever(n):
ƒƒƒƒƒƒƒifƒnƒ>ƒ0:
ƒƒƒƒƒƒƒƒƒƒrunForever(n)
ƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒrunForever(nƒ-ƒ1)
ƒƒƒƒ
>>>ƒrunForever(1)
Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<stdin>”,ƒlineƒ1,ƒinƒ<module>
ƒƒFileƒ“<stdin>”,ƒlineƒ3,ƒinƒrunForever
RuntimeError:ƒmaximumƒrecursionƒdepthƒexceeded
>>>

The Python virtual machine keeps calling runForever(1) until there is no
memory left to support another recursive call. Unlike an infinite loop, an infinite
recursion eventually halts execution with an error message.

6.3.6 The Costs and Benefits of Recursion

Although recursive solutions are often more natural and elegant than their itera-
tive counterparts, they come with a cost. The run-time system on a real computer,
such as the Python virtual machine, must devote some overhead to recursive func-
tion calls. At program startup, the PVM reserves an area of memory named a call
stack. For each call of a function, the PVM must allocate on the call stack a small
chunk of memory called a stack frame. In this type of storage, the system places
the values of the arguments and the return address for the particular function call.
Space for the function call’s return value is also reserved in its stack frame. When a
call returns or completes its execution, the return address is used to locate the next
instruction in the caller’s code, and the memory for the stack frame is deallocated.
The stack frames for the process generated by displayRange(1, 3) are shown
in Figure 6.4. The frames in the figure include storage for the function’s argu-
ments only.

CHAPTER 6 Design with Functions[216]

C6840_06 11/19/08 11:42 AM Page 216

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 6.4] The stack frames for displayRange(1, 3)

Although this sounds like a complex process, the PVM handles it easily.
However, when a function invokes hundreds or even thousands of recursive calls,
the amount of extra resources required, both in processing time and in memory
usage, can add up to a significant performance hit. When, because of a design
error, the recursion is infinite, the stack frames are added until the PVM runs out
of memory, which halts the program with an error message.

By contrast, the same problem can often be solved using a loop with a con-
stant amount of memory, in the form of two or three variables. Because the
amount of memory needed for the loop does not grow with the size of the prob-
lem’s data set, the amount of processing time for managing this memory does not
grow, either.

Despite these words of caution, we encourage you to consider developing
recursive solutions when they seem natural, particularly when the problems
themselves have a recursive structure. Testing can reveal performance bottlenecks
that might lead you to change the design to an iterative one. Smart compilers
also exist that can optimize some recursive functions by translating them to itera-
tive machine code. Finally, as we will see later in this book, some problems with
an iterative solution must still use an explicit stack-like data structure, so a recur-
sive solution might be simpler and no less efficient.

Top of the stack

Call 4
lower
upper

lower
upper

lower
upper

lower
upper

Call 3

Call 2

Call 1

4

3

3

3

2

3

1

3

6.3 Design with Recursive Functions [217]

C6840_06 11/19/08 11:42 AM Page 217

May not be copied, scanned, or duplicated, in whole or in part.

Recursion is a very powerful design technique that is used throughout com-
puter science. We will return to it in later chapters.

6.3 Exercises
1 In what way is a recursive design different from top-down design?

2 The factorial of a positive integer n, fact(n), is defined recursively as
follows:

fact(n)ƒ=ƒ1,ƒwhenƒnƒ=ƒ1
fact(n)ƒ=ƒnƒ*ƒfact(nƒ–ƒ1),ƒotherwise

Define a recursive function fact that returns the factorial of a given
positive integer.

3 Describe the costs and benefits of defining and using a recursive function.

4 Explain what happens when the following recursive function is called
with the value 4 as an argument:

defƒexample(n):
ƒƒƒƒifƒnƒ>ƒ0:
ƒƒƒƒƒƒƒƒprintƒn
ƒƒƒƒƒƒƒƒexample(nƒ-ƒ1)

5 Explain what happens when the following recursive function is called
with the value 4 as an argument:

defƒexample(n):
ƒƒƒƒƒifƒnƒ>ƒ0:
ƒƒƒƒƒƒƒƒƒƒprintƒn
ƒƒƒƒƒƒƒƒƒƒexample(n)
ƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒexample(nƒ–ƒ1)

CHAPTER 6 Design with Functions[218]

C6840_06 11/19/08 11:42 AM Page 218

May not be copied, scanned, or duplicated, in whole or in part.

6 Explain what happens when the following recursive function is called
with the values “hello” and 0 as arguments:

defƒexample(aString,ƒindex):
ƒƒƒƒifƒindexƒ<ƒlen(aString):
ƒƒƒƒƒƒƒƒexample(aString,ƒindexƒ+ƒ1)
ƒƒƒƒƒƒƒƒprintƒaString[index],

7 Explain what happens when the following recursive function is called
with the values “hello” and 0 as arguments:

defƒexample(aString,ƒindex):
ƒƒƒƒifƒindexƒ==ƒlen(aString):
ƒƒƒƒƒƒƒƒreturnƒ“”
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒaString[index]ƒ+ƒexample(aString,ƒindexƒ+ƒ1)

6.4 Case Study: Gathering Information from a
File System
Modern file systems come with a graphical browser, such as Microsoft’s Windows
Explorer or Apple’s Finder. These browsers allow the user to navigate directories
by selecting icons of folders, opening these by double-clicking, and selecting
commands from a drop-down menu. Information on a directory or a file, such as
the size and contents, is also easily obtained in several ways.

Users of terminal-based user interfaces must rely on entering the appropriate
commands at the terminal prompt to perform all of these functions. In this case
study, we develop a simple terminal-based file system navigator that provides
some information about the system. In the process, we will have an opportunity
to exercise some skills in top-down design and recursive design.

6.4.1 Request

Write a program that allows the user to obtain information about the file system.

6.4 Case Study: Gathering Information from a File System [219]

C6840_06 11/19/08 11:42 AM Page 219

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 Design with Functions[220]

6.4.2 Analysis

File systems are tree-like structures, as shown in Figure 6.5.

[FIGURE 6.5] The structure of a file system

At the top of the tree is the root directory. Under the root are files and subdirec-
tories. Each directory in the system except the root lies within another directory
called its parent. For example, in Figure 6.5, the root directory contains four files
and two subdirectories. On a UNIX-based file system, the path to a given file or
directory in the system is a string that starts with the / (forward slash) symbol (the
root), followed by the names of the directories traversed to reach the file or direc-
tory. The / (forward slash) symbol also separates each name in the path. Thus,
the path to the file for this chapter on Ken’s laptop might be the following:

/Users/KenLaptop/Book/Chapter6/Chapter6.doc

On a Windows-based file system, the \ symbol is used instead of the / symbol.
The program we will design in this case study is named filesys.py. It pro-

vides some basic browsing capability, as well as options that allow you to search for a
given filename and find statistics on the number of files and their size in a directory.

D

D D
F F

F F

F F

F F

D
F F

D = directory

F = file

C6840_06 11/19/08 11:42 AM Page 220

May not be copied, scanned, or duplicated, in whole or in part.

At program startup, the current working directory (CWD) is the directory contain-
ing the Python program file. The program should display the path of the CWD, a
menu of command options, and a prompt for a command, as shown in Figure 6.6.

[FIGURE 6.6] The command menu of the filesys program

When the user enters a command number, the program runs the command,
which may display further information, and the program displays the CWD and
command menu again. An unrecognized command produces an error message,
and command number 7 quits the program. Table 6.1 summarizes what the com-
mands do.

[TABLE 6.1] The commands in the filesys program

COMMAND WHAT IT DOES

List the current Prints the names of the files and directories in the
working directory current working directory (CWD).

Move up If the CWD is not the root, move to the parent
directory and make it the CWD.

Move down Prompts the user for a directory name. If the name is
not in the CWD, print an error message; otherwise,
move to this directory and make it the CWD.

Number of files in Prints the number of files in the CWD and all of its
the directory subdirectories.

Size of the directory Prints the total number of bytes used by the files in
in bytes the CWD and all of its subdirectories.

Search for a filename Prompts the user for a search string. Prints a list of
all the filenames (with their paths) that contain the
search string, or “String not found.”

Quit the program Prints a signoff message and exits the program.

/Users/KenLaptop/Book/Chapter6
1 List the current directory
2 Move up
3 Move down
4 Number of files in the directory
5 Size of the directory in bytes
6 Search for a filename
7 Quit the program
Enter a number:

6.4 Case Study: Gathering Information from a File System [221]

C6840_06 11/19/08 11:42 AM Page 221

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 Design with Functions[222]

6.4.3 Design

The program can be structured according to two sets of tasks: those concerned
with implementing a menu-driven command processor, and those concerned with
executing the commands. The first group of operations includes the main func-
tion. In the following discussion, we work top-down and begin by examining the
first group of operations.

As in many of the programs we have examined recently in this book, the
main function contains a driver loop. This loop prints the CWD and the menu,
calls other functions to input and run the commands, and breaks with a signoff
message when the command is to quit. Here is the pseudocode:

functionƒmain()
ƒƒƒƒwhileƒTrue
ƒƒƒƒƒƒƒƒprintƒos.getcwd()
ƒƒƒƒƒƒƒƒprintƒMENU
ƒƒƒƒƒƒƒƒSetƒcommandƒtoƒacceptCommand()
ƒƒƒƒƒƒƒƒrunCommand(command)
ƒƒƒƒƒƒƒƒifƒcommandƒ==ƒQUIT
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Haveƒaƒniceƒday!”
ƒƒƒƒƒƒƒƒƒƒƒƒbreak

Note that MENU and QUIT are variables initialized to the appropriate strings
before main is defined. The acceptCommand function loops until the user enters
a number in the range of the valid commands. These commands are specified in a
tuple named COMMANDS that is also initialized before the function is defined. The
function thus always returns a valid command number.

The runCommand function expects a valid command number as an argument.
The function uses a multi-way selection statement to select and run the operation
corresponding to the command number. When the result of an operation is
returned, it is printed with the appropriate labeling.

That’s it for the menu-driven command processor. Although there are other
possible approaches, this design makes it possible to add new commands to the
program fairly easily.

The operations required to list the contents of the CWD, move up, and
move down are fairly simple and need no real design work. They involve the use
of functions in the os and os.path modules to list the directory, change it, and
test a string to see if it is the name of a directory. The implementation shows the
details.

C6840_06 11/19/08 11:42 AM Page 222

May not be copied, scanned, or duplicated, in whole or in part.

6.4 Case Study: Gathering Information from a File System [223]

The other three operations all involve traversals of the directory structure in
the CWD. During these traversals, every file and every subdirectory are visited.
Directory structure is in fact recursive: each directory can contain files (base
cases) and other directories (recursive steps). Thus, we can develop a recursive
design for each operation.

The countFiles function expects the path of a directory as an argument
and returns the number of files in this directory and all of its subdirectories. If
there are no subdirectories in the argument directory, the function just counts the
files and returns this value. If there is a subdirectory, the function moves down to
it, counts the files (recursively) in it, adds the result to its total, and then moves
back up to the parent directory. Here is the pseudocode:

functionƒcountFiles(path)
ƒƒƒƒSetƒcountƒtoƒ0
ƒƒƒƒSetƒlystƒtoƒos.listdir(path)
ƒƒƒƒforƒelementƒinƒlyst
ƒƒƒƒƒƒƒƒifƒos.path.isfile(element)
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒ1
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(element)
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒcountFiles(os.getcwd())
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(“..”)
ƒƒƒƒreturnƒcount

The countBytes function expects a path as an argument and returns the total
number of bytes in that directory and all of its subdirectories. Its design is quite
similar to countFiles.

The findFiles function accumulates a list of the filenames, including their
paths, that contain a given target string, and returns this list. Its structure is similar
to the other two recursive functions, but the findFiles function builds a list
rather than a number. When the function encounters a target file, its name is
appended to the path and then the result string is appended to the list of files. We
use the module variable os.sep to obtain the appropriate slash symbol (/ or \) on
the current file system. When the function encounters a directory, it moves to that
directory, calls itself with the new CWD, and extends the files list with the result-
ing list. Here is the pseudocode:

functionƒfindFiles(target,ƒpath)
ƒƒƒƒfilesƒ=ƒ[]
ƒƒƒƒlystƒ=ƒos.listdir(path)

continued

C6840_06 11/19/08 11:42 AM Page 223

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 Design with Functions[224]

ƒƒƒƒforƒelementƒinƒlyst
ƒƒƒƒƒƒƒƒifƒos.path.isfile(element):
ƒƒƒƒƒƒƒƒƒƒƒƒifƒtargetƒinƒelement:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒfiles.append(pathƒ+ƒos.sepƒ+ƒelement)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(element)
ƒƒƒƒƒƒƒƒƒƒƒƒfiles.extend(findFiles(target,ƒos.getcwd()))
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(“..”)
ƒƒƒreturnƒfiles

The trick with recursive design is to spot elements in a structure that can be
treated as base cases (such as files) and other elements that can be treated as
recursive steps (such as directories). The recursive algorithms for processing
these structures flow naturally from these insights.

6.4.4 Implementation (Coding)

Near the beginning of the program code, we find the important variables, with
the functions listed in a top-down order.

“””
Program:ƒfilesys.py
Author:ƒKen

Providesƒaƒmenu-drivenƒtoolƒforƒnavigatingƒaƒfileƒsystem
andƒgatheringƒinformationƒonƒfiles.
“””

importƒos,ƒos.path

QUITƒ=ƒ'7'

COMMANDSƒ=ƒ('1',ƒ'2',ƒ'3',ƒ'4',ƒ'5',ƒ'6',ƒ'7')

MENUƒ=ƒ“””1ƒƒƒListƒtheƒcurrentƒdirectory
2ƒƒƒMoveƒup
3ƒƒƒMoveƒdown
4ƒƒƒNumberƒofƒfilesƒinƒtheƒdirectory
5ƒƒƒSizeƒofƒtheƒdirectoryƒinƒbytes
6ƒƒƒSearchƒforƒaƒfilename
7ƒƒƒQuitƒtheƒprogram”””

defƒmain():
ƒƒƒƒwhileƒTrue:

continued

C6840_06 11/19/08 11:42 AM Page 224

May not be copied, scanned, or duplicated, in whole or in part.

6.4 Case Study: Gathering Information from a File System [225]

ƒƒƒƒƒƒƒƒprintƒos.getcwd()
ƒƒƒƒƒƒƒƒprintƒMENU
ƒƒƒƒƒƒƒƒcommandƒ=ƒacceptCommand()
ƒƒƒƒƒƒƒƒrunCommand(command)
ƒƒƒƒƒƒƒƒifƒcommandƒ==ƒQUIT:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Haveƒaƒniceƒday!”
ƒƒƒƒƒƒƒƒƒƒƒƒbreak

defƒacceptCommand():
ƒƒƒƒ“””Inputsƒandƒreturnsƒaƒlegitimateƒcommandƒnumber.”””
ƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒcommandƒ=ƒraw_input(“Enterƒaƒnumber:ƒ“)
ƒƒƒƒƒƒƒƒifƒnotƒcommandƒinƒCOMMANDS:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Error:ƒcommandƒnotƒrecognized”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒcommand

defƒrunCommand(command):
ƒƒƒƒ“””Selectsƒandƒrunsƒaƒcommand.”””
ƒƒƒƒifƒcommandƒ==ƒ'1':
ƒƒƒƒƒƒƒƒlistCurrentDir(os.getcwd())
ƒƒƒƒelifƒcommandƒ==ƒ'2':
ƒƒƒƒƒƒƒƒmoveUp()
ƒƒƒƒelifƒcommandƒ==ƒ'3':
ƒƒƒƒƒƒƒƒmoveDown(os.getcwd())
ƒƒƒƒelifƒcommandƒ==ƒ'4':
ƒƒƒƒƒƒƒƒprintƒ“Theƒtotalƒnumberƒofƒfilesƒis”,ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountFiles(os.getcwd())
ƒƒƒƒelifƒcommandƒ==ƒ'5':
ƒƒƒƒƒƒƒƒprintƒ“Theƒtotalƒnumberƒofƒbytesƒis”,ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountBytes(os.getcwd())
ƒƒƒƒelifƒcommandƒ==ƒ'6':
ƒƒƒƒƒƒƒƒtargetƒ=ƒraw_input(“Enterƒtheƒsearchƒstring:ƒ“)
ƒƒƒƒƒƒƒƒfileListƒ=ƒfindFiles(target,ƒos.getcwd())
ƒƒƒƒƒƒƒƒifƒnotƒfileList:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Stringƒnotƒfound”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒforƒfƒinƒfileList:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒf

defƒlistCurrentDir(dirName):
ƒƒƒƒ“””Printsƒaƒlistƒofƒtheƒcwd'sƒcontents.”””
ƒƒƒƒlystƒ=ƒos.listdir(dirName)
ƒƒƒƒforƒelementƒinƒlyst:ƒprintƒelement

defƒmoveUp():
ƒƒƒƒ“””Movesƒupƒtoƒtheƒparentƒdirectory.”””
ƒƒƒƒos.chdir(“..”)

continued

C6840_06 11/19/08 11:42 AM Page 225

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 Design with Functions[226]

defƒmoveDown(currentDir):
ƒƒƒƒ“””Movesƒdownƒtoƒtheƒnamedƒsubdirectoryƒifƒitƒexists.”””
ƒƒƒƒnewDirƒ=ƒraw_input(“Enterƒtheƒdirectoryƒname:ƒ“)
ƒƒƒƒifƒos.path.exists(currentDirƒ+ƒos.sepƒ+ƒnewDir)ƒandƒ\
ƒƒƒƒƒƒƒos.path.isdir(newDir):
ƒƒƒƒƒƒƒƒos.chdir(newDir)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprintƒ“ERROR:ƒnoƒsuchƒname”

defƒcountFiles(path):
ƒƒƒƒ“””Returnsƒtheƒnumberƒofƒfilesƒinƒtheƒcwdƒand
ƒƒƒƒallƒitsƒsubdirectories.”””
ƒƒƒƒcountƒ=ƒ0
ƒƒƒƒlystƒ=ƒos.listdir(path)
ƒƒƒƒforƒelementƒinƒlyst:
ƒƒƒƒƒƒƒƒifƒos.path.isfile(element):
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒ1
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(element)
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒcountFiles(os.getcwd())
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(“..”)
ƒƒƒƒreturnƒcount

defƒcountBytes(path):
ƒƒƒƒ“””Returnsƒtheƒnumberƒofƒbytesƒinƒtheƒcwdƒand
ƒƒƒƒallƒitsƒsubdirectories.”””
ƒƒƒƒcountƒ=ƒ0
ƒƒƒƒlystƒ=ƒos.listdir(path)
ƒƒƒƒforƒelementƒinƒlyst:
ƒƒƒƒƒƒƒƒifƒos.path.isfile(element):
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒos.path.getsize(element)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(element)
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒcountBytes(os.getcwd())
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(“..”)
ƒƒƒƒreturnƒcount

defƒfindFiles(target,ƒpath):
ƒƒƒƒ“””Returnsƒaƒlistƒofƒtheƒfilenamesƒthatƒcontain
ƒƒƒƒtheƒtargetƒstringƒinƒtheƒcwdƒandƒallƒitsƒsubdirectories.”””
ƒƒƒƒfilesƒ=ƒ[]
ƒƒƒƒlystƒ=ƒos.listdir(path)
ƒƒƒƒforƒelementƒinƒlyst:
ƒƒƒƒƒƒƒƒifƒos.path.isfile(element):
ƒƒƒƒƒƒƒƒƒƒƒƒifƒtargetƒinƒelement:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒfiles.append(pathƒ+ƒos.sepƒ+ƒelement)

continued

C6840_06 11/19/08 11:42 AM Page 226

May not be copied, scanned, or duplicated, in whole or in part.

6.5 Managing a Program’s Namespace [227]

ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(element)
ƒƒƒƒƒƒƒƒƒƒƒƒfiles.extend(findFiles(target,ƒos.getcwd()))
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(“..”)
ƒƒƒƒreturnƒfiles

main()

6.5 Managing a Program’s Namespace
Throughout this book, we have tried to behave like good authors by choosing our
words (the code used in our programs) carefully. We have taken care to select
variable names that reflect their purpose in a program or the character of the
objects in a given problem domain. Of course, these variable names are meaning-
ful only to us, the human programmers. To the computer, the only “meaning” of a
variable name is the value to which it happens to refer at any given point in pro-
gram execution. The computer can keep track of these values easily. However, a
programmer charged with editing and maintaining code can occasionally get lost
as a program gets larger and more complex. In this section, you learn more about
how a program’s namespace—that is, the set of its variables and their values—is
structured and how you can control it via good design principles.

6.5.1 Module Variables, Parameters, and Temporary Variables

We begin by analyzing the namespace of the doctor program of Case Study 5.5.
This program includes many variable names; for the purposes of this example,
we will focus on the code for the variable replacements and the function
changePerson.

replacementsƒ=ƒ{“I”:”you”,ƒ“me”:”you”,ƒ“my”:”your”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“we”:”you”,ƒ“us”:”you”,ƒ“mine”:”yours”}

defƒchangePerson(sentence):
ƒƒƒƒ“””Replacesƒfirstƒpersonƒpronounsƒwithƒsecondƒperson
ƒƒƒƒpronouns.”””
ƒƒƒƒwordsƒ=ƒsentence.split()
ƒƒƒƒreplyWordsƒ=ƒ[]
ƒƒƒƒforƒwordƒinƒwords:
ƒƒƒƒƒƒƒƒreplyWords.append(replacements.get(word,ƒword))
ƒƒƒƒreturnƒ“ƒ“.join(replyWords)ƒ

C6840_06 11/19/08 11:42 AM Page 227

May not be copied, scanned, or duplicated, in whole or in part.

This code appears in the file doctor.py, so its module name is doctor. The
names in this code fall into four categories, depending on where they are
introduced:

1 Module variables. The names replacements and changePerson are
introduced at the level of the module. Although replacements names a
dictionary and changePerson names a function, they are both consid-
ered variables. You can see the module variables of the doctor module
by importing it and entering dir(doctor) at a shell prompt. When
module variables are introduced in a program, they are immediately
given a value.

2 Parameters. The name sentence is a parameter of the function
changePerson. A parameter name behaves like a variable and is intro-
duced in a function or method header. The parameter does not receive a
value until the function is called.

3 Temporary variables. The names words, replyWords, and word are
introduced in the body of the function changePerson. Like module
variables, temporary variables receive their values as soon as they are
introduced.

4 Method names. The names split and join are introduced or defined
in the str type. As mentioned earlier, a method reference always uses an
object, in this case, a string, followed by a dot and the method name.

Our first simple programs contained module variables only. The use of func-
tion definitions brought parameters and temporary variables into play. We now
explore the significance of these distinctions.

6.5.2 Scope

In ordinary writing, the meaning of a word often depends on its surrounding
context. For example, in the sports section of the newspaper, the word “bat”
means a stick for hitting baseballs, whereas in a story about vampires it means a
flying mammal. In a program, the context that gives a name a meaning is called
its scope. In Python, a name’s scope is the area of program text in which the
name refers to a given value.

Let’s return to our example from the doctor program to determine the scope
of each variable. For reasons that will become clear in a moment, it will be easiest
if we work outward, starting with temporary variables first.

The scope of the temporary variables words, replyWords, and word is the
area of code in the body of the function changePerson, just below where each

CHAPTER 6 Design with Functions[228]

C6840_06 11/19/08 11:42 AM Page 228

May not be copied, scanned, or duplicated, in whole or in part.

variable is introduced. In general, the meanings of temporary variables are
restricted to the body of the functions in which they are introduced, and are
invisible elsewhere in a module. The restricted visibility of temporary variables
befits their role as temporary working storage for a function.

The scope of the parameter sentence is the entire body of the function
changePerson. Like temporary variables, parameters are invisible outside the
function definitions where they are introduced.

The scope of the module variables replacements and changePerson
includes the entire module below the point where the variables are introduced.
This includes the code nested in the body of the function changePerson. The
scope of these variables also includes the nested bodies of other function defini-
tions that occur earlier. This allows these variables to be referenced by any func-
tions, regardless of where they are defined in the module. For example, the
reply function, which calls changePerson, might be defined before
changePerson in the doctor module.

Although a Python function can reference a module variable for its value, it
cannot under normal circumstances assign a new value to a module variable.
When such an attempt is made, the PVM creates a new, temporary variable of
the same name within the function. The following script shows how this works:

xƒ=ƒ5

defƒf():
ƒƒƒƒxƒ=ƒ10ƒƒƒƒƒƒƒƒ#ƒAttemptƒtoƒresetƒx

f()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒDoesƒtheƒtop-levelƒxƒchange?
printƒxƒƒƒƒƒƒƒƒƒƒƒ#ƒNo,ƒthisƒdisplaysƒ5

When the function f is called, it does not assign 10 to the module variable x;
instead, it assigns 10 to a temporary variable x. In fact, once the temporary vari-
able is introduced, the module variable is no longer visible within function f. In
any case, the module variable’s value remains unchanged by the call. There is a
way to allow a function to modify a module variable, but in Chapter 8, we
explore a better way to manage common pools of data that require changes.

6.5.3 Lifetime

A computer program has two natures. On the one hand, a program is a piece of
text containing names that a human being can read for a meaning. Viewed from
this perspective, variables in a program have a scope that determines their visibility.

6.5 Managing a Program’s Namespace [229]

C6840_06 11/19/08 11:42 AM Page 229

May not be copied, scanned, or duplicated, in whole or in part.

On the other hand, a program describes a process that exists for a period of time
on a real computer. Viewed from this other perspective, a program’s variables
have another important property called a lifetime. A variable’s lifetime is the
period of time during program execution when the variable has memory storage
associated with it. When a variable comes into existence, storage is allocated for
it; when it goes out of existence, storage is reclaimed by the PVM.

Module variables come into existence when they are introduced via assign-
ment and generally exist for the lifetime of the program that introduces or
imports those module variables. Parameters and temporary variables come into
existence when they are bound to values during a function call, but go out of exis-
tence when the function call terminates.

The concept of lifetime explains the existence of two variables called x in our
last example session. The module variable x comes into existence before the tem-
porary variable x and survives the call of function f. During the call of f, storage
exists for both variables, so their values remain distinct. A similar mechanism for
managing the storage associated with the parameters of recursive function calls
was discussed in the previous section.

6.5.4 Default (Keyword) Arguments

A function’s arguments are one of its most important features. Arguments provide
the function’s caller with the means of transmitting information to the function.
Adding an argument or two to a function can increase its generality by extending
the range of situations in which the function can be used. However, programmers
often use a function in a restricted set of “essential” situations, in which the extra
arguments might be an annoyance. In these cases, the use of the extra arguments
should be optional for the caller of the function. When the function is called
without the extra arguments, it provides reasonable default values for those argu-
ments that produce the expected results.

For example, Python’s range function can be called with one, two, or three
arguments. When all three arguments are supplied, they indicate a lower bound,
an upper bound, and a step value. When only two arguments are given, the step
value defaults to 1. When a single argument is given, the step is assumed to be 1
and the lower bound automatically is 0.

The programmer can also specify optional arguments with default values in
any function definition. Here is the syntax:

defƒ<functionƒname>(<requiredƒargs>,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ<key-1>ƒ=ƒ<val-1>,ƒ…ƒ<key-n>ƒ=ƒ<val-n>)

CHAPTER 6 Design with Functions[230]

C6840_06 11/19/08 11:42 AM Page 230

May not be copied, scanned, or duplicated, in whole or in part.

The required arguments are listed first in the function header. These are the ones
that are “essential” for the use of the function by any caller. Following the
required arguments are one or more default or keyword arguments. These are
assignments of values to the argument names. When the function is called with-
out these arguments, their default values are automatically assigned to them.
When the function is called with these arguments, the default values are overrid-
den by the caller’s values.

For example, suppose we define a function, repToInt, to convert string rep-
resentations of numbers in a given base to their integer values (see Chapter 4).
The function expects a string representation of the number and an integer base as
arguments. Here is the code:

defƒrepToInt(repString,ƒbase):
ƒƒƒƒ“””ConvertsƒtheƒrepStringƒtoƒanƒintƒinƒtheƒbase
ƒƒƒƒandƒreturnsƒthisƒint.”””
ƒƒƒƒdecimalƒ=ƒ0
ƒƒƒƒexponentƒ=ƒlen(repString)ƒ-ƒ1
ƒƒƒƒforƒdigitƒinƒrepString:
ƒƒƒƒƒƒƒƒdecimalƒ=ƒdecimalƒ+ƒint(digit)ƒ*ƒbaseƒ**ƒexponent
ƒƒƒƒƒƒƒƒexponentƒ-=ƒ1
ƒƒƒƒreturnƒdecimal

As written, this function can be used to convert string representations in bases 2
through 10 to integers. But suppose that 75% of the time, programmers use the
repToInt function to convert binary numbers to decimal form. If we alter the
function header to provide a default of 2 for base, those programmers will be
very grateful. Here is the proposed change, followed by a session that shows its
impact:

defƒrepToInt(repString,ƒbaseƒ=ƒ2):
ƒ
>>>ƒrepToInt(“10”,ƒ10)
10
>>>ƒrepToInt(“10”,ƒ8)ƒƒƒ#ƒOverrideƒtheƒdefaultƒtoƒhere
8
>>>ƒrepToInt(“10”,ƒ2)ƒƒƒ#ƒSameƒasƒtheƒdefault,ƒnotƒnecessaryƒ
2
>>>ƒrepToInt(“10”)ƒƒƒƒƒƒ#ƒBaseƒ2ƒbyƒdefault
2
>>>

6.5 Managing a Program’s Namespace [231]

C6840_06 11/19/08 11:42 AM Page 231

May not be copied, scanned, or duplicated, in whole or in part.

When using functions that have default arguments, the required arguments
must be provided and must be placed in the same positions as they are in the
function definition’s header. The default arguments that follow can be supplied in
two ways:

1 By position. In this case, the values are supplied in the order in which
the arguments occur in the function header. Defaults are used for any
arguments that are omitted.

2 By keyword. In this case, one or more values can be supplied in any
order, using the syntax <key> = <value> in the function call.

Here is an example of a function with one required argument and two default
arguments and a session that shows these options:

defƒexample(required,ƒoption1ƒ=ƒ2,ƒoption2ƒ=ƒ3):
ƒƒƒƒprintƒrequired,ƒoption1,ƒoption2

>>>ƒexample(1)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒUseƒallƒtheƒdefaults
1ƒ2ƒ3
>>>ƒexample(1,ƒ10)ƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒOverrideƒtheƒfirstƒdefault
1ƒ10ƒ3
>>>ƒexample(1,ƒ10,ƒ20)ƒƒƒƒƒƒƒƒƒ#ƒOverrideƒallƒtheƒdefaults
1ƒ10ƒ20
>>>ƒexample(1,ƒoption2ƒ=ƒ20)ƒƒƒ#ƒOverrideƒtheƒsecondƒdefault
1ƒ2ƒ20
>>>ƒexample(1,ƒoption2ƒ=ƒ20,ƒoption1ƒ=ƒ10)ƒƒ#ƒNoteƒtheƒorder
1ƒ10ƒ20
>>>

Default arguments are a powerful way to simplify design and make functions
more general.

6.5 Exercises
1 Where are module variables, parameters, and temporary variables intro-

duced and initialized in a program?

2 What is the scope of a variable? Give an example.

3 What is the lifetime of a variable? Give an example.

CHAPTER 6 Design with Functions[232]

C6840_06 11/19/08 11:42 AM Page 232

May not be copied, scanned, or duplicated, in whole or in part.

6.6 Higher-Order Functions (Advanced Topic)
Like any skill, a designer’s knack for spotting the need for a function is developed
with practice. As you gain experience in writing programs, you will learn to spot
common and redundant patterns in the code. One pattern that occurs again and
again is the application of a function to a set of values to produce some results.
Here are some examples:

� All of the numbers in a text file must be converted to integers or floats
after they are input.

� All of the first-person pronouns in a list of words must be changed to the
corresponding second-person pronouns in the doctor program.

� Only scores above the average are kept in a list of grades.
� The sum of the squares of a list of numbers is computed.

In this section, we learn how to capture these patterns in a new abstraction
called a higher-order function. For these patterns, a higher-order function expects
a function and a set of data values as arguments. The argument function is applied
to each data value and a set of results or a single data value is returned. A higher-
order function separates the task of transforming each data value from the logic of
accumulating the results.

6.6.1 Functions as First-Class Data Objects
In Python, functions can be treated as first-class data objects. This means that
they can be assigned to variables (as they are when they are defined), passed as
arguments to other functions, returned as the values of other functions, and
stored in data structures such as lists and dictionaries. The next session shows
some of the simpler possibilities:

>>>ƒabsƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒSeeƒwhatƒaƒfunctionƒlooksƒlike
<built-inƒfunctionƒabs>
>>>ƒimportƒmath
>>>ƒmath.sqrt
<built-inƒfunctionƒsqrt>
>>>ƒfƒ=ƒabsƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒfƒisƒanƒaliasƒforƒabs
>>>ƒfƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒEvaluateƒf
<built-inƒfunctionƒabs>
>>>ƒf(-4)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒApplyƒfƒtoƒanƒargument
4

continued

6.6 Higher-Order Functions (Advanced Topic) [233]

C6840_06 11/19/08 11:42 AM Page 233

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 Design with Functions[234]

>>>ƒfuncsƒ=ƒ[abs,ƒmath.sqrt]ƒƒƒƒ#ƒPutƒtheƒfunctionsƒinƒaƒlist
>>>ƒfuncs
[<built-inƒfunctionƒabs>,ƒ<built-inƒfunctionƒsqrt>]
>>>ƒfuncs[1](2)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒApplyƒmath.sqrtƒtoƒ2
1.4142135623730951
>>>ƒ

Passing a function as an argument to another function is no different from
passing any other datum. The function argument is first evaluated, producing the
function itself, and then the parameter name is bound to this value. The function
can then be applied to its own argument with the usual syntax. Here is an exam-
ple, which simply returns the result of an application of any single-argument
function to a datum:

>>>ƒdefƒexample(functionArg,ƒdataArg):
ƒƒƒƒƒƒƒreturnƒfunctionArg(dataArg)

>>>ƒexample(abs,ƒ-4)
4
>>>ƒexample(math.sqrt,ƒ2)
1.4142135623730951
>>>ƒ

Alternatively, one can apply a function to its arguments by passing it and a
sequence of its arguments to Python’s apply function, as follows:

>>>ƒapply(max,ƒ(3,ƒ4))ƒƒƒƒƒƒƒƒƒƒƒ#ƒSameƒasƒmax(3,ƒ4)
4

6.6.2 Mapping

The first type of useful higher-order function to consider is called a mapping.
This process applies a function to each value in a list and returns a new list of the
results. Python includes a map function for this purpose. Suppose we have a list
named words that contains strings that represent integers. We want to replace

C6840_06 11/19/08 11:42 AM Page 234

May not be copied, scanned, or duplicated, in whole or in part.

each string with the corresponding integer value. The map function easily accom-
plishes this, as the next session shows:

>>>ƒwordsƒ=ƒ[“231”,ƒ“20”,ƒ“-45”,ƒ“99”]
>>>ƒmap(int,ƒwords)ƒƒƒƒƒƒƒƒƒƒƒ#ƒConvertƒallƒstringsƒtoƒints
[231,ƒ20,ƒ-45,ƒ99]
>>>ƒwordsƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒOriginalƒlistƒisƒnotƒchanged
['231',ƒ'20',ƒ'-45',ƒ'99']
>>>ƒwordsƒ=ƒmap(int,ƒwords)ƒƒƒ#ƒResetƒvariableƒtoƒchangeƒit
>>>ƒwords
[231,ƒ20,ƒ-45,ƒ99]
>>>ƒ

Note that map builds and returns a new list of results. We could have written a
for loop that does the same thing, but that would entail several lines of code
instead of the single line of code required for the map function. Another reason to
use the map function is that, in programs that use lists, we might need to perform
this task many times; relying on a for loop for each instance would entail multi-
ple sections of redundant code.

Another good example of a mapping pattern is in the changePerson func-
tion of the doctor program. This function builds a new list of words with the
pronouns replaced.

defƒchangePerson(sentence):
ƒƒƒƒ“””Replacesƒfirstƒpersonƒpronounsƒwithƒsecondƒperson
ƒƒƒƒpronouns.”””
ƒƒƒƒwordsƒ=ƒsentence.split()
ƒƒƒƒreplyWordsƒ=ƒ[]
ƒƒƒƒforƒwordƒinƒwords:
ƒƒƒƒƒƒƒƒreplyWords.append(replacements.get(word,ƒword))
ƒƒƒƒreturnƒ“ƒ“.join(replyWords)ƒ

6.6 Higher-Order Functions (Advanced Topic) [235]

C6840_06 11/19/08 11:42 AM Page 235

May not be copied, scanned, or duplicated, in whole or in part.

We can simplify the logic by defining an auxiliary function that is then mapped
onto the list of words, as follows:

defƒchangePerson(sentence):
ƒƒƒƒ“””Replacesƒfirstƒpersonƒpronounsƒwithƒsecondƒperson
ƒƒƒƒpronouns.”””

ƒƒƒƒdefƒgetWord(word):ƒ
ƒƒƒƒƒƒƒƒreplacements.get(word,ƒword)

ƒƒƒƒreplyWordsƒ=ƒmap(getWord,ƒsentence.split())
ƒƒƒƒreturnƒ“ƒ“.join(replyWords)ƒ

Note that the definition of the function getWord is nested within the function
changePerson.

As you can see, the map function is extremely useful; any time we can elimi-
nate a loop from a program, it’s a win.

6.6.3 Filtering

A second type of higher-order function is called a filtering. In this process, a
function called a predicate is applied to each value in a list. If the predicate
returns True, the value passes the test and is added to a new list. Otherwise, the
value is dropped from consideration. The process is a bit like pouring hot water
into a filter basket with coffee. The good stuff to drink comes into the cup with
the water, and the coffee grounds left behind can be thrown on the garden.

Python includes a filter function that is used in the next example to pro-
duce a list of the odd numbers in another list:

>>>ƒdefƒodd(n):ƒreturnƒnƒ%ƒ2ƒ==ƒ1

>>>ƒfilter(odd,ƒrange(10))
[1,ƒ3,ƒ5,ƒ7,ƒ9]
>>>ƒ

CHAPTER 6 Design with Functions[236]

C6840_06 11/19/08 11:42 AM Page 236

May not be copied, scanned, or duplicated, in whole or in part.

6.6.4 Reducing

Our final example of a higher-order function is called a reducing. Here we take a
list of values and repeatedly apply a function to accumulate a single data value. A
summation is a good example of this process. The first value is added to the sec-
ond value, then the sum is added to the third value, and so on, until the sum of
all the values is produced.

Python includes a reduce function that expects a function of two arguments
and a list of values. The reduce function returns the result of applying the func-
tion as just described. The following example shows reduce used twice—once to
produce a sum and once to produce a product:

>>>ƒdefƒadd(x,ƒy):ƒreturnƒxƒ+ƒy

>>>ƒdefƒmultiply(x,ƒy):ƒreturnƒxƒ*ƒy

>>>ƒdataƒ=ƒ[1,ƒ2,ƒ3,ƒ4]
>>>ƒreduce(add,ƒdata)
10
>>>ƒreduce(multiply,ƒdata)
24
>>>ƒ

6.6.5 Using lambda to Create Anonymous Functions

Although the use of higher-order functions can really simplify code, it is some-
what onerous to have to define new functions to supply as arguments to the
higher-order functions. For example, the functions sum and product will never
be used anywhere else in a program, because the operators + and * are already
available. It would be convenient if we could define a function “on the fly,” right
at the point of the call of a higher-order function, especially if it is not needed
anywhere else.

Python includes a mechanism called lambda that allows the programmer to
create functions in this manner. A lambda is an anonymous function. It has no
name of its own, but contains the names of its arguments as well as a single
expression. When the lambda is applied to its arguments, its expression is evalu-
ated and its value is returned.

6.6 Higher-Order Functions (Advanced Topic) [237]

C6840_06 11/19/08 11:42 AM Page 237

May not be copied, scanned, or duplicated, in whole or in part.

The syntax of a lambda is very tight and restrictive:

lambdaƒ<argname-1,ƒ...,ƒargname-n>:ƒ<expression>

All of the code must appear on one line and, although it is sad, a lambda cannot
include a selection statement, because selection statements are not expressions.
Nonetheless, lambda has its virtues. We can now specify addition or multiplica-
tion on the fly, as the next session illustrates:

>>>ƒdataƒ=ƒ[1,ƒ2,ƒ3,ƒ4]
>>>ƒreduce(lambdaƒx,ƒy:ƒxƒ+ƒy,ƒdata)ƒƒƒƒ#ƒProduceƒtheƒsum
10
>>>ƒreduce(lambdaƒx,ƒy:ƒxƒ*ƒy,ƒdata)ƒƒƒƒ#ƒProduceƒtheƒproduct
24
>>>ƒ

The next example shows the use of range, reduce, and lambda to simplify
the definition of the sum function discussed earlier in this chapter:

defƒsum(lower,ƒupper):
ƒƒƒƒ“””Returnsƒtheƒsumƒofƒtheƒnumbersƒfromƒlowerƒtoƒupper.”””
ƒƒƒƒifƒlowerƒ>ƒupper:
ƒƒƒƒƒƒƒƒreturnƒ0
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒreduce(lambdaƒx,ƒy:ƒxƒ+ƒy,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrange(lower,ƒupperƒ+ƒ1))

6.6.6 Creating Jump Tables

This chapter’s case study contains a menu-driven command processor. When the
user selects a command from a menu, the program compares this number to each
number in a set of numbers, until a match is found. A function corresponding to
this number is then called to carry out the command. The function runCommand
implemented this process with a long, multi-way selection statement. With more
than three options, such statements become tedious to read and hard to maintain.
Adding or removing an option also becomes tricky and error-prone.

CHAPTER 6 Design with Functions[238]

C6840_06 11/19/08 11:42 AM Page 238

May not be copied, scanned, or duplicated, in whole or in part.

A simpler way to design a command processor is to use a data structure
called a jump table. A jump table is a dictionary of functions keyed by command
names. At program startup, the functions are defined and then the jump table is
loaded with the command names and their associated functions. The function
runCommand uses its command argument to look up the function in the jump
table and then calls this function. Here is the modified version of runCommand:

defƒrunCommand(command):ƒƒƒƒƒƒƒƒ#ƒHowƒsimpleƒcanƒitƒget?
ƒƒƒƒjumpTable[command]()

Note that this function makes two important simplifying assumptions: the command
string is a key in the jump table and its associated function expects no arguments.

Let’s assume that the functions insert, replace, and remove are keyed to
the commands '1', '2', and '3', respectively. Then the setup of the jump table
is straightforward:

#ƒTheƒfunctionsƒnamedƒinsert,ƒreplace,ƒandƒremoveƒ
#ƒareƒdefinedƒearlier

jumpTableƒ=ƒ{}
jumpTable['1']ƒ=ƒinsert
jumpTable['2']ƒ=ƒreplace
jumpTable['3']ƒ=ƒremove

Maintenance of the command processor becomes a matter of data management,
wherein we add or remove entries in the jump table and the menu.

6.6 Exercises
1 Write the code for a mapping that generates a list of the absolute values

of the numbers in a list named numbers.

2 Write the code for a filtering that generates a list of the positive numbers
in a list named numbers. You should use a lambda to create the auxiliary
function.

3 Write the code for a reducing that creates a single string from a list of
strings named words.

6.6 Higher-Order Functions (Advanced Topic) [239]

C6840_06 11/19/08 11:42 AM Page 239

May not be copied, scanned, or duplicated, in whole or in part.

4 Modify the sum function presented in Section 6.1 so that it includes
default arguments for a step value and a function. The step value is used
to move to the next value in the range. The function is applied to each
number visited and the function’s returned value is added to the running
total. The default step value is 1 and the default function is a lambda
that returns its argument (essentially an identity function). An example
call of this function is sum(1, 100, 2, math.sqrt), which returns the
sum of the square roots of every other number between 1 and 100. The
function can also be called as usual, with just the bounds of the range.

5 Three versions of the summation function have been presented in this
chapter. One uses a loop, one uses recursion, and one uses the reduce
function. Discuss the costs and benefits of each version, in terms of pro-
grammer time and computational resources required.

Summary
� A function serves as an abstraction mechanism by allowing us to view

many things as one thing.
� A function eliminates redundant patterns of code by specifying a

single place where the pattern is defined.
� A function hides a complex chunk of code in a single named entity.
� A function allows a general method to be applied in varying situations.

The variations are specified by the function’s arguments.
� Functions support the division of labor when a complex task is

factored into simpler subtasks.
� Top-down design is a strategy that decomposes a complex problem

into simpler subproblems and assigns their solutions to functions. In
top-down design, we begin with a top-level main function and gradu-
ally fill in the details of lower-level functions in a process of stepwise
refinement.

� Cooperating functions communicate information by passing
arguments and receiving return values. They also can receive
information directly from common pools of data.

� A structure chart is a diagram of the relationships among cooperating
functions. The chart shows the dependency relationships in a top-
down design, as well as data flows among the functions and common
pools of data.

CHAPTER 6 Design with Functions[240]

C6840_06 11/19/08 11:42 AM Page 240

May not be copied, scanned, or duplicated, in whole or in part.

� Recursive design is a special case of top-down design, in which a com-
plex problem is decomposed into smaller problems of the same form.
Thus, the original problem is solved by a single recursive function.

� A recursive function is a function that calls itself. A recursive function
consists of at least two parts: a base case that ends the recursive
process and a recursive step that continues it. These two parts are
structured as alternative cases in a selection statement.

� The design of recursive algorithms and functions often follows the
recursive character of a problem or a data structure.

� Although it is a natural and elegant problem-solving strategy, recur-
sion can be computationally expensive. Recursive functions can
require extra overhead in memory and processing time to manage the
information used in recursive calls.

� An infinite recursion arises as the result of a design error. The pro-
grammer has not specified the base case or reduced the size of the
problem in such a way that the termination of the process is reached.

� The namespace of a program is structured in terms of module variables,
parameters, and temporary variables. A module variable, whether it
names a function or a datum, is introduced and receives its initial value
at the top level of the module. A parameter is introduced in a function
header and receives its initial value when the function is called. A tempo-
rary variable is introduced in an assignment statement within the body of
a function definition.

� The scope of a variable is the area of program text within which it has
a given value. The scope of a module variable is the text of the module
below the variable’s introduction and the bodies of any function defini-
tions. The scope of a parameter is the body of its function definition.
The scope of a temporary variable is the text of the function body
below its introduction.

� Scope can be used to control the visibility of names in a namespace.
When two variables with different scopes have the same name, a vari-
able’s value is found by looking outward from the innermost enclosing
scope. In other words, a temporary variable’s value takes precedence
over a parameter’s value and a module variable’s value when all three
have the same name.

� The lifetime of a variable is the duration of program execution during
which it uses memory storage. Module variables exist for the lifetime
of the program that uses them. Parameters and temporary variables
exist for the lifetime of a particular function call.

Summary [241]

C6840_06 11/19/08 11:42 AM Page 241

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 Design with Functions[242]

� Functions are first-class data objects. They can be assigned to vari-
ables, stored in data structures, passed as arguments to other func-
tions, and returned as the values of other functions.

� Higher-order functions can expect other functions as arguments
and/or return functions as values.

� A mapping function expects a function and a list of values as argu-
ments. The function argument is applied to each value in the list and
a list of the results is returned.

� A predicate is a Boolean function.
� A filtering function expects a predicate and a list of values as argu-

ments. The values for which the predicate returns True are placed in
a list and returned.

� A reducing function expects a function and a list of values as argu-
ments. The function is applied to the values and a single result is
accumulated and returned.

� A jump table is a simple way to design a command processor. The
table is a dictionary whose keys are command names and whose values
are the associated functions. A function for a given command name is
simply looked up in the table and called.

REVIEW QUESTIONS
1 Top-down design is a strategy that

a develops lower-level functions before the functions that depend on
those lower-level functions

b starts with the main function and develops the functions on each
successive level beneath the main function

2 The relationships among functions in a top-down design are shown in a

a syntax diagram
b flow diagram
c structure chart

C6840_06 11/19/08 11:42 AM Page 242

May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS [243]

3 A recursive function

a usually runs faster than the equivalent loop
b usually runs more slowly than the equivalent loop

4 When a recursive function is called, the values of its arguments and its
return address are placed in a

a list
b dictionary
c set
d stack frame

5 The scope of a temporary variable is

a the statements in the body of the function where the variable is
introduced

b the entire module in which the variable is introduced
c the statements in the body of the function after the statement

where the variable is introduced

6 The lifetime of a parameter is

a the duration of program execution
b the duration of its function’s execution

7 The expression map(math.sqrt, [9, 25, 36]) evaluates to

a 70

b [81, 625, 1296]

c [3.0, 5.0, 6.0]

8 The expression filter(lambda x: x > 50, [34, 65, 10, 100])
evaluates to

a []

b [65, 100]

9 The expression reduce(max, [34, 21, 99, 67, 10]) evaluates to

a 231

b 0

c 99

C6840_06 11/19/08 11:42 AM Page 243

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 6 Design with Functions[244]

10 A data structure used to implement a jump table is a

a list
b tuple
c dictionary

PROJECTS
1 Package Newton’s method for approximating square roots (Case Study 3.6)

in a function named newton. This function expects the input number as an
argument and returns the estimate of its square root. The script should also
include a main function that allows the user to compute square roots of
inputs until she presses the enter/return key.

2 Convert Newton’s method for approximating square roots in Project 1 to
a recursive function named newton. (Hint: The estimate of the square
root should be passed as a second argument to the function.)

3 Elena complains that the recursive newton function in Project 2 includes
an extra argument for the estimate. The function’s users should not have to
provide this value, which is always the same, when they call this function.
Modify the definition of the function so that it uses a keyword parameter
with the appropriate default value for this argument, and call the function
without a second argument to demonstrate that it solves this problem.

4 Restructure Newton’s method (Case Study 3.6) by decomposing it into
three cooperating functions. The newton function can use either the
recursive strategy of Project 1 or the iterative strategy of Case Study 3.6.
The task of testing for the limit is assigned to a function named
limitReached, whereas the task of computing a new approximation is
assigned to a function named improveEstimate. Each function expects
the relevant arguments and returns an appropriate value.

5 A list is sorted in ascending order if it is empty or each item except the
last one is less than or equal to its successor. Define a predicate isSorted
that expects a list as an argument and returns True if the list is sorted, or
returns False otherwise. (Hint: For a list of length 2 or greater, loop
through the list and compare pairs of items, from left to right, and return
False if the first item in a pair is greater.)

C6840_06 11/19/08 11:42 AM Page 244

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [245]

6 Add a command to this chapter’s case study program that allows the user to
view the contents of a file in the current working directory. When the com-
mand is selected, the program should display a list of filenames and a prompt
for the name of the file to be viewed. Be sure to include error recovery.

7 Write a recursive function that expects a pathname as an argument. The
pathname can be either the name of a file or the name of a directory. If the
pathname refers to a file, its name is displayed, followed by its contents.
Otherwise, if the pathname refers to a directory, the function is applied to
each name in the directory. Test this function in a new program.

8 Lee has discovered what he thinks is a clever recursive strategy for printing
the elements in a sequence (string, tuple, or list). He reasons that he can
get at the first element in a sequence using the 0 index, and he can obtain
a sequence of the rest of the elements by slicing from index 1. This strat-
egy is realized in a function that expects just the sequence as an argument.
If the sequence is not empty, the first element in the sequence is printed
and then a recursive call is executed. On each recursive call, the sequence
argument is sliced using the range 1:. Here is Lee’s function definition:

defƒprintAll(seq):
ƒƒƒƒifƒseq:
ƒƒƒƒƒƒƒƒprintƒseq[0]
ƒƒƒƒƒƒƒƒprintAll(seq[1:])

Write a script that tests this function and add code to trace the argument
on each call. Does this function work as expected? If so, explain how it
actually works, and describe any hidden costs in running it.

9 Write a program that computes and prints the average of the numbers in
a text file. You should make use of two higher-order functions to simplify
the design.

10 Define and test a function myRange. This function should behave like
Python’s standard range function, with the required and optional
arguments. Do not use the range function in your implementation!
(Hints: Study Python’s help on range to determine the names, positions,
and what to do with your function’s parameters. Use a default value of
None for the two optional parameters. If these parameters both equal
None, then the function has been called with just the stop value. If just
the third parameter equals None, then the function has been called with
a start value as well. Thus, the first part of the function’s code establishes
what the values of the parameters are or should be. The rest of the code
uses those values to build a list by counting up or down.)

C6840_06 11/19/08 11:42 AM Page 245

May not be copied, scanned, or duplicated, in whole or in part.

C6840_06 11/19/08 11:42 AM Page 246

This page intentionally left blank

After completing this chapter, you will be able to:
� Use the concepts of object-based programming—classes,

objects, and methods—to solve a problem
� Develop algorithms that use simple graphics operations to

draw two-dimensional shapes
� Use the RGB system to create colors in graphics applications

and modify pixels in images
� Develop recursive algorithms to draw recursive shapes
� Write a nested loop to process a two-dimensional grid
� Develop algorithms to perform simple transformations of

images, such as conversion of color to grayscale
Until about 20 years ago, computers processed numbers and

text almost exclusively. At the present time, the computational pro-
cessing of images, video, and sound is becoming increasingly impor-
tant. Computers have evolved from mere number crunchers and
data processors to multimedia platforms utilizing a wide array of
applications and devices, such as digital music players and digital
cameras.

Ironically, all of these exciting tools and applications still rely on
number crunching and data processing. However, because the sup-
porting algorithms and data structures can be quite complex, they
are often hidden from the average user. In this chapter, we explore

[CHAPTER]
SIMPLE GRAPHICS AND

Image Processing7

C6840_07 11/19/08 11:42 AM Page 247

May not be copied, scanned, or duplicated, in whole or in part.

some basic concepts related to two important areas of media computing—graphics
and image processing. We also examine object-based programming, a type of
programming that relies on objects and methods to control complexity and solve
problems in these areas.

7.1 Simple Graphics
Graphics is the discipline that underlies the representation and display of geo-
metric shapes in two- and three-dimensional space. Python comes with a large
array of resources that support graphics operations. However, these operations
are complex and not for the faint of heart. To help you ease into the world of
graphics, this section provides an introduction to a gentler set of graphics
operations known as Turtle graphics. A Turtle graphics toolkit provides a
simple and enjoyable way to draw pictures in a window and gives you an
opportunity to run several methods with an object. In the next few sections, we
use turtlegraphics, a non-standard, open-source Python module, to illustrate
various features of object-based programming.

7.1.1 Overview of Turtle Graphics

Turtle graphics were originally developed as part of the children’s programming
language Logo, created by Seymour Papert and his colleagues at MIT in the late
1960s. The name is intended to suggest a way to think about the drawing
process. Imagine a turtle crawling on a piece of paper with a pen tied to its tail.
Commands direct the turtle as it moves across the paper and tell it to lift or lower
its tail, turn some number of degrees left or right, and move a specified distance.
Whenever the tail is down, the pen drags along the paper, leaving a trail. In this
manner, it is possible to program the turtle to draw pictures ranging from the
simple to the complex.

In the context of a computer, of course, the sheet of paper is a window on a
display screen and the turtle is an invisible pen point. At any given moment in
time, the turtle is located at a specific position in the window. This position is
specified with (x, y) coordinates. The coordinate system for turtle graphics is
the standard Cartesian system, with the origin (0, 0) at the center of a window.
The turtle’s initial position is the origin, which is also called the home.

In addition to its position, a turtle also has several other attributes, as
described in Table 7.1.

CHAPTER 7 Simple Graphics and Image Processing[248]

C6840_07 11/19/08 11:42 AM Page 248

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 7.1] Some attributes of a turtle

Together, these attributes make up a turtle’s state. The concept of state is a
very important one in object-based programming. Generally, an object’s state is
the set of values of its attributes at any given point in time.

The turtle’s state determines how the turtle will behave when any operations
are applied to it. For example, a turtle will draw when it is moved if its tail is cur-
rently down, but it will simply move without drawing when its tail is currently
up. Operations also change a turtle’s state. For instance, moving a turtle changes
its position, but not its direction, width, or color.

7.1.2 Turtle Operations

In Chapter 5, you learned that every data value in Python is actually an object.
The types of objects are called classes. Included in a class are all of the methods
(or operations) that apply to objects of that class. Because a turtle is an object,
its operations are also defined as methods. Table 7.2 lists the methods of the
Turtle class. In this table, the variable t refers to any particular Turtle object.
Don’t be concerned if you don’t understand all the terms used in the table. You’ll
learn more about these graphics concepts throughout this chapter.

Direction Specified in degrees, the direction increases in value as the turtle
turns to the left, or counterclockwise. Conversely, a negative
quantity of degrees indicates a right, or clockwise, turn. The
turtle is initially facing north, or 90 degrees. East is 0 degrees.

Color Initially blue, the color can be changed to any of more than
16 million other colors.

Width This is the width of the line drawn when the turtle moves. The
initial width is 2 pixels. (You’ll learn more about pixels shortly.)

Down This attribute, which can be either true or false, controls
whether the turtle’s tail is up or down. When true (that is, when
the tail is down), the turtle draws a line when it moves. When
false (that is, when the tail is up) the turtle can move without
drawing a line.

7.1 Simple Graphics [249]

C6840_07 11/19/08 11:42 AM Page 249

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 7.2] The Turtle methods

Turtle METHOD WHAT IT DOES

t = Turtle() Creates a new Turtle object and opens its
window. The window’s drawing area is 200
pixels wide and 200 pixels high.

t = Turtle(width, height) Creates a new Turtle object and opens its
window. The window’s drawing area has the
given width and height.

t.home() Moves t to the center of the graphics window
without drawing any line and then points
t north.

t.setDirection(degrees) Points t in the indicated direction, which is
specified in degrees. Due east corresponds to
0 degrees, north to 90 degrees, west to
180 degrees, and south to 270 degrees. Because
there are 360 degrees in a circle, setting the
direction to 400 would be equivalent to 400 –
360, or 40. Similarly, setting the direction to –30
would be equivalent to 360 – 30, or 330.

t.turn(degrees) Adds the indicated degrees to t’s current
direction. Positive degrees correspond to
turning counterclockwise.

t.down() Lowers t’s tail to the drawing surface.

t.up() Raises t’s tail from the drawing surface.

t.move(distance) Moves t the specified distance in the current
direction.

t.move(x, y) Moves t to the specified position.

t.setColor(r, g, b) Changes the color of t to the specified
RGB value.

t.setWidth(width) Changes the width of t in pixels to the
specified value.

t.getWidth() Returns the width of t’s drawing window
in pixels.

t.getHeight() Returns the height of t’s drawing window
in pixels.

CHAPTER 7 Simple Graphics and Image Processing[250]

C6840_07 11/19/08 11:42 AM Page 250

May not be copied, scanned, or duplicated, in whole or in part.

The set of methods of a given class of objects make up its interface. This is
another important idea in object-based programming. Programmers who use
objects interact with them through their interfaces. Thus, an interface should con-
tain all of the information necessary to use an object of a given class. This informa-
tion includes method headers and documentation about the method’s arguments,
values returned, and changes to the state of the associated objects. As you have seen
in previous chapters, Python’s docstring mechanism allows the programmer to view
an interface for an entire class or an individual method by entering expressions of
the form help(<class name>) or help(<class name>.<method name>) at a
shell prompt.

Now that you have the information necessary to use a turtle object, let’s
define a function named drawSquare. This function expects a Turtle object, a
pair of integers that indicate the coordinates of the square’s upper-left corner, and
an integer that designates the length of a side. The function begins by lifting the
turtle up and moving it to the square’s corner point. It then points the turtle due
south—270 degrees—and places the turtle’s tail down on the drawing surface.
Finally, it moves the turtle the given length and turns it left by 90 degrees, four
times. Here is the code for the drawSquare function:

defƒdrawSquare(turtle,ƒx,ƒy,ƒlength):
ƒƒƒƒ“””Drawsƒaƒsquareƒwithƒtheƒgivenƒturtle,ƒan
ƒƒƒƒupper-leftƒcornerƒpointƒ(x,ƒy),ƒandƒaƒside’sƒlength.”””
ƒƒƒƒturtle.up()
ƒƒƒƒturtle.move(x,ƒy)
ƒƒƒƒturtle.setDirection(270)
ƒƒƒƒturtle.down()
ƒƒƒƒforƒcountƒinƒxrange(4):
ƒƒƒƒƒƒƒƒturtle.move(length)
ƒƒƒƒƒƒƒƒturtle.turn(90)

As you can see, this function exercises half a dozen methods in the turtle’s inter-
face. Almost all you need to know in many graphics applications are the interfaces
of the appropriate objects and the geometry of the desired shapes.

7.1.3 Object Instantiation and the turtlegraphics
Module

Before you apply any methods to an object, you must create the object. To be
precise, you must create an instance of the object’s class. The process of creating
an object is called instantiation. In the programs you have seen so far in this

7.1 Simple Graphics [251]

C6840_07 11/19/08 11:42 AM Page 251

May not be copied, scanned, or duplicated, in whole or in part.

book, Python automatically created objects such as numbers, strings, and lists
when it encountered them as literals. Other classes of objects, including those
that have no literals, must be instantiated explicitly by the programmer. The syn-
tax for instantiating a class and assigning the resulting object to a variable is the
following:

<variableƒname>ƒ=ƒ<classƒname>(<anyƒarguments>)

The expression on the right side of the assignment, also called a constructor,
resembles a function call. The constructor can receive as arguments any initial
values for the new object’s attributes, or other information needed to create the
object. As you might expect, if the arguments are optional, reasonable defaults are
provided automatically. The constructor then manufactures and returns a new
instance of the class.

The Turtle class is defined in the turtlegraphics module. Complete
installation instructions appear in Appendix B, but the quickest way to use this
module is to place the file turtlegraphics.py in your current working direc-
tory. The following code then imports the Turtle class for use in a session:

>>>ƒfromƒturtlegraphicsƒimportƒTurtle
>>>ƒ

There are two ways to instantiate Turtle. The first method returns a
Turtle object and opens a drawing window with a default width and height of
200 pixels. The second method allows the programmer to specify the width and
height of the turtle’s window. The programmer can create as many turtles as
desired, but only one turtle object is associated with each window. Here are two
example instantiations, with their windows shown in Figure 7.1:

>>>ƒt1ƒ=ƒTurtle()ƒƒƒƒƒƒƒƒƒƒƒ#ƒWindowƒdefaultsƒtoƒ200ƒxƒ200
>>>ƒt2ƒ=ƒTurtle(400,ƒ200)

The turtles are invisible, but they are each located at the home position in the
center of the window, facing north and ready to draw.

CHAPTER 7 Simple Graphics and Image Processing[252]

C6840_07 11/19/08 11:42 AM Page 252

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 7.1] Drawing windows for two turtles

Let’s continue with the first turtle named t1 and tell it to draw the letter T.
It begins at the home position and moves north 30 pixels to draw a vertical line.
Then it turns 90 degrees to face due west, picks its tail up, and moves 10 pixels.
Finally, it turns to face due east, put its tail down, and moves 20 pixels to draw a
horizontal line. The session with the code follows. Figure 7.2 shows screenshots
of the two windows where the lines are drawn. Again, keep in mind that the tur-
tles are not visible in the Turtle graphics window.

>>>ƒt1.move(30)ƒƒƒƒƒƒƒƒƒƒ#ƒDrawƒverticalƒlineƒfromƒorigin
>>>ƒt1.turn(90)ƒƒƒƒƒƒƒƒƒƒ#ƒTurnƒtoƒfaceƒdueƒwest
>>>ƒt1.up()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒPrepareƒtoƒmoveƒwithoutƒdrawing
>>>ƒt1.move(10)ƒƒƒƒƒƒƒƒƒƒ#ƒMoveƒtoƒbeginningƒofƒhorizontalƒline
>>>ƒt1.setDirection(0)ƒƒƒ#ƒFaceƒdueƒeast
>>>ƒt1.down()ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒPrepareƒtoƒdraw
>>>ƒt1.move(20)ƒƒƒƒƒƒƒƒƒƒ#ƒDrawƒhorizontalƒline

[FIGURE 7.2] Drawing vertical and horizontal lines for the letter T

7.1 Simple Graphics [253]

C6840_07 11/19/08 11:42 AM Page 253

May not be copied, scanned, or duplicated, in whole or in part.

To close a window, you click its close box. An attempt to manipulate a turtle
whose window has been closed raises an error.

7.1.4 Drawing Two-Dimensional Shapes

Many graphics applications use vector graphics, or the drawing of simple two-
dimensional shapes, such as rectangles, triangles, and circles. Most of these
shapes can be represented as sets of vertices connected by line segments. For
example, a triangle has three vertices and a pentagon has five vertices. Each ver-
tex is a tuple of coordinates, and the set of vertices can be contained in a list.
Using this information, you can define a drawPolygon Python function to draw
most two-dimensional shapes. This function expects a Turtle object and a list of
at least three vertices as arguments. The function raises the turtle’s tail and moves
it to the last vertex. The function then lowers the tail and moves the turtle to
each vertex in the list, starting with the first one. The code for this function, fol-
lowed by a call to draw a polygon, follows. A screenshot of the result is shown in
Figure 7.3.

defƒdrawPolygon(turtle,ƒvertices):
ƒƒƒƒ“””Drawsƒaƒpolygonƒfromƒaƒlistƒofƒvertices.
ƒƒƒƒTheƒlistƒhasƒtheƒformƒ[(x1,ƒy1),ƒ...,ƒ(xn,ƒyn)].”””
ƒƒƒƒturtle.up()
ƒƒƒƒ(x,ƒy)ƒ=ƒvertices[-1]
ƒƒƒƒturtle.move(x,ƒy)
ƒƒƒƒturtle.down()
ƒƒƒƒforƒ(x,ƒy)ƒinƒvertices:
ƒƒƒƒƒƒƒƒturtle.move(x,ƒy)
ƒƒ

>>>ƒfromƒturtlegraphicsƒimportƒTurtle
>>>ƒturtleƒ=ƒTurtle()
>>>ƒdrawPolygon(turtle,ƒ[(20,ƒ20),ƒ(-20,ƒ20),ƒ(-20,ƒ-20)])

Note that the for loop in the drawPolygon function includes the tuple (x, y)
where you would normally expect a single loop variable. This loop traverses a list of
tuples, so on each pass through the loop, the variables x and y in the tuple (x, y)
are assigned the corresponding values within the current tuple in the list.

CHAPTER 7 Simple Graphics and Image Processing[254]

C6840_07 11/19/08 11:42 AM Page 254

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 7.3] Drawing a polygon

7.1.5 Taking a Random Walk

Animals often appear to wander about randomly, but they are often searching for
food, shelter, a mate, and so forth. Or, they might be truly lost, disoriented, or
just out for a stroll. Let’s get a turtle to wander about randomly. A turtle engages
in this harmless activity by repeatedly turning in a random direction and moving
a given distance. The following script defines a function randomWalk that expects
as arguments a Turtle object, the number of turns, and distance to move after
each turn. The distance argument is optional and defaults to 20 pixels. When
called in this script, the function performs 30 random turns with the default dis-
tance of 20 pixels. Figure 7.4 shows one resulting output.

fromƒturtlegraphicsƒimportƒTurtle
importƒrandom

defƒrandomWalk(turtle,ƒturns,ƒdistanceƒ=ƒ20):
ƒƒƒƒ“””Turnsƒaƒrandomƒnumberƒofƒdegreesƒandƒmoves
ƒƒƒƒaƒgivenƒdistanceƒforƒaƒfixedƒnumberƒofƒturns.”””
ƒƒƒƒturtle.setWidth(1)
ƒƒƒƒforƒxƒinƒxrange(turns):
ƒƒƒƒƒƒƒƒturtle.turn(random.randint(0,ƒ360))
ƒƒƒƒƒƒƒƒturtle.move(distance)

randomWalk(Turtle(),ƒ30)

7.1 Simple Graphics [255]

C6840_07 11/19/08 11:42 AM Page 255

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 7.4] A random walk

7.1.6 Colors and the RGB System

The rectangular display area on a computer screen is made up of colored dots
called picture elements or pixels. The smaller the pixel, the smoother the lines
drawn with them will be. The size of a pixel is determined by the size and resolu-
tion of the display. For example, one common screen resolution is 1680 pixels by
1050 pixels, which, on a 20-inch monitor, produces a rectangular display area that
is 17 inches by 10.5 inches. Setting the resolution to smaller values increases the
size of the pixels, making the lines on the screen appear more ragged.

Each pixel represents a color. Among the various schemes for representing
colors, the RGB system is a fairly common one. The letters stand for the color
components of red, green, and blue, to which the human retina is sensitive.
These components are mixed together to form a unique color value. Naturally,
the computer represents these values as integers and the display hardware trans-
lates this information to the colors you see. Each color component can range
from 0 through 255. The value 255 represents the maximum saturation of a given
color component, whereas the value 0 represents the total absence of that compo-
nent. Table 7.3 lists some example colors and their RGB values.

CHAPTER 7 Simple Graphics and Image Processing[256]

C6840_07 11/19/08 11:42 AM Page 256

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 7.3] Some example colors and their RGB values

You might be wondering how many total RGB color values are at your dis-
posal. That number would be equal to all of the possible combinations of three
values, each of which has 256 possible values, or 256 * 256 * 256, or 16,777,216
distinct color values. Although the human eye cannot discriminate between adja-
cent color values in this set, the RGB system is called a true color system.

Another way to consider color is from the perspective of the computer memory
required to represent a pixel’s color. In general, N bits of memory can represent 2N

distinct data values. Conversely, N distinct data values require at least log2N bits of
memory. In the old days, when memory was expensive and displays came in black
and white, only a single bit of memory was required to represent the two color val-
ues. Thus, when displays capable of showing 8 shades of gray came along, 3 bits of
memory were required to represent each color value. Early color monitors might
have supported the display of 256 colors, so 8 bits were needed to represent each
color value. Each color component of an RGB color requires 8 bits, so the total
number of bits needed to represent a distinct color value is 24. The total number of
RGB colors, 224, happens to be 16,777,216.

7.1.7 Example: Drawing with Random Colors

The Turtle class includes a setColor method for changing the turtle’s drawing
color. This method expects integers for the three RGB components as arguments.
The next script draws squares that are black, gray, and of two random colors at the
corners of the turtle’s window. The output is shown in Figure 7.5 (note that the
actual colors do not appear in this book).

COLOR RGB VALUE

Black (0, 0, 0)

Red (255, 0, 0)

Green (0, 255, 0)

Blue (0, 0, 255)

Yellow (255, 255, 0)

Gray (127, 127, 127)

White (255, 255, 255)

7.1 Simple Graphics [257]

C6840_07 11/19/08 11:42 AM Page 257

May not be copied, scanned, or duplicated, in whole or in part.

fromƒturtlegraphicsƒimportƒTurtle
importƒrandom

defƒdrawSquare(turtle,ƒx,ƒy,ƒlength):
ƒƒƒƒ“””ƒDrawsƒaƒsquareƒwithƒtheƒupper-leftƒcornerƒ(x,ƒy)
ƒƒƒƒandƒtheƒgivenƒlength.ƒ“””
ƒƒƒƒturtle.up()
ƒƒƒƒturtle.move(x,ƒy)
ƒƒƒƒturtle.setDirection(270)
ƒƒƒƒturtle.down()
ƒƒƒƒforƒcountƒinƒxrange(4):
ƒƒƒƒƒƒƒƒturtle.move(length)
ƒƒƒƒƒƒƒƒturtle.turn(90)

defƒmain():
ƒƒƒƒturtleƒ=ƒTurtle()
ƒƒƒƒ#ƒLengthƒofƒtheƒsquare
ƒƒƒƒlengthƒ=ƒ40
ƒƒƒƒ#ƒRelativeƒdistancesƒtoƒcornersƒofƒwindowƒfromƒcenter
ƒƒƒƒwidthƒ=ƒturtle.getWidth()ƒ/ƒ2
ƒƒƒƒheightƒ=ƒturtle.getHeight()ƒ/ƒ2
ƒƒƒƒ#ƒBlack
ƒƒƒƒturtle.setColor(0,ƒ0,ƒ0)
ƒƒƒƒ#ƒDrawƒinƒupper-leftƒcorner
ƒƒƒƒdrawSquare(turtle,ƒ-width,ƒheight,ƒlength)
ƒƒƒƒ#ƒGray
ƒƒƒƒturtle.setColor(127,ƒ127,ƒ127)
ƒƒƒƒ#ƒDrawƒinƒlower-leftƒcorner
ƒƒƒƒdrawSquare(turtle,ƒ-width,ƒlengthƒ-ƒheight,ƒlength)
ƒƒƒƒ#ƒFirstƒrandomƒcolor
ƒƒƒƒturtle.setColor(random.randint(0,ƒ255),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrandom.randint(0,ƒ255),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrandom.randint(0,ƒ255))
ƒƒƒƒ#ƒDrawƒinƒupper-rightƒcorner
ƒƒƒƒdrawSquare(turtle,ƒwidthƒ-ƒlength,ƒheight,ƒlength)
ƒƒƒƒ#ƒSecondƒrandomƒcolor
ƒƒƒƒturtle.setColor(random.randint(0,ƒ255),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrandom.randint(0,ƒ255),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrandom.randint(0,ƒ255))
ƒƒƒƒ#ƒDrawƒinƒlower-rightƒcorner
ƒƒƒƒdrawSquare(turtle,ƒwidthƒ-ƒlength,ƒlengthƒ-ƒheight,ƒlength)
ƒƒƒ
main()

CHAPTER 7 Simple Graphics and Image Processing[258]

C6840_07 11/19/08 11:42 AM Page 258

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 7.5] Four colored squares

7.1.8 Using the str Function with Objects

In previous chapters, we used the str function to convert numbers to their cor-
responding strings. For example, str(431) returns “431”. You can also use this
function to return information about an object’s state. This is helpful when you
need to debug some bad behavior or to learn if certain operations are producing
the expected results. You can apply the str function to any object. In response,
the interpreter attempts to return some form of string representation. If the
object’s class includes an __str__ method, the str function automatically runs
that method to obtain the string. The Turtle class actually includes such a
method, which builds and returns a string containing information about the state
of a Turtle object. The following session shows the use of str to print the
startup state of a turtle:

>>>ƒfromƒturtlegraphicsƒimportƒTurtle
>>>ƒt1ƒ=ƒTurtle()
>>>ƒprintƒstr(t1)
Position:ƒ(0,ƒ0)
Direction:ƒ90.0
Color:ƒblue
LineƒWidth:ƒ2
IsƒDown:ƒTrue

7.1 Simple Graphics [259]

C6840_07 11/19/08 11:42 AM Page 259

May not be copied, scanned, or duplicated, in whole or in part.

A simpler version of this code just uses the object itself as the operand of
print, which automatically calls the str function to obtain the object’s string
representation:

>>>ƒprintƒt1
Position:ƒ(0,ƒ0)
Direction:ƒ90.0
Color:ƒblue
LineƒWidth:ƒ2
IsƒDown:ƒTrue
>>>ƒ

7.1 Exercises
1 Explain the importance of the interface of a class of objects.

2 What is object instantiation? What are the options at the programmer’s
disposal during this process?

3 Define a function named drawLine. This function expects a Turtle
object and four integers as arguments. The integers represent the end-
points of a line segment. The function should draw this line segment
with the turtle and do no other drawing.

4 Describe what happens when you run the str function with a Turtle
object.

5 Turtle graphics windows do not expand in size. What do you suppose
happens when a Turtle object attempts to move beyond a window
boundary?

6 Add arguments to the function drawSquare so that it uses these
arguments to draw a square of a specified color.

7 The function drawRectangle expects a Turtle object and the coordi-
nates of the upper-left and lower-right corners of a rectangle as argu-
ments. Define this function, which draws the outline of the rectangle.

8 Modify the drawRectangle function so that it takes an RGB value and
an optional Boolean value named fillOn as arguments. Its default fill
value is False. If the fill value is True, the function should fill the
rectangle in the given color.

CHAPTER 7 Simple Graphics and Image Processing[260]

C6840_07 11/19/08 11:42 AM Page 260

May not be copied, scanned, or duplicated, in whole or in part.

7.2 Case Study: Recursive Patterns in Fractals
In this case study, we develop an algorithm that uses Turtle graphics to display a
special kind of curve known as a fractal object. Fractals are highly repetitive or
recursive patterns. A fractal object appears geometric, yet it cannot be described
with ordinary Euclidean geometry. Strangely, a fractal curve is not one-dimen-
sional, and a fractal surface is not two-dimensional. Instead, every fractal shape
has its own fractal dimension. To understand what this means, let’s start by con-
sidering the nature of an ordinary curve, which has a precise finite length
between any two points. By contrast, a fractal curve has an indefinite length
between any two points. The apparent length of a fractal curve depends on the
level of detail in which it is viewed. As you zoom in on a segment of a fractal
curve, you can see more and more details, and its length appears greater and
greater. Consider a coastline, for example. Seen from a distance, it has many wig-
gles but a discernible length. Now put a piece of the coastline under magnifica-
tion. It has many similar wiggles, and the discernible length increases.
Self-similarity under magnification is the defining characteristic of fractals and is
seen in the shapes of mountains, the branching patterns of tree limbs, and many
other natural objects.

One example of a fractal curve is the c-curve. Figure 7.6 shows the first six
levels of c-curves and a level-10 c-curve. The level-0 c-curve is a simple line
segment. The level-1 c-curve replaces the level-0 c-curve with two smaller level-0
c-curves that meet at right angles. The level-2 c-curve does the same thing for
each of the two line segments in the level-1 c-curve. This pattern of subdivision
can continue indefinitely, producing quite intricate shapes. In the remainder of
this case study, we develop an algorithm that uses Turtle graphics to display a
c-curve.

7.2 Case Study: Recursive Patterns in Fractals [261]

C6840_07 11/19/08 11:42 AM Page 261

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 7.6] C-curves of levels 0 through 6 and a c-curve of level 10

7.2.1 Request

Write a program that allows the user to draw a particular c-curve in varying
degrees.

7.2.2 Analysis

The proposed interface is shown in Figure 7.7. The program should prompt the
user for the level of the c-curve. After this integer is entered, the program should
display a Turtle graphics window in which it draws the c-curve.

CHAPTER 7 Simple Graphics and Image Processing[262]

C6840_07 11/19/08 11:42 AM Page 262

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 7.7] The interface for the c-curve program

7.2.3 Design

An N-level c-curve can be drawn with a recursive function. The function receives
a Turtle object, the end points of a line segment, and the current level as argu-
ments. At level 0, the function draws a simple line segment. Otherwise, a level N
c-curve consists of two level N - 1 c-curves, constructed as follows:

Let xm be (x1 + x2 + y1 - y2) / 2.

Let ym be (x2 + y1 + y2 - x1) / 2.

The first level N - 1 c-curve uses the line segment (x1, y1), (xm, ym), and
level N - 1, so the function is called recursively with these arguments.

The second level N - 1 c-curve uses the line segment (xm, ym), (x2, y2), and
level N - 1, so the function is called recursively with these arguments.

7.2 Case Study: Recursive Patterns in Fractals [263]

C6840_07 11/19/08 11:42 AM Page 263

May not be copied, scanned, or duplicated, in whole or in part.

For example, in a level-0 c-curve, let (x1, y1) be (50, -50) and (x2, y2) be (50, 50).
Then, to obtain a level-1 c-curve, use the formulas for computing xm and ym to
obtain (xm, ym), which is (0, 0). Figure 7.8 shows a solid line segment for the level-0
c-curve and two dashed line segments for the level-1 c-curve that result from these
operations. In effect, the operations produce two shorter line segments that meet at
right angles.

[FIGURE 7.8] A level-0 c-curve (solid) and a level-1 c-curve (dashed)

Here is the pseudocode for the recursive algorithm:

functionƒcCurve(turtle,ƒx1,ƒy1,ƒx2,ƒy2,ƒlevel)
ƒƒƒifƒlevelƒ==ƒ0:
ƒƒƒƒƒƒdrawLine(x1,ƒy1,ƒx2,ƒy2)
ƒƒƒelse
ƒƒƒƒƒƒxmƒ=ƒ(x1ƒ+ƒx2ƒ+ƒy1ƒ-ƒy2)ƒ/ƒ2
ƒƒƒƒƒƒymƒ=ƒ(x2ƒ+ƒy1ƒ+ƒy2ƒ-ƒx1)ƒ/ƒ2
ƒƒƒƒƒƒcCurve(turtle,ƒx1,ƒy1,ƒxm,ƒym,ƒlevelƒ-ƒ1)
ƒƒƒƒƒƒcCurve(turtle,ƒxm,ƒym,ƒx2,ƒy2,ƒlevelƒ-ƒ1)

The function drawLine uses the turtle to draw a line between two given
endpoints.

(50,50)

(0,0)

(50,-50)

CHAPTER 7 Simple Graphics and Image Processing[264]

C6840_07 11/19/08 11:42 AM Page 264

May not be copied, scanned, or duplicated, in whole or in part.

7.2.4 Implementation (Coding)

The program includes the three function definitions of cCurve, drawLine, and
main. Because drawLine is an auxiliary function, its definition is nested within
the definition of cCurve.

“””
Programƒfile:ƒccurve.py
Author:ƒKen

Thisƒprogramƒpromptsƒtheƒuserƒforƒtheƒlevelƒof
aƒc-curveƒandƒdrawsƒaƒc-curveƒofƒthatƒlevel.
“””

fromƒturtlegraphicsƒimportƒTurtle

defƒcCurve(turtle,ƒx1,ƒy1,ƒx2,ƒy2,ƒlevel):
ƒƒƒƒ“””Drawsƒaƒc-curveƒofƒtheƒgivenƒlevel.”””

ƒƒƒƒdefƒdrawLine(x1,ƒy1,ƒx2,ƒy2):
ƒƒƒƒƒƒƒƒ“””Drawsƒaƒlineƒsegmentƒbetweenƒtheƒendpoints.”””
ƒƒƒƒƒƒƒƒturtle.up()
ƒƒƒƒƒƒƒƒturtle.move(x1,ƒy1)
ƒƒƒƒƒƒƒƒturtle.down()
ƒƒƒƒƒƒƒƒturtle.move(x2,ƒy2)
ƒƒƒƒƒƒ
ƒƒƒƒifƒlevelƒ==ƒ0:
ƒƒƒƒƒƒƒƒdrawLine(x1,ƒy1,ƒx2,ƒy2)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒxmƒ=ƒ(x1ƒ+ƒx2ƒ+ƒy1ƒ-ƒy2)ƒ/ƒ2
ƒƒƒƒƒƒƒƒymƒ=ƒ(x2ƒ+ƒy1ƒ+ƒy2ƒ-ƒx1)ƒ/ƒ2
ƒƒƒƒƒƒƒƒcCurve(turtle,ƒx1,ƒy1,ƒxm,ƒym,ƒlevelƒ-ƒ1)
ƒƒƒƒƒƒƒƒcCurve(turtle,ƒxm,ƒym,ƒx2,ƒy2,ƒlevelƒ-ƒ1)

defƒmain():
ƒƒƒƒlevelƒ=ƒinput(“Enterƒtheƒlevelƒ(0ƒorƒgreater):ƒ“)
ƒƒƒƒturtleƒ=ƒTurtle(400,ƒ500)
ƒƒƒƒturtle.setWidth(1)
ƒƒƒƒcCurve(turtle,ƒ50,ƒ-100,ƒ50,ƒ100,ƒlevel)

main()

7.2 Case Study: Recursive Patterns in Fractals [265]

C6840_07 11/19/08 11:42 AM Page 265

May not be copied, scanned, or duplicated, in whole or in part.

7.3 Image Processing
Over the centuries, human beings have developed numerous technologies for
representing the visual world, the most prominent being sculpture, painting,
photography, and motion pictures. The most recent form of this type of tech-
nology is digital image processing. This enormous field includes the principles
and techniques for the following:

� The capture of images with devices such as flatbed scanners and digital
cameras

� The representation and storage of images in efficient file formats
� Constructing the algorithms in image-manipulation programs such as

Adobe Photoshop

In this section, we focus on some of the basic concepts and principles used to
solve problems in image processing.

7.3.1 Analog and Digital Information

Representing photographic images in a computer poses an interesting problem.
As you have seen, computers must use digital information which consists of
discrete values, such as individual integers, characters of text, or bits in a bit
string. However, the information contained in images, sound, and much of the
rest of the physical world is analog. Analog information contains a continuous
range of values. You can get an intuitive sense of what this means by contrasting
the behaviors of a digital clock and a traditional analog clock. A digital clock
shows each second as a discrete number on the display. An analog clock displays
the seconds as tick marks on a circle. The clock’s second hand passes by these
marks as it sweeps around the clock’s face. This sweep reveals the analog nature
of time: between any two tick marks on the analog clock, there is a continuous
range of positions or moments of time through which the second hand passes.
You can represent these moments as fractions of a second, but between any two
such moments are others that are more precise (recall the concept of precision
used with real numbers). The ticks representing seconds on the analog clock’s
face thus represent an attempt to sample moments of time as discrete values,
whereas time itself is continuous, or analog.

Early recording and playback devices for images and sound were all analog
devices. If you examine the surface of a vinyl record under a magnifying glass,
you will notice grooves with regular wave patterns. These patterns directly
reflect, or analogize, the continuous wave forms of the recorded sounds.

CHAPTER 7 Simple Graphics and Image Processing[266]

C6840_07 11/19/08 11:42 AM Page 266

May not be copied, scanned, or duplicated, in whole or in part.

Likewise, the chemical media on photographic film directly reflect the continu-
ous color and intensity values of light reflected from the subjects of photographs.

Somehow, the continuous analog information in a real visual scene must be
mapped into a set of discrete values. This conversion process also involves sam-
pling, a technology we consider next.

7.3.2 Sampling and Digitizing Images

A visual scene projects an infinite set of color and intensity values onto a two-
dimensional sensing medium, such as a human being’s retina or a scanner’s
surface. If you sample enough of these values, the digital information can
represent an image that is more or less indistinguishable to the human eye
from the original scene.

Sampling devices measure discrete color values at distinct points on a two-
dimensional grid. These values are pixels, which were introduced earlier in this
chapter. In theory, the more pixels that are sampled, the more continuous and
realistic the resulting image will appear. In practice, however, the human eye
cannot discern objects that are closer together than 0.1 mm, so a sampling of
10 pixels per linear millimeter (250 pixels per inch and 62,500 pixels per square
inch) would be plenty accurate. Thus, a 3-inch by 5-inch image would need

3 * 5 * 62,500 pixels/inch2 = 937,500 pixels

which is approximately one megapixel. For most purposes, however, you can
settle for a much lower sampling size and, thus, fewer pixels per square inch.

7.3.3 Image File Formats

Once an image has been sampled, it can be stored in one of many file formats. A
raw image file saves all of the sampled information. This has a cost and a bene-
fit: the benefit is that the display of a raw image will be the most true to life, but
the cost is that the file size of the image can be quite large. Back in the days when
disk storage was still expensive, computer scientists developed several schemes to
compress the data of an image to minimize its file size. Although storage is now
cheap, these formats are still quite economical for sending images across net-
works. Two of the most popular image file formats are JPEG (Joint Photographic
Experts Group) and GIF (Graphic Interchange Format).

Various data-compression schemes are used to reduce the file size of a JPEG
image. One scheme examines the colors of each pixel’s neighbors in the grid. If
any color values are the same, their positions rather than their values are stored,

7.3 Image Processing [267]

C6840_07 11/19/08 11:42 AM Page 267

May not be copied, scanned, or duplicated, in whole or in part.

thus potentially saving many bits of storage. Before the image is displayed, the
original color values are restored during the process of decompression. This
scheme is called lossless compression, meaning that no information is lost. To
save even more bits, another scheme analyzes larger regions of pixels and saves a
color value that the pixels’ colors approximate. This is called a lossy scheme,
meaning that some of the original color information is lost. However, when the
image is decompressed and displayed, the human eye usually is not able to detect
the difference between the new colors and the original ones.

A GIF image relies on an entirely different compression scheme. The com-
pression algorithm consists of two phases. In the first phase, the algorithm ana-
lyzes the color samples to build a table, or color palette, of up to 256 of the
most prevalent colors. The algorithm then visits each sample in the grid and
replaces it with the key of the closest color in the color palette. The resulting
image file thus consists of at most 256 color values and the integer keys of the
image’s colors in the palette. This strategy can potentially save a huge number of
bits of storage. The decompression algorithm uses the keys and the color palette
to restore the grid of pixels for display. Although GIF uses a lossy compression
scheme, it works very well for images with broad, flat areas of the same color,
such as cartoons, backgrounds, and banners.

7.3.4 Image-Manipulation Operations

Image-manipulation programs either transform the information in the pixels or
alter the arrangement of the pixels in the image. These programs also provide
fairly low-level operations for transferring images to and from file storage.
Among other things, these programs can do the following:

� Rotate an image
� Convert an image from color to grayscale
� Apply color filtering to an image
� Highlight a particular area in an image
� Blur all or part of an image
� Sharpen all or part of an image
� Control the brightness of an image
� Perform edge detection on an image
� Enlarge or reduce an image’s size
� Apply color inversion to an image
� Morph an image into another image

CHAPTER 7 Simple Graphics and Image Processing[268]

C6840_07 11/19/08 11:42 AM Page 268

May not be copied, scanned, or duplicated, in whole or in part.

You’ll learn how to write Python code that can perform some of these
manipulation tasks later in this chapter, and you will have a chance to practice
others in the programming projects.

7.3.5 The Properties of Images

When an image is loaded into a program such as a Web browser, the software
maps the bits from the image file into a rectangular area of colored pixels for dis-
play. The coordinates of the pixels in this two-dimensional grid range from (0, 0)
at the upper-left corner of an image to (width - 1, height - 1) at the lower-right
corner, where width and height are the image’s dimensions in pixels. Thus, the
screen coordinate system for the display of an image is somewhat different
from the standard Cartesian coordinate system that we used with Turtle graphics,
where the origin (0,0) is at the center of the rectangular grid. The RGB color
system introduced earlier in this chapter is a common way of representing the
colors in images. For our purposes, then, an image consists of a width, a height,
and a set of color values accessible by means of (x, y) coordinates. A color value
consists of the tuple (r, g, b), where the variables refer to the integer values of its
red, green, and blue components, respectively.

7.3.6 The images Module

To facilitate our discussion of image-processing algorithms, we now present a
small module of high-level Python resources for image processing. This package
of resources, which is named images, allows the programmer to load an image
from a file, view the image in a window, examine and manipulate an image’s RGB
values, and save the image to a file. Like turtlegraphics, the images module is
a non-standard, open-source Python tool. Installation instructions can be found
in Appendix B, but placing the file images.py and some sample image files in
your current working directory will get you started.

The images module includes a class named Image. The Image class repre-
sents an image as a two-dimensional grid of RGB values. The methods for the
Image class are listed in Table 7.4. In this table, the variable i refers to an
instance of the Image class.

7.3 Image Processing [269]

C6840_07 11/19/08 11:42 AM Page 269

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 7.4] The Image methods

Before we discuss some standard image-processing algorithms, let’s try out
the resources of the images module. This version of the images module accepts
only image files in GIF format. For the purposes of this exercise, we also assume
that a GIF image of my cat, Smokey, has been saved in a file named smokey.gif
in the current working directory. The following session with the interpreter does
three things:

1 Imports the Image class from the images module

2 Instantiates this class using the file named smokey.gif

3 Draws the image

The resulting image display window is shown in Figure 7.9. Although the
actual image is in color, with green grass surrounding the cat, in this book the
colors are not visible.

Image METHOD WHAT IT DOES

iƒ=ƒImage(filename) Loads and returns an image from a file with the
given filename. Raises an error if the filename is
not found or the file is not a GIF file.

iƒ=ƒImage(width,ƒ Creates and returns a blank image with the given
ƒƒƒƒƒƒƒƒƒƒheight) dimensions. The color of each pixel is white and

the filename is the empty string.

i.getWidth() Returns the width of i in pixels.

i.getHeight() Returns the height of i in pixels.

i.getPixel(x, y) Returns a tuple of integers representing the RGB
values of the pixel at position (x, y).

i.setPixel(x,ƒy,ƒ Replaces the RGB value at the position (x, y) with
ƒƒƒƒƒƒƒƒƒƒƒ(r,ƒg,ƒb)) the RGB value given by the tuple (r, g, b).

i.draw() Displays i in a window. The user must close the
window to return control to the method’s caller.

i.clone() Returns a copy of i.

i.save() Saves i under its current filename. If i does not yet
have a filename, save does nothing.

i.save(filename) Saves i under filename. Automatically adds a
.gif extension if filename does not contain it.

CHAPTER 7 Simple Graphics and Image Processing[270]

C6840_07 11/19/08 11:42 AM Page 270

May not be copied, scanned, or duplicated, in whole or in part.

>>>ƒfromƒimagesƒimportƒImage
>>>ƒimageƒ=ƒImage(“smokey.gif”)
>>>ƒimage.draw()ƒ

[FIGURE 7.9] An image display window

Python raises an error if it cannot locate the file in the current directory, or if
the file is not a GIF file. Note also that the user must close the window to return
control to the caller of the method draw. If you are working in the shell, the shell
prompt will reappear when you do this. The image can then be redrawn, after
other operations are performed, by calling draw again.

Once an image has been created, you can examine its width and height, as
follows:

>>>ƒimage.getWidth()
198
>>>ƒimage.getHeight()
149
>>>ƒ

Alternatively, you can print the image’s string representation:

>>>ƒprintƒimage
Filename:ƒsmokey.gif
Width:ƒƒ198
Height:ƒ149
>>>

7.3 Image Processing [271]

C6840_07 11/19/08 11:42 AM Page 271

May not be copied, scanned, or duplicated, in whole or in part.

The method getPixel returns a tuple of the RGB values at the given coor-
dinates. The following session shows the information for the pixel at position
(0, 0), which is at the image’s upper-left corner.

>>>ƒimage.getPixel(0,ƒ0)
(194,ƒ221,ƒ114)

Instead of loading an existing image from a file, the programmer can create a
new, blank image. The programmer specifies the image’s width and height; the
resulting image consists of all white pixels. Such images are useful for creating
backgrounds or drawing simple shapes, or creating new images that receive infor-
mation from existing images.

The programmer can use the method setPixel to replace an RGB value at
a given position in an image. The next session creates a new 150 by 150 image.
The pixels along a horizontal line at the middle of the image are then replaced
with new blue pixels. The images before and after this transformation are shown
in Figure 7.10. The loop visits every pixel along the row of pixels whose y coordi-
nate is the image’s height divided by 2.

>>>ƒimageƒ=ƒImage(150,ƒ150)
>>>ƒimage.draw()
>>>ƒblueƒ=ƒ(0,ƒ0,ƒ255)
>>>ƒyƒ=ƒimage.getHeight()ƒ/ƒ2
>>>ƒforƒxƒinƒxrange(image.getWidth()):
ƒƒƒƒƒƒƒimage.setPixel(x,ƒy,ƒblue)

>>>ƒimage.draw()

[FIGURE 7.10] An image before and after replacing the pixels

CHAPTER 7 Simple Graphics and Image Processing[272]

C6840_07 11/19/08 11:42 AM Page 272

May not be copied, scanned, or duplicated, in whole or in part.

Finally, an image can be saved under its current filename or a different file-
name. The save operation is used to write an image back to an existing file using
the current filename. The save operation can also receive a string parameter for
a new filename. The image is written to a file with that name, which then
becomes the current filename. The following code saves the new image using the
filename horizontal.gif:

>>>ƒimage.save(“horizontal.gif”)

If you omit the .gif extension in the filename, the method adds it automatically.

7.3.7 A Loop Pattern for Traversing a Grid

Most of the loops we have used in this book have had a linear loop structure—
that is, they visit each element in a sequence or they count through a sequence of
numbers using a single loop control variable. By contrast, many image-processing
algorithms use a nested loop structure to traverse a two-dimensional grid of
pixels. Figure 7.11 shows such a grid. Its height is 3 rows, numbered 0 through 2.
Its width is 5 columns, numbered 0 through 4. Each data value in the grid is
accessed with a pair of coordinates using the form (<column>, <row>). Thus,
the datum in the middle of the grid, which is shaded, is at position (2, 1). The
datum in the upper-left corner is at the origin of the grid, (0, 0).

[FIGURE 7.11] A grid with 3 rows and 5 columns

A nested loop structure to traverse a grid consists of two loops, an outer one
and an inner one. Each loop has a different loop control variable. The outer loop
iterates over one coordinate, while the inner loop iterates over the other coordinate.

3210

0

1

2

4

7.3 Image Processing [273]

C6840_07 11/20/08 2:42 PM Page 273

May not be copied, scanned, or duplicated, in whole or in part.

Here is a session that prints the pairs of coordinates visited when the outer loop
traverses the y coordinates:

>>>ƒwidthƒ=ƒ2
>>>ƒheightƒ=ƒ3
>>>ƒforƒyƒinƒxrange(height):
ƒƒƒƒƒƒƒforƒxƒinƒxrange(width):
ƒƒƒƒƒƒƒƒƒƒprintƒ(x,ƒy)
ƒƒƒƒƒƒƒprint

(0,ƒ0)ƒ(1,ƒ0)
(0,ƒ1)ƒ(1,ƒ1)
(0,ƒ2)ƒ(1,ƒ2)
>>>ƒ

As you can see, this loop marches across a row in an imaginary 2 by 3 grid, prints
the coordinates at each column in that row, and then moves on to the next row.
The following template captures this pattern, which is called a row-major
traversal. We use this template to develop many of the algorithms that follow.

forƒyƒinƒxrange(height):
ƒƒƒƒforƒxƒinƒxrange(width):
ƒƒƒƒƒƒƒƒdoƒsomethingƒatƒpositionƒ(x,ƒy)

7.3.8 A Word on Tuples

Many of the algorithms obtain a pixel from the image, apply some function to the
pixel’s RGB values, and reset the pixel with the results. Because a pixel’s RGB val-
ues are stored in a tuple, manipulating them is quite easy. Python allows the
assignment of one tuple to another in such a manner that the elements of the
source tuple can be bound to distinct variables in the destination tuple. For exam-
ple, suppose you want to increase each of a pixel’s RGB values by 10, thereby
making the pixel brighter. You first call getPixel to retrieve a tuple and assign it
to a tuple that contains three variables, as follows:

>>>ƒ(r,ƒg,ƒb)ƒ=ƒimage.getPixel(0,ƒ0)

CHAPTER 7 Simple Graphics and Image Processing[274]

C6840_07 11/20/08 2:54 PM Page 274

May not be copied, scanned, or duplicated, in whole or in part.

You can now see what the RGB values are by examining the following variables:

>>>ƒr
194
>>>ƒg
221
>>>ƒb
114

The task is completed by building a new tuple with the results of the computa-
tions and resetting the pixel to that tuple:

>>>ƒimage.setPixel(0,ƒ0,ƒ(rƒ+ƒ10,ƒgƒ+ƒ10,ƒbƒ+ƒ10))

The elements of a tuple can also be bound to variables when that tuple is
passed as an argument to a function. For example, the function average com-
putes the average of the numbers in a 3-tuple as follows:

>>>ƒdefƒaverage((a,ƒb,ƒc)):
ƒƒƒƒƒƒƒreturnƒ(aƒ+ƒbƒ+ƒc)ƒ/ƒ3

>>>ƒaverage((40,ƒ50,ƒ60))
50
>>>ƒ

Armed with these basic operations, we can now examine some simple image-
processing algorithms. Some of the algorithms visit every pixel in an image and
modify its color in some manner. Other algorithms use the information from an
image’s pixels to build a new image. For consistency and ease of use, we represent
each algorithm as a Python function that expects an image as an argument. Some
functions return a new image, whereas others simply modify the argument image.

7.3.9 Converting an Image to Black and White

Perhaps the easiest transformation is to convert a color image to black and white.
For each pixel, the algorithm computes the average of the red, green, and blue
values. The algorithm then resets the pixel’s color values to 0 (black) if the aver-
age is closer to 0, or to 255 (white) if the average is closer to 255. The code for
the function blackAndWhite follows. Figure 7.12 shows Smokey the cat before

7.3 Image Processing [275]

C6840_07 11/19/08 11:42 AM Page 275

May not be copied, scanned, or duplicated, in whole or in part.

and after the transformation. (Keep in mind that the original image is a color
image; the colors are not visible in this book.)

defƒblackAndWhite(image):
ƒƒƒƒ“””Convertsƒtheƒargumentƒimageƒtoƒblackƒandƒwhite.”””
ƒƒƒƒblackPixelƒ=ƒ(0,ƒ0,ƒ0)
ƒƒƒƒwhitePixelƒ=ƒ(255,ƒ255,ƒ255)
ƒƒƒƒforƒyƒinƒxrange(image.getHeight()):
ƒƒƒƒƒƒƒƒforƒxƒinƒxrange(image.getWidth()):
ƒƒƒƒƒƒƒƒƒƒƒƒ(r,ƒg,ƒb)ƒ=ƒimage.getPixel(x,ƒy)
ƒƒƒƒƒƒƒƒƒƒƒƒaverageƒ=ƒ(rƒ+ƒgƒ+ƒb)ƒ/ƒ3
ƒƒƒƒƒƒƒƒƒƒƒƒifƒaverageƒ<ƒ128:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimage.setPixel(x,ƒy,ƒblackPixel)
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimage.setPixel(x,ƒy,ƒwhitePixel)

[FIGURE 7.12] Converting a color image to black and white

Note that the second image appears rather stark, like a woodcut.
The function can be tested in a short script, as follows:

fromƒimagesƒimportƒImage

#ƒCodeƒforƒblackAndWhite’sƒfunctionƒdefinitionƒgoesƒhere

defƒmain(filenameƒ=ƒ“smokey.gif”):
ƒƒƒƒimageƒ=ƒImage(filename)
ƒƒƒƒprintƒ“Closeƒtheƒimageƒwindowƒtoƒcontinue.ƒ“
ƒƒƒƒimage.draw()
ƒƒƒƒblackAndWhite(image)
ƒƒƒƒprintƒ“Closeƒtheƒimageƒwindowƒtoƒquit.ƒ“
ƒƒƒƒimage.draw()

main()

CHAPTER 7 Simple Graphics and Image Processing[276]

C6840_07 11/19/08 11:42 AM Page 276

May not be copied, scanned, or duplicated, in whole or in part.

Note that the main function includes an optional argument for the image filename.
Its default should be the name of an image in the current working directory.

7.3.10 Converting an Image to Grayscale

Black and white photographs are not really just black and white, but also contain
various shades of gray known as grayscale. (In fact, the original color images of
Smokey the cat, which you saw earlier in this chapter, are reproduced in grayscale
in this book.) Grayscale can be an economical color scheme, wherein the only
color values might be 8, 16, or 256 shades of gray (including black and white at
the extremes). Let’s consider how to convert a color image to grayscale. As a first
step, you might try replacing the color values of each pixel with their average, as
follows:

averageƒ=ƒ(rƒ+ƒgƒ+ƒb)ƒ/ƒ3
image.setPixel(x,ƒy,ƒ(average,ƒaverage,ƒaverage))

Although this method is simple, it does not reflect the manner in which the dif-
ferent color components affect human perception. The human eye is actually
more sensitive to green and red than it is to blue. As a result, the blue component
appears darker than the other two components. A scheme that combines the
three components needs to take these differences in luminance into account. A
more accurate method would weight green more than red and red more than
blue. Therefore, to obtain the new RGB values, instead of adding up the color
values and dividing by three, you should multiply each one by a weight factor and
add the results. Psychologists have determined that the relative luminance pro-
portions of green, red, and blue are .587, .299, and .114, respectively. Note that
these values add up to 1. The next function, grayscale, uses this strategy, and
Figure 7.13 shows the results.

defƒgrayscale(image):
ƒƒƒƒ“””Convertsƒtheƒargumentƒimageƒtoƒgrayscale.”””
ƒƒƒƒforƒyƒinƒxrange(image.getHeight()):
ƒƒƒƒƒƒƒƒforƒxƒinƒxrange(image.getWidth()):
ƒƒƒƒƒƒƒƒƒƒƒƒ(r,ƒg,ƒb)ƒ=ƒimage.getPixel(x,ƒy)
ƒƒƒƒƒƒƒƒƒƒƒƒrƒ=ƒint(rƒ*ƒ0.299)
ƒƒƒƒƒƒƒƒƒƒƒƒgƒ=ƒint(gƒ*ƒ0.587)
ƒƒƒƒƒƒƒƒƒƒƒƒbƒ=ƒint(bƒ*ƒ0.114)
ƒƒƒƒƒƒƒƒƒƒƒƒlumƒ=ƒrƒ+ƒgƒ+ƒb
ƒƒƒƒƒƒƒƒƒƒƒƒimage.setPixel(x,ƒy,ƒ(lum,ƒlum,ƒlum))

7.3 Image Processing [277]

C6840_07 11/19/08 11:42 AM Page 277

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 7.13] Converting a color image to grayscale

A comparison of the results of this algorithm with those of the simpler one
using the crude averages is left as an exercise for you.

7.3.11 Copying an Image

The next few algorithms do not modify an existing image, but instead use that
image to generate a brand new image with the desired properties. One could cre-
ate a new, blank image of the same height and width as the original, but it is
often useful to start with an exact copy of the original image that retains the pixel
information as well. The Image class includes a clone method for this purpose.
The method clone builds and returns a new image with the same attributes as
the original one, but with an empty string as the filename. The two images are
thus structurally equivalent but not identical, as discussed in Chapter 5. This
means that changes to the pixels in one image will have no impact on the pixels
in the same positions in the other image. The following session demonstrates the
use of the clone method:

>>>ƒfromƒimagesƒimportƒImage
>>>ƒimageƒ=ƒImage(“smokey.gif”)
>>>ƒimage.draw()
>>>ƒnewImageƒ=ƒimage.clone()ƒƒƒƒƒ#ƒCreateƒaƒcopyƒofƒimage
>>>ƒnewImage.draw()
>>>ƒgrayscale(newImage)ƒƒƒƒƒƒƒƒƒƒ#ƒChangeƒinƒsecondƒwindowƒonly
>>>ƒnewImage.draw()
>>>ƒimage.draw()

CHAPTER 7 Simple Graphics and Image Processing[278]

C6840_07 11/19/08 11:42 AM Page 278

May not be copied, scanned, or duplicated, in whole or in part.

7.3.12 Blurring an Image

Occasionally, an image appears to contain rough, jagged edges. This condition,
known as pixilation, can be mitigated by blurring the image’s problem areas.
Blurring makes these areas appear softer, but at the cost of losing some definition.
We now develop a simple algorithm to blur an entire image. This algorithm resets
each pixel’s color to the average of the colors of the four pixels that surround it.
The function blur expects an image as an argument and returns a copy of that
image with blurring. The function blur begins its traversal of the grid with posi-
tion (1, 1) and ends with position (width - 2, height - 2). Although this means that
the algorithm does not transform the pixels on the image’s outer edges, you do not
have to check for the grid’s boundaries when you obtain information from a pixel’s
neighbors. Here is the code for blur, followed by an explanation:

defƒblur(image):
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒnewƒimageƒwhichƒisƒaƒblurred
ƒƒƒƒcopyƒofƒtheƒargumentƒimage.”””

ƒƒƒƒdefƒtripleSum((r1,ƒg1,ƒb1),ƒ(r2,ƒg2,ƒb2)):ƒƒƒƒƒƒƒƒƒƒƒƒ#1ƒƒƒ
ƒƒƒƒƒƒƒƒreturnƒ(r1ƒ+ƒr2,ƒg1ƒ+ƒg2,ƒb1ƒ+ƒb2)

ƒƒƒƒnewƒ=ƒimage.clone()
ƒƒƒƒforƒyƒinƒxrange(1,ƒimage.getHeight()ƒ–ƒ1):
ƒƒƒƒƒƒƒƒforƒxƒinƒxrange(1,ƒimage.getWidth()ƒ–ƒ1):
ƒƒƒƒƒƒƒƒƒƒƒƒoldPƒ=ƒimage.getPixel(x,ƒy)
ƒƒƒƒƒƒƒƒƒƒƒƒleftƒ=ƒimage.getPixel(xƒ-ƒ1,ƒy)ƒƒƒ#ƒToƒleft
ƒƒƒƒƒƒƒƒƒƒƒƒrightƒ=ƒimage.getPixel(xƒ+ƒ1,ƒy)ƒƒ#ƒToƒright
ƒƒƒƒƒƒƒƒƒƒƒƒtopƒ=ƒimage.getPixel(x,ƒyƒ-ƒ1)ƒƒƒƒ#ƒAbove
ƒƒƒƒƒƒƒƒƒƒƒƒbottomƒ=ƒimage.getPixel(x,ƒyƒ+ƒ1)ƒ#ƒBelow
ƒƒƒƒƒƒƒƒƒƒƒƒsumsƒ=ƒreduce(tripleSum,ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#2
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ[oldP,ƒleft,ƒright,ƒtop,ƒbottom])
ƒƒƒƒƒƒƒƒƒƒƒƒaveragesƒ=ƒtuple(map(lambdaƒx:ƒxƒ/ƒ5,ƒsums))ƒƒ#3
ƒƒƒƒƒƒƒƒƒƒƒƒnew.setPixel(x,ƒy,ƒaverages)
ƒƒƒƒreturnƒnew

The code for blur includes some interesting design work. In the following
explanation, the numbers noted appear to the right of the corresponding lines
of code:

� At #1, the nested auxiliary function tripleSum is defined. This function
expects two tuples of integers as arguments and returns a single tuple con-
taining the sums of the values at each position.

7.3 Image Processing [279]

C6840_07 11/19/08 11:42 AM Page 279

May not be copied, scanned, or duplicated, in whole or in part.

� At #2, five tuples of RGB values are wrapped in a list and passed with the
tripleSum function to the reduce function. This function repeatedly
applies tripleSum to compute the sums of the tuples, until a single tuple
containing the sums is returned.

� At #3, a lambda function is mapped onto the tuple of sums and the
resulting list is converted to a tuple. The lambda function divides each
sum by 5. Thus, you are left with a tuple of the average RGB values.

Although this code is still rather complex, try writing it without map and
reduce, and then compare the two versions.

7.3.13 Edge Detection

When artists paint pictures, they often sketch an outline of the subject in pencil
or charcoal. They then fill in and color over the outline to complete the painting.
Edge detection performs the inverse function on a color image: it removes the
full colors to uncover the outlines of the objects represented in the image.

A simple edge-detection algorithm examines the neighbors below and to the
left of each pixel in an image. If the luminance of the pixel differs from that of
either of these two neighbors by a significant amount, you have detected an edge
and you set that pixel’s color to black. Otherwise, you set the pixel’s color to white.

The function detectEdges expects an image and an integer as parameters.
The function returns a new black-and-white image that explicitly shows the edges
in the original image. The integer parameter allows the user to experiment with
various differences in luminance. Figure 7.14 shows the image of Smokey the cat
before and after detecting edges with luminance thresholds of 10 and 20. Here is
the code for function detectEdges:

defƒdetectEdges(image,ƒamount):
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒnewƒimageƒinƒwhichƒtheƒ
ƒƒƒƒedgesƒofƒtheƒargumentƒimageƒareƒhighlightedƒand
ƒƒƒƒtheƒcolorsƒareƒreducedƒtoƒblackƒandƒwhite.”””

ƒƒƒƒdefƒaverage((r,ƒg,ƒb)):
ƒƒƒƒƒƒƒƒreturnƒ(rƒ+ƒgƒ+ƒb)ƒ/ƒ3

ƒƒƒƒblackPixelƒ=ƒ(0,ƒ0,ƒ0)
ƒƒƒƒwhitePixelƒ=ƒ(255,ƒ255,ƒ255)
ƒƒƒƒnewƒ=ƒimage.clone()

continued

CHAPTER 7 Simple Graphics and Image Processing[280]

C6840_07 11/19/08 11:42 AM Page 280

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒforƒyƒinƒxrange(image.getHeight()ƒ–ƒ1):
ƒƒƒƒƒƒƒƒforƒxƒinƒxrange(1,ƒimage.getWidth()):
ƒƒƒƒƒƒƒƒƒƒƒƒoldPixelƒ=ƒimage.getPixel(x,ƒy)
ƒƒƒƒƒƒƒƒƒƒƒƒleftPixelƒ=ƒimage.getPixel(xƒ-ƒ1,ƒy)
ƒƒƒƒƒƒƒƒƒƒƒƒbottomPixelƒ=ƒimage.getPixel(x,ƒyƒ+ƒ1)
ƒƒƒƒƒƒƒƒƒƒƒƒoldLumƒ=ƒaverage(oldPixel)
ƒƒƒƒƒƒƒƒƒƒƒƒleftLumƒ=ƒaverage(leftPixel)
ƒƒƒƒƒƒƒƒƒƒƒƒbottomLumƒ=ƒaverage(bottomPixel)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒabs(oldLumƒ-ƒleftLum)ƒ>ƒamountƒorƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒabs(oldLumƒ-ƒbottomLum)ƒ>ƒamount:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnew.setPixel(x,ƒy,ƒblackPixel)
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnew.setPixel(x,ƒy,ƒwhitePixel)
ƒƒƒƒreturnƒnew

[FIGURE 7.14] Edge detection: the original image, a luminance threshold of 10, and a luminance
threshold of 20

7.3.14 Reducing the Image Size

The size and the quality of an image on a display medium, such as a computer
monitor or a printed page, depend on two factors: the image’s width and height in
pixels and the display medium’s resolution. Resolution is measured in pixels, or
dots per inch (DPI). When the resolution of a monitor is increased, the images
appear smaller but their quality increases. Conversely, when the resolution is
decreased, images become larger but their quality degrades. Some devices, such as
printers, provide good-quality image displays with small DPIs such as 72, whereas
monitors tend to give better results with higher DPIs. The resolution of an image
itself can be set before the image is captured. Scanners and digital cameras have
controls that allow the user to specify the DPI values. A higher DPI causes the
sampling device to take more samples (pixels) through the two-dimensional grid.

In this section, we ignore the issues raised by resolution and learn how to
reduce the size of an image once it has been captured. (For the purposes of this

7.3 Image Processing [281]

C6840_07 11/19/08 11:42 AM Page 281

May not be copied, scanned, or duplicated, in whole or in part.

discussion, the size of an image is its width and height in pixels.) Reducing an
image’s size can dramatically improve its performance characteristics, such as load
time in a Web page and space occupied on a storage medium. In general, if the
height and width of an image are each reduced by a factor of N, the number of
color values in the resulting image is reduced by a factor of N 2.

A size reduction usually preserves an image’s aspect ratio (that is, the ratio of
its width to its height). A simple way to shrink an image is to create a new image
whose width and height are a constant fraction of the original image’s width and
height. The algorithm then copies the color values of just some of the original
image’s pixels to the new image. For example, to reduce the size of an image by a
factor of 2, you could copy the color values from every other row and every other
column of the original image to the new image.

The Python function shrink exploits this strategy. The function expects the orig-
inal image and a positive integer shrinkage factor as parameters. A shrinkage factor of
2 tells Python to shrink the image to 1 ⁄2 of its original dimensions, a factor of 3 tells
Python to shrink the image to 1⁄3 of its original dimensions, and so forth. The algo-
rithm uses the shrinkage factor to compute the size of the new image and then creates
it. Because a one-to-one mapping of grid positions in the two images is not possible,
separate variables are used to track the positions of the pixels in the original image and
the new image. The loop traverses the larger image (the original) and skips positions
by incrementing its coordinates by the shrinkage factor. The new image’s coordinates
are incremented by 1, as usual. The loop continuation conditions are also offset by the
shrinkage factor to avoid range errors. Here is the code for the function shrink:

defƒshrink(image,ƒfactor):
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒnewƒimageƒwhichƒisƒaƒsmaller
ƒƒƒƒcopyƒofƒtheƒargumentƒimage,ƒbyƒtheƒfactorƒargument.”””
ƒƒƒƒwidthƒ=ƒimage.getWidth()
ƒƒƒƒheightƒ=ƒimage.getHeight()
ƒƒƒƒnewƒ=ƒImage(widthƒ/ƒfactor,ƒheightƒ/ƒfactor)
ƒƒƒƒoldYƒ=ƒ0
ƒƒƒƒnewYƒ=ƒ0
ƒƒƒƒwhileƒoldYƒ<ƒheightƒ-ƒfactor:
ƒƒƒƒƒƒƒƒoldXƒ=ƒ0
ƒƒƒƒƒƒƒƒnewXƒ=ƒ0
ƒƒƒƒƒƒƒƒwhileƒoldXƒ<ƒwidthƒ-ƒfactor:
ƒƒƒƒƒƒƒƒƒƒƒƒoldPƒ=ƒimage.getPixel(oldX,ƒoldY)
ƒƒƒƒƒƒƒƒƒƒƒƒnew.setPixel(newX,ƒnewY,ƒoldP)
ƒƒƒƒƒƒƒƒƒƒƒƒoldXƒ+=ƒfactor
ƒƒƒƒƒƒƒƒƒƒƒƒnewXƒ+=ƒ1
ƒƒƒƒƒƒƒƒoldYƒ+=ƒfactor
ƒƒƒƒƒƒƒƒnewYƒ+=ƒ1
ƒƒƒƒreturnƒnew

CHAPTER 7 Simple Graphics and Image Processing[282]

C6840_07 11/19/08 11:42 AM Page 282

May not be copied, scanned, or duplicated, in whole or in part.

Reducing an image’s size throws away some of its pixel information. Indeed,
the greater the reduction, the greater the information loss. However, as the
image becomes smaller, the human eye does not normally notice the loss of visual
information, and therefore the quality of the image remains stable to perception.

The results are quite different when an image is enlarged. To increase the
size of an image, you have to add pixels that were not there to begin with. In this
case, you try to approximate the color values that pixels would receive if you took
another sample of the subject at a higher resolution. This process can be very
complex, because you also have to transform the existing pixels to blend in with
the new ones that are added. Because the image gets larger, the human eye is in a
better position to notice any degradation of quality when comparing it to the
original. The development of a simple enlargement algorithm is left as an exer-
cise for you.

Although we have covered only a tiny subset of the operations typically per-
formed by an image-processing program, these operations and many more use
the same underlying concepts and principles.

7.3 Exercises
1 Explain the advantages and disadvantages of lossless and lossy image file-

compression schemes.

2 The size of an image is 1680 pixels by 1050 pixels. Assume that this
image has been sampled using the RGB color system and placed into a
raw image file. What is the minimum size of this file in megabytes?
(Hint: There are 8 bits in a byte, 1024 bits in a kilobyte, and 1000 kilo-
bytes in a megabyte.)

3 Describe the difference between Cartesian coordinates and screen
coordinates.

4 Describe how a row-major traversal visits every position in a two-
dimensional grid.

5 How would a column-major traversal of a grid work? Write a code seg-
ment that prints the positions visited by a column-major traversal of a
2 by 3 grid.

6 Explain why one would use the clone method with a given object.

7 Why does the blur function need to work with a copy of the
original image?

7.3 Image Processing [283]

C6840_07 11/19/08 11:42 AM Page 283

May not be copied, scanned, or duplicated, in whole or in part.

Summary
� Object-based programming uses classes, objects, and methods to solve

problems.
� A class specifies a set of attributes and methods for the objects of

that class.
� The values of the attributes of a given object make up its state.
� A new object is obtained by instantiating its class. An object’s

attributes receive their initial values during instantiation.
� The behavior of an object depends on its current state and on the

methods that manipulate this state.
� The set of a class’s methods is called its interface. The interface is

what a programmer needs to know to use objects of a class. The infor-
mation in an interface usually includes the method headers and docu-
mentation about arguments, return values, and changes of state.

� A class usually includes an __str__ method that returns a string rep-
resentation of an object of the class. This string might include infor-
mation about the object’s current state. Python’s str function calls
this method.

� Turtle graphics is a lightweight toolkit used to draw pictures in a
Cartesian coordinate system. In this system, the turtle object has a
position, a color, a line width, a direction, and a state of being down
or up with respect to a drawing window. The values of these attributes
are used and changed when the turtle object’s methods are called.

� The RGB system represents a color value by mixing integer compo-
nents that represent red, green, and blue intensities. There are 256
different values for each component, ranging from 0, indicating
absence, to 255, indicating complete saturation. There are 224 differ-
ent combinations of RGB components for 16,777,216 unique colors.

� A grayscale system uses 8, 16, or 256 distinct shades of gray.
� Digital images are captured by sampling analog information from a

light source, using a device such as a digital camera or a flatbed scan-
ner. Each sampled color value is mapped to a discrete color value
among those supported by the given color system.

� Digital images can be stored in several file formats. A raw image for-
mat preserves all of the sampled color information, but occupies the
most storage space. The JPEG format uses various data-compression
schemes to reduce the file size, while preserving fidelity to the original

CHAPTER 7 Simple Graphics and Image Processing[284]

C6840_07 11/19/08 11:42 AM Page 284

May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS [285]

samples. Lossless schemes either preserve or reconstitute the
original samples upon decompression. Lossy schemes lose some of
the original sample information. The GIF format is a lossy scheme
that uses a palette of up to 256 colors and stores the color information
for the image as indexes into this palette.

� During the display of an image file, each color value is mapped onto a
pixel in a two-dimensional grid. The positions in this grid correspond
to the screen coordinate system, in which the upper-left corner is at
(0, 0), and the lower-right corner is at (width – 1, height – 1).

� A nested loop structure is used to visit each position in a two-
dimensional grid. In a row-major traversal, the outer loop of this
structure moves down the rows using the y-coordinate, and the inner
loop moves across the columns using the x-coordinate. Each column
in a row is visited before moving to the next row. A column-major
traversal reverses these settings.

� Image-manipulation algorithms either transform pixels at given positions
or create a new image using the pixel information of a source image.
Examples of the former type of operation are conversion to black and
white and conversion to grayscale. Blurring, edge detection, and altering
the image size are examples of the second type of operation.

REVIEW QUESTIONS
1 The interface of a class is the set of all its

a objects
b attributes
c methods

2 The state of an object consists of

a its class of origin
b the values of all of its attributes
c its physical structure

3 Instantiation is a process that

a compares two objects for equality
b builds a string representation of an object
c creates a new object of a given class

C6840_07 11/19/08 11:42 AM Page 285

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 Simple Graphics and Image Processing[286]

4 The str function

a creates a new object
b copies an existing object
c returns a string representation of an object

5 The clone method

a creates a new object
b copies an existing object
c returns a string representation of an object

6 The origin (0, 0) in a screen coordinate system is at

a the center of a window
b the upper-left corner of a window

7 A row-major traversal of a two-dimensional grid visits all of the positions
in a

a row before moving to the next row
b column before moving to the next column

8 In a system of 256 unique colors, the number of bits needed to represent
each color is

a 4
b 8
c 16

9 In the RGB system, where each color contains three components with
256 possible values each, the number of bits needed to represent each
color is

a 8
b 24
c 256

10 The process whereby analog information is converted to digital
information is called

a recording
b sampling
c filtering
d compressing

C6840_07 11/19/08 11:42 AM Page 286

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [287]

PROJECTS
1 Define a function drawCircle. This function should expect a Turtle

object, the coordinates of the circle’s center point, and the circle’s radius
as arguments. The function should draw the specified circle. The algo-
rithm should draw the circle’s circumference by turning 3 degrees and
moving a given distance, 120 times. Calculate the distance moved with
the formula 2.0 * π * radius / 120.0.

2 Modify this chapter’s case study program (the c-curve) so that it draws
the line segments using random colors.

3 The Koch snowflake is a fractal shape. At level 0, the shape is an equilateral
triangle. At level 1, each line segment is split into four equal parts, pro-
ducing an equilateral bump in the middle of each segment. Figure 7.15
shows these shapes at levels 0, 1, and 2.

[FIGURE 7.15] First three levels of a Koch snowflake

At the top level, the script uses a function drawFractalLine to draw three
fractal lines. Each line is specified by a given distance, direction (angle), and
level. The initial angles are 0, -120, and 120 degrees. The initial distance
can be any size, such as 200 pixels. The function drawFractalLine is
recursive. If the level is 0, then the turtle moves the given distance in the
given direction. Otherwise, the function draws four fractal lines with 1⁄3 of
the given distance, angles that produce the given effect, and the given level
minus 1. Write a script that draws the Koch snowflake.

4 The twentieth century Dutch artist Piet Mondrian developed a style of
abstract painting that exhibited simple recursive patterns. To generate
such a pattern with a computer, one would begin with a filled rectangle

C6840_07 11/19/08 11:42 AM Page 287

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 Simple Graphics and Image Processing[288]

in a random color and then repeatedly fill two unequal subdivisions with
random colors, as shown in Figure 7.16 (actual colors not shown).

[FIGURE 7.16] Generating a simple recursive pattern in the style of Piet Mondrian

As you can see, the algorithm continues the process of subdivision until
an “aesthetically right moment” is reached. In this version, the algorithm
divides the current rectangle into portions representing 1⁄3 and 2⁄3 of its
area and alternates these subdivisions along the horizontal and vertical
axes. Design, implement, and test a script that uses a recursive function
to draw these patterns.

5 Define and test a function named posterize. This function expects an
image and a tuple of RGB values as arguments. The function modifies the
image like the blackAndWhite function, but uses the given RGB values
instead of black.

6 Define a second version of the grayscale function that uses the
allegedly crude method of simply averaging each RGB value. Test
the function by comparing its results with those of the other version
discussed in this chapter.

7 Inverting an image makes it look like a photographic negative. Define
and test a function named invert. This function expects an image as an
argument and resets each RGB component to 255 minus that compo-
nent. Be sure to test the function with images that have been converted
to grayscale and black and white as well as color images.

8 Old-fashioned photographs from the nineteenth century are not quite
black and white and not quite color, but seem to have shades of gray,
brown, and blue. This effect is known as sepia. Write and test a function
named sepia that converts a color image to sepia. This function should
first call grayscale to convert the color image to grayscale. A code

C6840_07 11/19/08 11:42 AM Page 288

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [289]

segment for transforming the grayscale values to achieve a sepia effect
follows. Note that the value for green does not change.

ifƒredƒ<ƒ63:
ƒƒƒƒredƒ=ƒint(redƒ*ƒ1.1);
ƒƒƒƒblueƒ=ƒint(blueƒ*ƒ0.9)
elifƒredƒ<ƒ192:
ƒƒƒƒredƒ=ƒint(redƒ*ƒ1.15);
ƒƒƒƒblueƒ=ƒint(blueƒ*ƒ0.85);
else:
ƒƒƒƒredƒ=ƒmin(int(redƒ*ƒ1.08),ƒ255);
ƒƒƒƒblueƒ=ƒint(blueƒ*ƒ0.93);

9 Darkening an image requires adjusting all of its pixels toward black as a
limit, whereas lightening an image requires adjusting them toward white as
a limit. Because black is RGB (0, 0, 0) and white is RGB (255, 255, 255),
adjusting the three RGB values of each pixel by the same amount in either
direction will have the desired effect. Of course, the algorithms have to
avoid exceeding either limit during the adjustments.

Lightening and darkening are actually special cases of a process known as
color filtering. A color filter is any RGB triple applied to an entire
image. The filtering algorithm adjusts each pixel by the amounts speci-
fied in the triple. For example, you can increase the amount of red in an
image by applying a color filter with a positive red value and green and
blue values of 0. The filter (20, 0, 0) would make an image’s overall color
slightly redder. Alternatively, you can reduce the amount of red by apply-
ing a color filter with a negative red value. Once again, the algorithms
have to avoid exceeding the limits on the RGB values.

Develop three algorithms for lightening, darkening, and color filtering as
three related Python functions, lighten, darken, and colorFilter.
The first two functions should expect an image and a positive integer as
arguments. The third function should expect an image and a tuple of
integers (the RGB values) as arguments. The following session shows
how these functions can be used with the images image1, image2, and
image3, which are initially white:

>>>ƒdarken(image1,ƒ128)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒConvertsƒtoƒgray
>>>ƒdarken(image2,ƒ64)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒConvertsƒtoƒdarkƒgray
>>>ƒcolorFilter(image3,ƒ(255,ƒ0,ƒ0))ƒƒƒ#ƒConvertsƒtoƒred

Note that the function colorFilter should do most of the work.

C6840_07 11/19/08 11:42 AM Page 289

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 7 Simple Graphics and Image Processing[290]

10 The edge-detection function described in this chapter returns a black-
and-white image. Think of a similar way to transform color values so
that the new image is still in its original colors but the outlines within it
are merely sharpened. Then, define a function named sharpen that per-
forms this operation. The function should expect an image and two inte-
gers as arguments. One integer should represent the degree to which the
image should be sharpened. The other integer should represent the
threshold used to detect edges. (Hint: A pixel can be darkened by making
its RGB values smaller.)

11 To enlarge an image, one must fill in new rows and columns with color
information based on the colors of neighboring positions in the original
image. Develop and test a function named enlarge. This function should
expect an image and an integer factor as arguments. The function should
build and return a new image that represents the expansion of the original
image by the factor. (Hint: Copy each row of pixels in the original image
to one or more rows in the new image. To copy a row, use two index vari-
ables, one that starts on the left of the row and one that starts on the
right. These two indexes converge to the middle. This will allow you to
copy each pixel to one or more positions of a row in the new image.)

12 Each image-processing function that modifies its image argument has
the same loop pattern for traversing the image. The only thing that
varies is the code used to change each pixel within the loop. Section 6.6
of this book, on higher-order functions, suggests a simpler design pattern
for such code. Design a single function, named transform, which
expects an image and a function as arguments. When this function is
called, it should be passed another function that expects a tuple of inte-
gers and returns a tuple of integers. This is the function that transforms
the information for an individual pixel (such as converting it to black and
white or grayscale). The transform function contains the loop logic for
traversing its image argument. In the body of the loop, the transform
function accesses the pixel at the current position, passes it as an argu-
ment to the other function, and resets the pixel in the image to the func-
tion’s value. Write and test a script that defines this function and uses it
to perform at least two different types of transformation on an image.

C6840_07 11/19/08 11:42 AM Page 290

May not be copied, scanned, or duplicated, in whole or in part.

After completing this chapter, you will be able to:
� Determine the attributes and behavior of a class of objects

required by a program
� List the methods, including their parameters and return types,

that realize the behavior of a class of objects
� Choose the appropriate data structures to represent the

attributes of a class of objects
� Define a constructor, instance variables, and methods for a

class of objects
� Recognize the need for a class variable and define it
� Define a method that returns the string representation of

an object
� Define methods for object equality and comparisons
� Exploit inheritance and polymorphism when developing classes
� Transfer objects to and from files
This book has covered the use of many software tools in computa-

tional problem solving. The most important of these tools are the
abstraction mechanisms for simplifying designs and controlling the
complexity of solutions. Abstraction mechanisms include functions,
modules, objects, and classes. In each case, we have begun with an
external view of a resource, showing what it does and how it can be
used. For example, to use a function in the built-in math module, you
import it, run help to learn how to use the function correctly, and
then include it appropriately in your code. The same procedures are
followed for built-in data structures such as strings and lists, and for
library resources such as the Turtle and Image classes covered in
Chapter 7. From a user’s perspective, you shouldn’t be concerned with
how a resource performs its task. The beauty and utility of an abstrac-
tion is that it frees you from the need to be concerned with such details.

[CHAPTER] Design with Classes8

C6840_08 11/19/08 1:48 PM Page 291

May not be copied, scanned, or duplicated, in whole or in part.

Unfortunately, not all useful abstractions are built in. You will sometimes
need to custom design an abstraction to suit the needs of a specialized application
or suite of applications you are developing. When designing your own abstrac-
tion, you must take a different view from that of users and concern yourself with
the inner workings of a resource. The programmer who defines a new function
or constructs a new module of resources is using the resources provided by others
to build new software components. In this chapter, we take an internal view of
objects and classes, showing how to design, implement, and test another useful
abstraction mechanism—a class.

Programming languages that allow the programmer to define new classes of
objects are called object-oriented languages. These languages also support a
style of programming called object-oriented programming. Unlike object-
based programming, which simply uses ready-made objects and classes within
a framework of functions and algorithmic code, object-oriented programming
sustains an effort to conceive and build entire software systems from cooperating
classes. We begin this chapter by exploring the definitions of a few classes. We
then discuss how cooperating classes can be organized into complex software sys-
tems. This strategy is rather different from the strategy of procedural design with
functions discussed in Chapter 6. The advantages and disadvantages of each
design strategy will become clear as we proceed.

8.1 Getting Inside Objects and Classes
Programmers who use objects and classes know several things:

� The interface or set of methods that can be used with a class of objects
� The attributes of an object that describe its state from the user’s point

of view
� How to instantiate a class to obtain an object

Like functions, objects are abstractions. A function packages an algorithm in
a single operation that can be called by name. An object packages a set of data
values—its state—and a set of operations—its methods—in a single entity that
can be referenced with a name. This makes an object a more complex abstraction
than a function. To get inside a function, you must view the code contained in its
definition. To get inside an object, you must view the code contained in its class.
A class definition is like a blueprint for each of the objects of that class. This
blueprint contains

� Definitions of all of the methods that its objects recognize
� Descriptions of the data structures used to maintain the state of an object,

or its attributes, from the implementer’s point of view

CHAPTER 8 Design with Classes[292]

C6840_08 11/19/08 1:48 PM Page 292

May not be copied, scanned, or duplicated, in whole or in part.

8.1 Getting Inside Objects and Classes [293]

To illustrate these ideas, we now present a simple class definition for a course-
management application, followed by a discussion of the basic concepts involved.

8.1.1 A First Example: The Student Class

A course-management application needs to represent information about students
in a course. Each student has a name and a list of test scores. We can use these as
the attributes of a class named Student. The Student class should allow the user
to view a student’s name, view a test score at a given position (counting from 1),
reset a test score at a given position, view the highest test score, view the average
test score, and obtain a string representation of the student’s information. When a
Student object is created, the user supplies the student’s name and the number of
test scores. Each score is initially presumed to be 0.

The interface or set of methods of the Student class is described in Table 8.1.
Assuming that the Student class is defined in a file named student.py, the next
session shows how it could be used:

>>>ƒfromƒstudentƒimportƒStudent
>>>ƒsƒ=ƒStudent(“Maria”,ƒ5)
>>>ƒprintƒs
Name:ƒMaria
Scores:ƒ0ƒ0ƒ0ƒ0ƒ0
>>>ƒs.setScore(1,ƒ100)
>>>ƒprintƒs
Name:ƒMaria
Scores:ƒ100ƒ0ƒ0ƒ0ƒ0ƒ
>>>ƒs.getHighScore()
100
>>>ƒs.getAverage()
20
>>>ƒs.getScore(1)
100
>>>ƒs.getName()
'Maria'
>>>

C6840_08 11/19/08 1:48 PM Page 293

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 8.1] The interface of the Student class

The syntax of a simple class definition is the following:

classƒ<classƒname>(<parentƒclassƒname>):
ƒƒƒ<methodƒdefinition-1>
ƒƒƒ…
ƒƒƒ<methodƒdefinition-n>

The class definition syntax has two parts: a class header and a set of method defi-
nitions that follow the class header. The class header consists of the class name
and the parent class name.

The class name is a Python identifier. Although built-in type names are not
capitalized, Python programmers typically capitalize their own class names to dis-
tinguish them from variable names.

The parent class name refers to another class. All Python classes, including
the built-in ones, are organized in a tree-like class hierarchy. At the top, or root,
of this tree is the most abstract class, named object, which is built in. Each class
immediately below another class in the hierarchy is referred to as a subclass,
whereas the class immediately above it, if there is one, is called its parent class. If
the parenthesized parent class name is omitted from the class definition, the new
class is automatically made a subclass of object. In the example class definitions
shown in this book, we explicitly include the parent class names. More will be said
about the relationships among classes in the hierarchy later in this chapter.

Student METHOD WHAT IT DOES

sƒ=ƒStudent(name, number) Returns a Student object with the given name
and number of scores. Each score is initially 0.

s.getName() Returns the student’s name.

s.getScore(i) Returns the student’s ith score. i must range
from 1 through the number of scores.

s.setScore(i, score) Resets the student’s ith score to score. i must
range from 1 through the number of scores.

s.getAverage() Returns the student’s average score.

s.getHighScore() Returns the student’s highest score.

s.__str__() Same as str(s). Returns a string
representation of the student’s information.

CHAPTER 8 Design with Classes[294]

C6840_08 11/19/08 1:48 PM Page 294

May not be copied, scanned, or duplicated, in whole or in part.

The code for the Student class follows, and its structure is explained in the
next few subsections:

“””
File:ƒstudent.py
Resourcesƒtoƒmanageƒaƒstudent'sƒnameƒandƒtestƒscores.
“””

classƒStudent(object):
ƒƒƒƒ“””Representsƒaƒstudent.”””

ƒƒƒƒdefƒ__init__(self,ƒname,ƒnumber):
ƒƒƒƒƒƒƒƒ“””ConstructorƒcreatesƒaƒStudentƒwithƒtheƒgivenƒname
ƒƒƒƒƒƒƒƒandƒnumberƒofƒscoresƒandƒsetsƒallƒscoresƒtoƒ0.”””
ƒƒƒƒƒƒƒƒself._nameƒ=ƒname
ƒƒƒƒƒƒƒƒself._scoresƒ=ƒ[]
ƒƒƒƒƒƒƒƒforƒcountƒinƒxrange(number):
ƒƒƒƒƒƒƒƒƒƒƒƒself._scores.append(0)

ƒƒƒƒdefƒgetName(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstudent'sƒname.”””
ƒƒƒƒƒƒƒƒreturnƒself._name
ƒƒ
ƒƒƒƒdefƒsetScore(self,ƒi,ƒscore):
ƒƒƒƒƒƒƒƒ“””Resetsƒtheƒithƒscore,ƒcountingƒfromƒ1.”””
ƒƒƒƒƒƒƒƒself._scores[iƒ-ƒ1]ƒ=ƒscore

ƒƒƒƒdefƒgetScore(self,ƒi):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒithƒscore,ƒcountingƒfromƒ1.”””
ƒƒƒƒƒƒƒƒreturnƒself._scores[iƒ-ƒ1]
ƒƒƒ
ƒƒƒƒdefƒgetAverage(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒaverageƒscore.”””
ƒƒƒƒƒƒƒƒsumƒ=ƒreduce(lambdaƒx,ƒy:ƒxƒ+ƒy,ƒself._scores)
ƒƒƒƒƒƒƒƒreturnƒsumƒ/ƒlen(self._scores)
ƒƒƒƒ
ƒƒƒƒdefƒgetHighScore(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒhighestƒscore.”””
ƒƒƒƒƒƒƒƒreturnƒmax(self._scores)
ƒ
ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstringƒrepresentationƒofƒtheƒstudent.”””
ƒƒƒƒƒƒƒƒreturnƒ“Name:ƒ“ƒ+ƒself._nameƒƒ+ƒ“\nScores:ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒ“.join(map(str,ƒself._scores))

8.1 Getting Inside Objects and Classes [295]

C6840_08 11/19/08 1:48 PM Page 295

May not be copied, scanned, or duplicated, in whole or in part.

8.1.2 Docstrings

The first thing to note is the positioning of the docstrings in our code. They can
occur at three levels. The first level is that of the module. Its purpose should be
familiar to you by now. The second level is just after the class header. Because
there might be more than one class defined in a module, each class can have a
docstring that describes its purpose. The third level is located after each method
header. Docstrings at this level serve the same role as they do for function defini-
tions. When you enter help(Student) at a shell prompt, the interpreter prints
the documentation for the class and all of its methods.

8.1.3 Method Definitions

All of the method definitions are indented below the class header. Because methods
are a bit like functions, the syntax of their definitions is similar. Note, however, that
each method definition must include a first parameter named self, even if that
method seems to expect no arguments when called. When a method is called with
an object, the interpreter binds the parameter self to that object so that the
method’s code can refer to the object by name. Thus, for example, the code

s.getScore(4)

binds the parameter self in the method getScore to the Student object refer-
enced by the variable s. The code for getScore can then use self to access that
particular object’s test scores.

Otherwise, methods behave just like functions. They can have required
and/or optional arguments and they can return values. They can create and use
temporary variables. A method automatically returns the value None when it
includes no return statement.

CHAPTER 8 Design with Classes[296]

C6840_08 11/19/08 1:48 PM Page 296

May not be copied, scanned, or duplicated, in whole or in part.

8.1.4 The __init__ Method and Instance Variables

Most classes include a special method named __init__. Here is the code for this
method in the Student class:

defƒ__init__(self,ƒname,ƒnumber):
ƒƒƒƒ“””Allƒscoresƒareƒinitiallyƒ0.”””
ƒƒƒƒself._nameƒ=ƒname
ƒƒƒƒself._scoresƒ=ƒ[]
ƒƒƒƒforƒcountƒinƒxrange(number):
ƒƒƒƒƒƒƒƒself._scores.append(0)

Note that __init__ must begin and end with two consecutive underscores. This
method is also called the class’s constructor, because it is run automatically when
a user instantiates the class. Thus, when the code segment

sƒ=ƒStudent(“Juan”,ƒ5)

is run, Python automatically runs the constructor or __init__ method of the
Student class. The purpose of the constructor is to initialize an individual
object’s attributes. In addition to self, the Student constructor expects two
arguments that provide the initial values for these attributes. From this point on,
when we refer to a class’s constructor, we mean its __init__ method.

The attributes of an object are represented as instance variables. Each individ-
ual object has its own set of instance variables. These variables serve as storage for
its state. The scope of an instance variable (including self) is the entire class defini-
tion. Thus, all of the class’s methods are in a position to reference the instance vari-
ables. The lifetime of an instance variable is the lifetime of the enclosing object. An
object’s lifetime will be discussed in more detail later in this chapter.

Within the class definition, the names of instance variables must begin with
self. In this code, the instance variables self._name and self._scores are
initialized to a string and a list, respectively.

Python programmers are encouraged to begin the part of an instance vari-
able’s name following the dot with a single underscore, as in self._name. They
can use this convention to distinguish instance variable names from those of
temporary variables. For example, if we had used the statement scores = []
to initialize the list of test scores, the Python interpreter would have created a
temporary variable within the constructor rather than an instance variable. The

8.1 Getting Inside Objects and Classes [297]

C6840_08 11/19/08 1:48 PM Page 297

May not be copied, scanned, or duplicated, in whole or in part.

storage for this variable would be discarded at the end of the method, leaving the
new Student object with no instance variable for its test scores.

8.1.5 The __str__ Method

As explained in Chapter 7, classes usually include an __str__ method. This
method builds and returns a string representation of an object’s state. When the
str function is called with an object, that object’s __str__ method is automati-
cally invoked to obtain the string that str returns. For example, the function call
str(s) is equivalent to the method call s.__str__(), and is simpler to write.
Here is the code for the __str__ method in the Student class:

defƒ__str__(self):
ƒƒƒƒ“””Returnsƒtheƒstringƒrepresentationƒofƒtheƒstudent.”””
ƒƒƒƒreturnƒ“Name:ƒ“ƒ+ƒself._nameƒƒ+ƒ“\nScores:ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒ“ƒ“.join(map(str,ƒself._scores))

The programmer can return any information that would be relevant to the users
of a class. Perhaps the most important use of __str__ is in debugging, when you
often need to observe the state of an object after running another method.

8.1.6 Accessors and Mutators

Methods that allow a user to observe but not change the state of an object are
called accessors. Methods that allow a user to modify an object’s state are called
mutators. The Student class has just one mutator method. It allows the user to
reset a test score at a given position. The remaining methods are accessors. Here
is the code for the mutator method setScore:

defƒsetScore(self,ƒi,ƒscore):
ƒƒƒƒ“””Resetsƒtheƒithƒscore,ƒcountingƒfromƒ1.”””
ƒƒƒƒself._scores[iƒ-ƒ1]ƒ=ƒscore

In general, the fewer the number of changes that can occur to an object, the
easier it is to use it correctly. That is one reason Python strings are immutable. In
the case of the Student class, if there is no need to modify an attribute, such as a
student’s name, we do not include a method to do that.

CHAPTER 8 Design with Classes[298]

C6840_08 11/19/08 1:48 PM Page 298

May not be copied, scanned, or duplicated, in whole or in part.

8.1.7 The Lifetime of Objects

Earlier, we said that the lifetime of an object’s instance variables is the lifetime of
that object. What determines the span of an object’s life? We know that an object
comes into being when its class is instantiated. When does an object die? In
Python, an object becomes a candidate for the graveyard when it can no longer
be referenced by the program that created it. For example, the next session cre-
ates two references to the same Student object:

>>>ƒsƒ=ƒStudent(“Sam”,ƒ10)
>>>ƒcsci111ƒ=ƒ[s]
>>>ƒcsci111
[<__main__.Studentƒinstanceƒatƒ0x11ba2b0>]
>>>ƒs
<__main__.Studentƒinstanceƒatƒ0x11ba2b0>
>>>

As long as one of these references survives, the Student object can remain
alive. Continuing this session, we now sever both of these references to the
Student object:

>>>ƒsƒ=ƒNone
>>>ƒcsci111.pop()
<__main__.Studentƒinstanceƒatƒ0x11ba2b0>
>>>ƒprintƒs
None
>>>ƒcsci111
[]
>>>

The Student object still exists, but the interpreter will eventually recycle its stor-
age during a process called garbage collection. For all intents and purposes, this
object has expired and its storage will eventually be used to create other objects.

8.1 Getting Inside Objects and Classes [299]

C6840_08 11/19/08 1:48 PM Page 299

May not be copied, scanned, or duplicated, in whole or in part.

8.1.8 Rules of Thumb for Defining a Simple Class

We conclude this section by listing several rules of thumb for designing and
implementing a simple class:

1 Before writing a line of code, think about the behavior and attributes of
the objects of the new class. What actions does an object perform, and
how, from the external perspective of a user, do these actions access or
modify the object’s state?

2 Choose an appropriate class name and develop a short list of the meth-
ods available to users. This interface should include appropriate method
names and parameter names, as well as brief descriptions of what the
methods do. Avoid describing how the methods perform their tasks.

3 Write a short script that appears to use the new class in an appropriate
way. The script should instantiate the class and run all of its methods.
Of course you will not be able to execute this script until you have com-
pleted the next few steps, but it will help to clarify the interface of your
class and serve as an initial test bed for it.

4 Choose the appropriate data structures to represent the attributes of the
class. These will be either built-in types such as integers, strings, and
lists, or other programmer-defined classes.

5 Fill in the class template with a constructor (__init__ method) and an
__str__ method. Remember that the constructor initializes an object’s
instance variables, whereas __str__ builds a string from this informa-
tion. As soon as you have defined these two methods, you can test your
class by instantiating it and printing the resulting object.

6 Complete and test the remaining methods incrementally, working in a
bottom-up manner. If one method depends on another, complete the
second method first.

7 Remember to document your code. Include a docstring for the module,
the class, and each method. Do not add these as an afterthought. Write
them as soon as you write a class header or a method header. Be sure to
examine the results by running help with the class name.

CHAPTER 8 Design with Classes[300]

C6840_08 11/19/08 1:48 PM Page 300

May not be copied, scanned, or duplicated, in whole or in part.

8.1 Exercises
1 What are instance variables, and what role does the name self play in

the context of a class definition?

2 Explain what a constructor does.

3 The Student class has no mutator method that allows a user to change
a student’s name. Define a method setName that allows a user to change a
student’s name.

4 The method getAge expects no arguments and returns the value of an
instance variable named _age. Write the code for the definition of this
method.

5 How is the lifetime of an object determined? What happens to an object
when it dies?

8.2 Case Study: Playing the Game of Craps
College students are known to study hard and play hard. In this case study, we
develop some classes that cooperate to allow students to play and study the
behavior of the game of craps.

8.2.1 Request

Write a program that allows the user to play and study the game of craps.

8.2.2 Analysis

A player in the game of craps rolls a pair of dice. If the sum of the values on this
initial roll is 2, 3, or 12, the player loses. If the sum is 7 or 11, the player wins.
Otherwise, the player continues to roll until the sum is 7, indicating a loss, or
the sum equals the initial sum, indicating a win.

During analysis, you decide which classes of objects will be used to model the
behavior of the objects in the problem domain. The classes often become evident
when you consider the nouns used in the problem description. In this case, the
two most significant nouns in our description of a game of craps are “player” and

8.2 Case Study: Playing the Game of Craps [301]

C6840_08 11/19/08 1:48 PM Page 301

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Design with Classes[302]

“dice.” Thus, the classes will be named Player and Die (the singular, as a player
will use two instances).

Analysis also specifies the roles and responsibilities of each class. You can
describe these in terms of the behavior of each object in the program. A Die
object can be rolled and its value examined. That’s about it. A Player object can
play a complete game of craps. During the course of this game, the player keeps
track of the rolls of the dice. After a game is over, the player can be asked for a
history of the rolls and for the game’s outcome. The player can then play another
game, and so on.

The user interface for this program prompts the user for the number of
games to play. The program plays that number of games and generates and
displays statistics about the results for that round of games. These results, our
“study” of the game, include the number of wins, losses, rolls per win, rolls per
loss, and winning percentage, for the given number of games played.

Here is a sample session with the program:

>>>ƒplayOneGame()
(2,ƒ2)ƒ4
(2,ƒ1)ƒ3
(4,ƒ6)ƒ10
(6,ƒ5)ƒ11
(4,ƒ1)ƒ5
(5,ƒ6)ƒ11
(3,ƒ5)ƒ8
(3,ƒ1)ƒ4

Youƒwin!
>>>ƒplayManyGames()
Enterƒtheƒnumberƒofƒgames:ƒ100
Theƒtotalƒnumberƒofƒwinsƒisƒ49
Theƒtotalƒnumberƒofƒlossesƒisƒ51
Theƒaverageƒnumberƒofƒrollsƒperƒwinƒisƒ3.37
Theƒaverageƒnumberƒofƒrollsƒperƒlossƒisƒ4.20
Theƒwinningƒpercentageƒisƒ0.490
>>>ƒ

8.2.3 Design

During design, you choose the appropriate data structures for the instance vari-
ables of each class and develop its methods using pseudocode, if necessary. You
can work from class interfaces provided by analysis or develop the interfaces as

C6840_08 11/19/08 1:48 PM Page 302

May not be copied, scanned, or duplicated, in whole or in part.

the first step of design. The interfaces of the Die and Player classes are listed in
Table 8.2.

[TABLE 8.2] The interfaces of the Die and Player classes

A Die object has a single attribute, an integer ranging in value from 1
through 6. At instantiation, the instance variable self._value is initialized to 1.
The method roll modifies this value by resetting it to a random number from
1 to 6. The method getValue returns this value. The method __str__ returns
its string representation. The Die class can be coded immediately without further
design work.

A Player object has three attributes, a pair of dice and a history of rolls in its
most recent game. We represent each roll as a tuple of two integers and the set of
rolls as a list of these tuples. At instantiation, the instance variable self._rolls
is set to an empty list.

The method __str__ converts the list of rolls to a formatted string that
contains a roll and the sum from that roll on each line.

Player METHOD WHAT IT DOES

p = Player() Returns a new player object.

p.play() Plays the game and returns True if there is a win,
False otherwise.

p.getNumberOfRolls() Returns the number of rolls.

p.__str__() Same as str(p). Returns a formatted string
representation of the rolls.

Die METHOD WHAT IT DOES

d = Die() Returns a new die object whose initial value is 1.

d.roll() Resets the die’s value to a random number between 1
and 6.

d.getValue() Returns the die’s value.

d.__str__() Same as str(d). Returns the string representation of
the die’s value.

8.2 Case Study: Playing the Game of Craps [303]

C6840_08 11/19/08 1:48 PM Page 303

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Design with Classes[304]

The play method implements the logic of playing a game and tracking its
results. Here is the pseudocode:

Create a new list of rolls
Roll the dice and add their values to the rolls list
If sum of the initial roll is 2, 3, or 12, return false
If the sum of the initial roll is 7 or 11, return true
While true

Roll the dice and add their values to the rolls list
If the sum of the roll is 7, return false
Else if the sum of the roll equals the initial sum, return true

Note that the rolls list, which is an instance variable, is reset to an empty list on
each play. That allows the same player to play multiple games.

The script that defines the Player and Die classes also includes two func-
tions. The role of these functions is to interact with the human user by receiving
inputs, playing the games, and displaying their results. The playManyGames
function prompts the user for the number of games, creates a single Player
object, plays the games and gathers data on the results, processes these data, and
displays the required information. We also include a simpler function
playOneGame that plays just one game and displays the results.

8.2.4 Implementation (Coding)

The Die class is defined in a file named die.py. The Player class and the top-
level functions are defined in a file named craps.py. Here is the code for the
two modules:

“””
File:ƒdie.py

ThisƒmoduleƒdefinesƒtheƒDieƒclass.
“””

fromƒrandomƒimportƒrandint

classƒDie(object):
ƒƒƒƒ“””Thisƒclassƒrepresentsƒaƒsix-sidedƒdie.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Theƒinitialƒfaceƒofƒtheƒdie.”””
ƒƒƒƒƒƒƒƒself._valueƒ=ƒ1

continued

C6840_08 11/19/08 1:48 PM Page 304

May not be copied, scanned, or duplicated, in whole or in part.

8.2 Case Study: Playing the Game of Craps [305]

ƒƒƒƒdefƒroll(self):
ƒƒƒƒƒƒƒƒ“””Resetsƒtheƒdie'sƒvalueƒtoƒaƒrandomƒnumberƒ
ƒƒƒƒƒƒƒƒbetweenƒ1ƒandƒ6.”””
ƒƒƒƒƒƒƒƒself._valueƒ=ƒrandint(1,ƒ6)

ƒƒƒƒdefƒgetValue(self):
ƒƒƒƒƒƒƒƒreturnƒself._value

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒreturnƒstr(self._value)ƒƒƒ

“””
File:ƒcraps.py

Thisƒmoduleƒstudiesƒandƒplaysƒtheƒgameƒofƒcraps.
“””

fromƒdieƒimportƒDie

classƒPlayer(object):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Hasƒaƒpairƒofƒdiceƒandƒanƒemptyƒrollsƒlist.”””
ƒƒƒƒƒƒƒƒself._die1ƒ=ƒDie()
ƒƒƒƒƒƒƒƒself._die2ƒ=ƒDie()
ƒƒƒƒƒƒƒƒself._rollsƒ=ƒ[]

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstringƒrepƒofƒtheƒhistoryƒofƒrolls.”””
ƒƒƒƒƒƒƒƒresultƒ=ƒ“”
ƒƒƒƒƒƒƒƒforƒ(v1,ƒv2)ƒinƒself._rolls:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ=ƒresultƒ+ƒstr((v1,ƒv2))ƒ+ƒ“ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(v1ƒ+ƒv2)ƒ+ƒ“\n”
ƒƒƒƒƒƒƒƒreturnƒresult

ƒƒƒƒdefƒgetNumberOfRolls(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒnumberƒofƒtheƒrollsƒinƒoneƒgame.”””
ƒƒƒƒƒƒƒƒreturnƒlen(self._rolls)

ƒƒƒƒdefƒplay(self):
ƒƒƒƒƒƒƒƒ“””Playsƒaƒgame,ƒsavesƒtheƒrollsƒforƒthatƒgame,ƒ
ƒƒƒƒƒƒƒƒandƒreturnsƒTrueƒforƒaƒwinƒandƒFalseƒforƒaƒloss.”””
ƒƒƒƒƒƒƒƒself._rollsƒ=ƒ[]
ƒƒƒƒƒƒƒƒself._die1.roll()
ƒƒƒƒƒƒƒƒself._die2.roll()
ƒƒƒƒƒƒƒƒ(v1,ƒv2)ƒ=ƒ(self._die1.getValue(),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._die2.getValue())

continued

C6840_08 11/19/08 1:48 PM Page 305

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Design with Classes[306]

ƒƒƒƒƒƒƒƒself._rolls.append((v1,ƒv2))
ƒƒƒƒƒƒƒƒinitialSumƒ=ƒv1ƒ+ƒv2
ƒƒƒƒƒƒƒƒifƒinitialSumƒinƒ(2,ƒ3,ƒ12):
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒFalse
ƒƒƒƒƒƒƒƒelifƒinitialSumƒinƒ(7,ƒ11):
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒself._die1.roll()
ƒƒƒƒƒƒƒƒƒƒƒƒself._die2.roll()
ƒƒƒƒƒƒƒƒƒƒƒƒ(v1,ƒv2)ƒ=ƒ(self._die1.getValue(),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._die2.getValue())
ƒƒƒƒƒƒƒƒƒƒƒƒself._rolls.append((v1,ƒv2))
ƒƒƒƒƒƒƒƒƒƒƒƒsumƒ=ƒv1ƒ+ƒv2
ƒƒƒƒƒƒƒƒƒƒƒƒifƒsumƒ==ƒ7:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒFalse
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒsumƒ==ƒinitialSum:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrue

#ƒFunctionsƒthatƒinteractƒwithƒtheƒuserƒtoƒplayƒtheƒgames

defƒplayOneGame():
ƒƒƒƒ“””Playsƒaƒsingleƒgameƒandƒprintsƒtheƒresults.”””
ƒƒƒƒplayerƒ=ƒPlayer()
ƒƒƒƒyouWinƒ=ƒplayer.play()
ƒƒƒƒprintƒplayer
ƒƒƒƒifƒyouWin:
ƒƒƒƒƒƒƒƒprintƒ“Youƒwin!”
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprintƒ“Youƒlose!”

defƒplayManyGames():
ƒƒƒƒ“””Playsƒaƒnumberƒofƒgamesƒandƒprintsƒstatistics.”””
ƒƒƒƒnumberƒ=ƒinput(“Enterƒtheƒnumberƒofƒgames:ƒ“)
ƒƒƒƒwinsƒ=ƒ0
ƒƒƒƒlossesƒ=ƒ0
ƒƒƒƒwinRollsƒ=ƒ0
ƒƒƒƒlossRollsƒ=ƒ0
ƒƒƒƒplayerƒ=ƒPlayer()
ƒƒƒƒforƒcountƒinƒxrange(number):
ƒƒƒƒƒƒƒƒhasWonƒ=ƒplayer.play()
ƒƒƒƒƒƒƒƒrollsƒ=ƒplayer.getNumberOfRolls()
ƒƒƒƒƒƒƒƒifƒhasWon:
ƒƒƒƒƒƒƒƒƒƒƒƒwins += 1
ƒƒƒƒƒƒƒƒƒƒƒƒwinRolls += rolls
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒlosses += 1
ƒƒƒƒƒƒƒƒƒƒƒƒlossRolls += rolls

continued

C6840_08 11/19/08 1:48 PM Page 306

May not be copied, scanned, or duplicated, in whole or in part.

8.3 Data-Modeling Examples [307]

ƒƒƒƒprint “Theƒtotalƒnumberƒofƒwinsƒis”, wins
ƒƒƒƒprintƒ“Theƒtotalƒnumberƒofƒlossesƒis”,ƒlosses
ƒƒƒƒprintƒ“Theƒaverageƒnumberƒofƒrollsƒperƒwinƒisƒ%0.2f”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒ(float(winRolls)ƒ/ƒwins)
ƒƒƒƒprintƒ“Theƒaverageƒnumberƒofƒrollsƒperƒlossƒisƒ%0.2f”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒ(float(lossRolls)ƒ/ƒlosses)
ƒƒƒƒprintƒ“Theƒwinningƒpercentageƒisƒ%0.3f”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒ(float(wins)ƒ/ƒnumber)

8.3 Data-Modeling Examples
As you have seen, objects and classes are useful for modeling objects in the real
world. In this section, we explore several other examples.

8.3.1 Rational Numbers

We begin with numbers. A rational number consists of two integer parts, a numer-
ator and a denominator, and is written using the format numerator / denominator.
Examples are 1/2, 1/3, and so forth. Operations on rational numbers include arith-
metic and comparisons. Python has no built-in type for rational numbers. Let us
develop a new class named Rational to support this type of data.

The interface of the Rational class includes a constructor for creating a
rational number, an str function for obtaining a string representation, and acces-
sors for the numerator and denominator. We will also show how to include meth-
ods for arithmetic and comparisons. Here is a sample session to illustrate the use
of the new class:

>>>ƒoneHalfƒ=ƒRational(1,ƒ2)
>>>ƒoneSixthƒ=ƒRational(1,ƒ6)
>>>ƒprintƒoneHalf
1/2
>>>ƒprintƒoneHalfƒ+ƒoneSixth
2/3
>>>ƒoneHalfƒ==ƒoneSixth
False
>>>ƒoneHalfƒ>ƒoneSixth
True

C6840_08 11/19/08 1:48 PM Page 307

May not be copied, scanned, or duplicated, in whole or in part.

Note that this session uses the built-in operators +, ==, and < with objects of the
new class, Rational. Python allows the programmer to overload many of the
built-in operators for use with new data types.

We develop this class in two steps. First, we take care of the internal repre-
sentation of a rational number and also its string representation. The constructor
expects the numerator and denominator as arguments and sets two instance vari-
ables to this information. This method then reduces the rational number to its
lowest terms. To reduce a rational number to its lowest terms, you first compute
the greatest common divisor (GCD) of the numerator and the denominator,
using Euclid’s algorithm, as described in Programming Project 8 of Chapter 3.
You then divide the numerator and the denominator by this GCD. These tasks
are assigned to two other Rational methods, _reduce and _gcd. Because these
methods are not intended to be in the class’s interface, their names begin with the
_ symbol. Performing the reduction step in the constructor guarantees that it will
not have to be done in any other operation. Here is the code for the first step:

“””
File:ƒrational.py
Resourcesƒtoƒmanipulateƒrationalƒnumbers.
“””

classƒRational(object):
ƒƒƒƒ“””Representsƒaƒrationalƒnumber.”””

ƒƒƒƒdefƒ__init__(self,ƒnumer,ƒdenom):
ƒƒƒƒƒƒƒƒ“””Constructorƒcreatesƒaƒnumberƒwithƒtheƒgivenƒnumerator
ƒƒƒƒƒƒƒƒandƒdenominatorƒandƒreducesƒitƒtoƒlowestƒterms.”””
ƒƒƒƒƒƒƒƒself._numerƒ=ƒnumer
ƒƒƒƒƒƒƒƒself._denomƒ=ƒdenom
ƒƒƒƒƒƒƒƒself._reduce()

ƒƒƒƒdefƒnumerator(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒnumerator.”””
ƒƒƒƒƒƒƒƒreturnƒself._numer
ƒƒ
ƒƒƒƒdefƒdenominator(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒdenominator.”””
ƒƒƒƒƒƒƒƒreturnƒself._denom
ƒƒƒ
ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstringƒrepresentationƒofƒtheƒnumber.”””
ƒƒƒƒƒƒƒƒreturnƒstr(self._numer)ƒ+ƒ“/”ƒ+ƒstr(self._denom)

continued

CHAPTER 8 Design with Classes[308]

C6840_08 11/19/08 1:48 PM Page 308

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒ_reduce(self):
ƒƒƒƒƒƒƒƒ“””Helperƒtoƒreduceƒtheƒnumberƒtoƒlowestƒterms.”””
ƒƒƒƒƒƒƒƒdivisorƒ=ƒself._gcd(self._numer,ƒself._denom)
ƒƒƒƒƒƒƒƒself._numerƒ=ƒself._numerƒ/ƒdivisor
ƒƒƒƒƒƒƒƒself._denomƒ=ƒself._denomƒ/ƒdivisor

ƒƒƒƒdefƒ_gcd(self,ƒa,ƒb):
ƒƒƒƒƒƒƒƒ“””Euclid'sƒalgorithmƒforƒgreatestƒcommonƒdivisor.”””
ƒƒƒƒƒƒƒ(a,ƒb)ƒ=ƒ(max(a,ƒb),ƒmin(a,ƒb))
ƒƒƒƒƒƒƒƒwhileƒbƒ>ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒƒ(a,ƒb)ƒ=ƒ(b,ƒaƒ%ƒb)
ƒƒƒƒƒƒƒƒreturnƒa

ƒƒƒƒ#ƒMethodsƒforƒarithmeticƒandƒcomparisonsƒgoƒhere

The class can now be tested by instantiating numbers and printing them. When
you are satisfied that the data are being represented correctly, you can move on to
the next step.

8.3.2 Rational Number Arithmetic and Operator
Overloading

We now add methods to perform arithmetic with rational numbers. Recall that
the earlier session used the built-in operators for arithmetic. For a built-in type
such as int or float, each arithmetic operator corresponds to a special method
name. You will see many of these methods by entering dir(int) or dir(str) at
a shell prompt, and they are listed in Table 8.3. The object on which the method
is called corresponds to the left operand, whereas the method’s second parameter
corresponds to the right operand. Thus, for example, the code x + y is actually
shorthand for the code x.__add__(y).

[TABLE 8.3] Built-in arithmetic operators and their corresponding methods

OPERATOR METHOD NAME

+ __add__

- __sub__

* __mul__

/ __div__

% __mod__

8.3 Data-Modeling Examples [309]

C6840_08 11/19/08 1:48 PM Page 309

May not be copied, scanned, or duplicated, in whole or in part.

To overload an arithmetic operator, you just define a new method using the
appropriate method name. The code for each method applies a rule of rational
number arithmetic. The rules are listed in Table 8.4.

[TABLE 8.4] Rules for rational number arithmetic

Each method builds and returns a new rational number that represents the
result of the operation. Here is the code for the addition operation:

defƒ__add__(self,ƒother):
ƒƒƒƒ“””Returnsƒtheƒsumƒofƒtheƒnumbers.”””
ƒƒƒƒ#Selfƒisƒtheƒleftƒoperandƒandƒotherƒisƒtheƒrightƒoperand
ƒƒƒƒnewNumerƒ=ƒself._numerƒ*ƒother._denomƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒother._numerƒ*ƒself._denom
ƒƒƒƒnewDenomƒ=ƒself._denomƒ*ƒother._denom
ƒƒƒƒreturnƒRational(newNumer,ƒnewDenom)

Note that the parameter self is viewed as the left operand of the operator,
whereas the parameter other is viewed as the right operand. The instance vari-
ables of the rational number named other are accessed in the same manner as
the instance variables of the rational number named self.

Operator overloading is another example of an abstraction mechanism. In
this case, programmers can use operators with single, standard meanings even
though the underlying operations vary from data type to data type.

8.3.3 Comparisons and the __cmp__ Method

Integers and floating-point numbers can be compared using the operators ==, !=,
<, >, <=, and >=. When the Python interpreter encounters these operators, it uses
the __cmp__ method defined in the float or int class. This method returns 0 if
the operands are equal, -1 if the left operand is less than the right one, or 1 if the

TYPE OF OPERATION RULE

Addition n1/d1 + n2/d2 = (n1d2 + n2d1) / d1d2

Subtraction n1/d1 - n2/d2 = (n1d2 - n2d1) / d1d2

Mutiplication n1/d1 * n2/d2 = n1n2 / d1d2

Division n1/d1 / n2/d2 = n1d2 / d1n2

CHAPTER 8 Design with Classes[310]

C6840_08 11/19/08 1:48 PM Page 310

May not be copied, scanned, or duplicated, in whole or in part.

left operand is greater than the right one. You can also use the cmp function to
obtain similar results, as shown in the next session:

>>>ƒcmp(1,ƒ1)ƒƒƒƒ#ƒEqual
0
>>>ƒcmp(1,ƒ2)ƒƒƒƒ#ƒLessƒthan
-1
>>>ƒcmp(2,ƒ1)ƒƒƒƒ#ƒGreaterƒthan
1
>>>

To use the comparison operators with a new class of objects, such as rational
numbers, all you have to do is include in that class a __cmp__ method with the
appropriate comparison logic. The simplest way to compare two rational num-
bers is to compare the product of the extremes and the product of the means.
The extremes are the first numerator and the second denominator, whereas the
means are the second numerator and the first denominator. Thus, the compari-
son of 1/6 and 2/3 translates to cmp(1 * 3, 2 * 6). The implementation of
the __cmp__ method for rational numbers uses this strategy, as follows:

defƒ__cmp__(self,ƒother):
ƒƒƒƒ“””Comparesƒtwoƒrationalƒnumbers.”””
ƒƒƒƒextremesƒ=ƒself._numerƒ*ƒother._denom
ƒƒƒƒmeansƒ=ƒother._numerƒ*ƒself._denom
ƒƒƒƒreturnƒcmp(extremes,ƒmeans)

When objects of a new class are comparable, it’s a good idea to include a
__cmp__ method in that class. Then, other built-in methods, such as the sort
method for lists, will be able to use your objects appropriately.

8.3.4 Equality and the __eq__ Method

Although the == operator can translate to the __cmp__ method, equality is a dif-
ferent kind of relationship from the other types of comparisons. Not all objects
are comparable using less than or greater than, but any two objects can be com-
pared for equality or inequality. For example, when the variable twoThirds
refers to a rational number, it does not make sense to say twoThirds < “hi
there”, but it does make sense to say twoThirds != “hi there” (true, they
aren’t the same). Put another way, the first expression should generate a semantic
error, whereas the second expression should return True.

8.3 Data-Modeling Examples [311]

C6840_08 11/19/08 1:48 PM Page 311

May not be copied, scanned, or duplicated, in whole or in part.

The Python interpreter picks out equality from the other comparisons by
looking for an __eq__ method when it encounters the == and != operators.
Thus, you can include an __eq__ method in a class to support equality tests with
any types of objects. Here is the code for this method in the Rational class:

defƒ__eq__(self,ƒother):
ƒƒƒƒ“””Testsƒselfƒandƒotherƒforƒequality.”””
ƒƒƒƒifƒselfƒisƒother:ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒObjectƒidentity?
ƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒelifƒtype(self)ƒ!=ƒtype(other):ƒƒƒƒ#ƒTypesƒmatch?
ƒƒƒƒƒƒƒƒreturnƒFalse
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒself._numerƒ==ƒother._numerƒandƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._denomƒ==ƒother._denom

Note that the method first tests the two operands for object identity using
Python’s is operator. The is operator returns True if self and other refer to
the exact same object. If the two objects are distinct, the method then uses
Python’s type function to determine whether or not they are of the same type. If
they are not of the same type, they cannot be equal. Finally, if the two operands
are of the same type, the second one must be a rational number, so it is safe to
access the components of both operands to compare them for equality in the last
alternative.

As a rule of thumb, you should include an __eq__ method in any class where
a comparison for equality uses a criterion other than object identity, and also
include a __cmp__ method when the objects are comparable using less than or
greater than.

8.3.5 Savings Accounts and Class Variables

Turning to the world of finance, banking systems are easily modeled with classes.
For example, a savings account allows owners to make deposits and withdrawals.
These accounts also compute interest periodically. A simplified version of a
savings account includes an owner’s name, PIN, and balance as attributes. The
interface for a SavingsAccount class is listed in Table 8.5.

CHAPTER 8 Design with Classes[312]

C6840_08 11/19/08 1:48 PM Page 312

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 8.5] The interface for SavingsAccount

When the interest is computed, a rate is applied to the balance. If you assume
that the rate is the same for all accounts, then it does not have to be maintained as
an instance variable. Instead, you can use a class variable. A class variable is visible
to all instances of a class and does not vary from instance to instance. While it nor-
mally behaves like a constant, in some situations a class variable can be modified.
But when it is, the change takes effect for the entire class.

To introduce a class variable, we place the assignment statement that initial-
izes it between the class header and the first method definition. For clarity, class
variables are written in uppercase only. The code for SavingsAccount shows the
definition and use of the class variable RATE. Completion of some methods is left
as an exercise for you.

classƒSavingsAccount(object):
ƒƒƒƒ“””ThisƒclassƒrepresentsƒaƒSavingsƒaccount
ƒƒƒƒwithƒtheƒowner'sƒname,ƒPIN,ƒandƒbalance.”””

ƒƒƒƒRATEƒ=ƒ0.02

ƒƒƒƒdefƒ__init__(self,ƒname,ƒpin,ƒbalanceƒ=ƒ0.0):
ƒƒƒƒƒƒƒƒself._nameƒ=ƒname

continued

SavingsAccount METHOD WHAT IT DOES

aƒ=ƒSavingsAccount(name,ƒpin, Returns a new account with the given
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbalanceƒ=ƒ0.0) name, PIN, and balance.

a.deposit(amount) Deposits the given amount from the
account’s balance.

a.withdraw(amount) Withdraws the given amount from
the account’s balance.

a.getBalance() Returns the account’s balance.

a.getName() Returns the account’s name.

a.getPin() Returns the account’s PIN.

a.computeInterest() Computes the account’s interest and
deposits it.

__str__(a) Same as str(a). Returns the string
representation of the account.

8.3 Data-Modeling Examples [313]

C6840_08 11/19/08 1:48 PM Page 313

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒƒƒƒƒself._pinƒ=ƒpin
ƒƒƒƒƒƒƒƒself._balanceƒ=ƒbalance

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒresultƒ=ƒƒ'Name:ƒƒƒƒ'ƒ+ƒself._nameƒ+ƒ'\n'ƒ
ƒƒƒƒƒƒƒƒresultƒ+=ƒ'PIN:ƒƒƒƒƒ'ƒ+ƒself._pinƒ+ƒ'\n'ƒ
ƒƒƒƒƒƒƒƒresultƒ+=ƒ'Balance:ƒ'ƒ+ƒstr(self._balance)
ƒƒƒƒƒƒƒƒreturnƒresult

ƒƒƒƒdefƒgetBalance(self):
ƒƒƒƒƒƒƒƒreturnƒself._balance

ƒƒƒƒdefƒgetName(self):
ƒƒƒƒƒƒƒƒreturnƒself._name

ƒƒƒƒdefƒgetPin(self):
ƒƒƒƒƒƒƒƒreturnƒself._pin

ƒƒƒƒdefƒdeposit(self,ƒamount):
ƒƒƒƒƒƒƒƒ“””Depositsƒtheƒgivenƒamountƒandƒreturnsƒthe
ƒƒƒƒƒƒƒƒnewƒbalance.”””
ƒƒƒƒƒƒƒƒself._balanceƒ+=ƒamount
ƒƒƒƒƒƒƒƒreturnƒself._balance

ƒƒƒƒdefƒwithdraw(self,ƒamount):
ƒƒƒƒƒƒƒƒ“””Withdrawsƒtheƒgivenƒamount.
ƒƒƒƒƒƒƒƒReturnsƒNoneƒifƒsuccessful,ƒorƒan
ƒƒƒƒƒƒƒƒerrorƒmessageƒifƒunsuccessful.”””
ƒƒƒƒƒƒƒƒifƒamountƒ<ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ'Amountƒmustƒbeƒ>=ƒ0'
ƒƒƒƒƒƒƒƒelifƒself._balanceƒ<ƒamount:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ'Insufficientƒfunds'
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._balanceƒ-=ƒamount
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒNone

ƒƒƒƒdefƒcomputeInterest(self):
ƒƒƒƒƒƒƒƒ“””Computes,ƒdeposits,ƒandƒreturnsƒtheƒinterest.”””
ƒƒƒƒƒƒƒƒinterestƒ=ƒself._balanceƒ*ƒSavingsAccount.RATE
ƒƒƒƒƒƒƒƒself.deposit(interest)
ƒƒƒƒƒƒƒƒreturnƒinterest

When referenced, a class variable must be preceded by the class name and a
dot, as in SavingsAccount.RATE. Class variables are visible both inside a class
definition and to external users of the class.

In general, you should use class variables only for symbolic constants or to
maintain data held in common by all objects of a class. For data that are owned
by individual objects, you must use instance variables instead.

CHAPTER 8 Design with Classes[314]

C6840_08 11/19/08 1:48 PM Page 314

May not be copied, scanned, or duplicated, in whole or in part.

8.3.6 Putting the Accounts into a Bank

Savings accounts only make sense in the context of a bank. A very simple bank
allows a user to add new accounts, remove accounts, get existing accounts, and
compute interest on all accounts. A Bank class thus has these four basic opera-
tions (add, remove, get, and computeInterest) and a constructor. This class,
of course, also includes the usual str function for development and debugging.
We assume that both SavingsAccount and Bank are defined in a file named
bank.py. Here is a sample session that uses a Bank object and some
SavingsAccount objects. The interface for Bank is listed in Table 8.6.

>>>ƒfromƒbankƒimportƒBank,ƒSavingsAccount
>>>ƒbankƒ=ƒBank()
>>>ƒbank.add(SavingsAccount(“Wilma”,ƒ“1001”,ƒ4000.00))
>>>ƒbank.add(SavingsAccount(“Fred”,ƒ“1002”,ƒ1000.00))
>>>ƒprintƒbank
Name:ƒƒƒƒFred
PIN:ƒƒƒƒƒ1002
Balance:ƒ1000.00
Name:ƒƒƒƒWilma
PIN:ƒƒƒƒƒ1001
Balance:ƒ4000.00
>>>ƒaccountƒ=ƒbank.get(“1000”)
>>>ƒprintƒaccount
None
>>>ƒaccountƒ=ƒbank.get(“1001”)
>>>ƒprintƒaccount
Name:ƒƒƒƒWilma
PIN:ƒƒƒƒƒ1001
Balance:ƒ4000.00
>>>ƒaccount.deposit(25.00)
4025
>>>ƒprintƒaccount
Name:ƒƒƒƒWilma
PIN:ƒƒƒƒƒ1001
Balance:ƒ4025.00
>>>ƒprintƒbank
Name:ƒƒƒƒFred
PIN:ƒƒƒƒƒ1002
Balance:ƒ1000.00
Name:ƒƒƒƒWilma
PIN:ƒƒƒƒƒ1001
Balance:ƒ4025.00
>>>ƒ

8.3 Data-Modeling Examples [315]

C6840_08 11/19/08 1:48 PM Page 315

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 8.6] The interface for the Bank class

To keep the design simple, the bank maintains the accounts in no particular
order. Thus, you can choose a dictionary keyed by owners’ PINs to represent the
collection of accounts. Access and removal then depend on an owner’s PIN. Here
is the code for the Bank class:

classƒBank(object):
ƒƒƒƒ
ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._accountsƒ=ƒ{}

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnƒtheƒstringƒrepƒofƒtheƒentireƒbank.”””
ƒƒƒƒƒƒƒƒreturnƒ'\n'.join(map(str,ƒself._accounts.values()))

ƒƒƒƒdefƒadd(self,ƒaccount):ƒ
ƒƒƒƒƒƒƒƒ“””InsertsƒanƒaccountƒusingƒitsƒPINƒasƒaƒkey.”””
ƒƒƒƒƒƒƒƒself._accounts[account.getPin()]ƒ=ƒaccount

ƒƒƒƒdefƒremove(self,ƒpin):
ƒƒƒƒƒƒƒƒreturnƒself._accounts.pop(pin,ƒNone)

ƒƒƒƒdefƒget(self,ƒpin):
ƒƒƒƒƒƒƒƒreturnƒself._accounts.get(pin,ƒNone)

continued

Bank METHOD WHAT IT DOES

b = Bank() Returns a bank.

b.add(account) Adds the given account to the bank.

b.remove(pin) Removes the account with the given PIN from the
bank and returns the account. If the pin is not in the
bank, returns None.

b.get(pin) Returns the account associated with the PIN if the
PIN is in the bank. Otherwise, returns None.

b.computeInterest() Computes the interest on each account, deposits it in
that account, and returns the total interest.

__str__(b) Same as str(b). Returns a string representation of
the bank (all the accounts).

CHAPTER 8 Design with Classes[316]

C6840_08 11/19/08 1:48 PM Page 316

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒcomputeInterest(self):
ƒƒƒƒƒƒƒƒ“””Computesƒinterestƒforƒeachƒaccountƒandƒ
ƒƒƒƒƒƒƒƒreturnsƒtheƒtotal.”””
ƒƒƒƒƒƒƒƒtotalƒ=ƒ0.0
ƒƒƒƒƒƒƒƒforƒaccountƒinƒself._accounts.values():
ƒƒƒƒƒƒƒƒƒƒƒƒtotalƒ+=ƒaccount.computeInterest()
ƒƒƒƒƒƒƒƒreturnƒtotal

Note the use of the value None in the methods remove and get. In this context,
None indicates to the user that the given PIN is not in the bank.

8.3.7 Using cPickle for Permanent Storage of Objects

Chapter 4 discussed saving data in permanent storage with text files. Any object
can be converted to text for storage, but the mapping of complex objects to text
and back again can be tedious and cause maintenance headaches. Fortunately,
Python includes a module that allows the programmer to save and load objects
using a process called pickling. The term comes from the process of converting
cucumbers to pickles for preservation in jars. However, in the case of computa-
tional objects, you can get the cucumbers back again. Any object can be pickled
before it is saved to a file, and then unpickled as it is loaded from a file into a
program. Python takes care of all of the conversion details automatically.

You start by importing the cPickle module. Files are opened for input and
output and closed in the usual manner. To save an object, you use the function
cPickle.dump. Its first argument is the object to be “dumped,” or saved to a file,
and its second argument is the file object.

You can use the cPickle module to save the accounts in a bank to a file. You
start by defining a Bank method named save. The method includes an optional
argument for the filename. You assume that the bank object also has an instance
variable for the filename. For a new, empty bank, this variable’s value is initially
None. Whenever the bank is saved to a file, this variable becomes the current file-
name. When the method’s filename argument is not provided, the method uses
the bank’s current filename if there is one. This is similar to using the Save
option in a File menu. When the filename argument is provided, it is used to

8.3 Data-Modeling Examples [317]

C6840_08 11/19/08 1:48 PM Page 317

May not be copied, scanned, or duplicated, in whole or in part.

save the bank to a different file. This is similar to the Save As option in a File
menu. Here is the code:

importƒcPickle

defƒsave(self,ƒfileNameƒ=ƒNone):
ƒƒƒƒ“””Savesƒpickledƒaccountsƒtoƒaƒfile.ƒƒTheƒparameter
ƒƒƒƒallowsƒtheƒuserƒtoƒchangeƒfilenames.”””
ƒƒƒƒifƒfileNameƒ!=ƒNone:
ƒƒƒƒƒƒƒƒself._fileNameƒ=ƒfileName
ƒƒƒƒelifƒself._fileNameƒ==ƒNone:
ƒƒƒƒƒƒƒƒreturn
ƒƒƒƒfileObjƒ=ƒopen(self._fileName,ƒ'w')
ƒƒƒƒforƒaccountƒinƒself._accounts.values():
ƒƒƒƒƒƒƒƒcPickle.dump(account,ƒfileObj)
ƒƒƒƒfileObj.close()

8.3.8 Input of Objects and the try-except Statement

Pickled objects can be loaded into a program from a file using the function
cPickle.load. If the end of the file has been reached, this function raises an
exception. This complicates the input process, because we have no apparent way
to detect the end of the file before the exception is raised. However, Python’s
try-except statement comes to our rescue. This statement allows an exception
to be caught and the program to recover. The syntax of a simple try-except
statement is the following:

try:
ƒƒƒƒ<statements>
exceptƒ<exceptionƒtype>:
ƒƒƒƒ<statements>

When this statement is run, the statements within the try clause are executed. If
one of these statements raises an exception, control is immediately transferred to
the except clause. If the type of exception raised matches the type in this clause,
its statements are executed. Otherwise, control is transferred to the caller of the
try-except statement and further up the chain of calls, until the exception is
successfully handled or the program halts with an error message. If the state-
ments in the try clause raise no exceptions, the except clause is skipped and
control proceeds to the end of the try-except statement.

CHAPTER 8 Design with Classes[318]

C6840_08 11/19/08 1:48 PM Page 318

May not be copied, scanned, or duplicated, in whole or in part.

We can now construct an input file loop that continues to load objects until
the end of the file is encountered. When this happens, an EOFError is raised.
The except clause then closes the file and breaks out of the loop. We also add a
new instance variable to track the bank’s filename for saving the bank to a file.
Here is the code for a Bank method __init__ that can take some initial accounts
from an input file. This method now either creates a new, empty bank if the file-
name is not present, or loads accounts from a file into a bank object.

defƒ__init__(self,ƒfileNameƒ=ƒNone):
ƒƒƒƒ“””Createsƒaƒnewƒdictionaryƒtoƒholdƒtheƒaccounts.
ƒƒƒƒIfƒaƒfilenameƒisƒprovided,ƒloadsƒtheƒaccountsƒfrom
ƒƒƒƒaƒfileƒofƒpickledƒaccounts.”””
ƒƒƒƒself._accountsƒ=ƒ{}
ƒƒƒƒself._fileNameƒ=ƒfileName
ƒƒƒƒifƒfileNameƒ!=ƒNone:
ƒƒƒƒƒƒƒƒfileObjƒ=ƒopen(fileName,ƒ'r')
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒtry:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒaccountƒ=ƒcPickle.load(fileObj)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself.add(account)
ƒƒƒƒƒƒƒƒƒƒƒƒexceptƒEOFError:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒfileObj.close()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak

8.3.9 Playing Cards

A standard deck of cards has 52 cards. There are four suits: spades, hearts, dia-
monds, and clubs. Each suit contains 13 cards. Each card also has a rank, which is
a number used to sort the cards and determine the count in a hand. The literal
numbers are 2 through 10. An ace counts as the number 1 or some other number,
depending on the game being played. The face cards, jack, queen, and king, often
count as 11, 12, and 13, respectively.

A Card class and a Deck class would be useful resources for game-playing
programs. A Card object has two instance attributes, a rank and a suit. The Card
class has two class attributes, the set of all suits and the set of all ranks. You can
represent these two sets of attributes as instance variables and class variables in
the Card class.

Because the attributes are only accessed and never modified, we do not include
any methods other than a __str__ method for the string representation. The
__init__ method expects an integer rank and a string suit as arguments and

8.3 Data-Modeling Examples [319]

C6840_08 11/19/08 1:48 PM Page 319

May not be copied, scanned, or duplicated, in whole or in part.

returns a new card with that rank and suit. The next session shows the use of the
Card class:

>>>ƒthreeOfSpadesƒ=ƒCard(3,ƒ“Spades”)
>>>ƒjackOfSpadesƒ=ƒCard(11,ƒ“Spades”)
>>>ƒprintƒjackOfSpades
JackƒofƒSpades
>>>ƒthreeOfSpades.rankƒ<ƒjackOfSpades.rank
True
>>>ƒprintƒjackOfSpades.rank,ƒjackOfSpades.suit
11ƒSpade

Note that you access the rank and suit of a Card object by using a dot followed
by the instance variable names. A card is little more than a container of two data
values. Here is the code for the Card class:

classƒCard(object):
ƒƒƒƒ“””ƒAƒcardƒobjectƒwithƒaƒsuitƒandƒrank.”””

ƒƒƒƒRANKSƒ=ƒ(1,ƒ2,ƒ3,ƒ4,ƒ5,ƒ6,ƒ7,ƒ8,ƒ9,ƒ10,ƒ11,ƒ12,ƒ13)

ƒƒƒƒSUITSƒ=ƒ('Spades',ƒ'Diamonds',ƒ'Hearts',ƒ'Clubs')

ƒƒƒƒdefƒ__init__(self,ƒrank,ƒsuit):
ƒƒƒƒƒƒƒƒ“””Createsƒaƒcardƒwithƒtheƒgivenƒrankƒandƒsuit.”””
ƒƒƒƒƒƒƒƒself.rankƒ=ƒrank
ƒƒƒƒƒƒƒƒself.suitƒ=ƒsuit

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstringƒrepresentationƒofƒaƒcard.”””
ƒƒƒƒƒƒƒƒifƒself.rankƒ==ƒ1:
ƒƒƒƒƒƒƒƒƒƒƒƒrankƒ=ƒ'Ace'
ƒƒƒƒƒƒƒƒelifƒself.rankƒ==ƒ11:
ƒƒƒƒƒƒƒƒƒƒƒƒrankƒ=ƒ'Jack'
ƒƒƒƒƒƒƒƒelifƒself.rankƒ==ƒ12:
ƒƒƒƒƒƒƒƒƒƒƒƒrankƒ=ƒ'Queen'
ƒƒƒƒƒƒƒƒelifƒself.rankƒ==ƒ13:
ƒƒƒƒƒƒƒƒƒƒƒƒrankƒ=ƒ'King'
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒrankƒ=ƒself.rank
ƒƒƒƒƒƒƒƒreturnƒstr(rank)ƒ+ƒ'ƒofƒ'ƒ+ƒself.suit.lower()

CHAPTER 8 Design with Classes[320]

C6840_08 11/19/08 1:48 PM Page 320

May not be copied, scanned, or duplicated, in whole or in part.

Unlike an individual card, a deck has significant behavior that can be speci-
fied in an interface. One can shuffle the deck, deal a card, and determine the
number of cards left in it. Table 8.7 lists the methods of a Deck class and what
they do. Here is a sample session that tries out a deck:

>>>ƒdeckƒ=ƒDeck()
>>>ƒprintƒdeck
---ƒtheƒprintƒrepsƒofƒ52ƒcards,ƒinƒorderƒofƒsuitƒandƒrank
>>>ƒdeck.shuffle()
>>>ƒlen(deck)
52
>>>ƒwhileƒlen(deck)ƒ>ƒ0:
ƒƒƒƒƒƒƒƒcardƒ=ƒdeck.deal()
ƒƒƒƒƒƒƒƒprintƒcard

---ƒtheƒprintƒrepsƒofƒ52ƒrandomlyƒorderedƒcards
>>>ƒlen(deck)
0

[TABLE 8.7] The interface for the Deck class

During instantiation, all 52 unique cards are created and inserted into a
deck’s internal list of cards. The Deck constructor makes use of the class variables
RANKS and SUITS in the Card class to order the new cards appropriately. The
shuffle method simply passes the list of cards to random.shuffle. The deal

Deck METHOD WHAT IT DOES

d = Deck() Returns a deck.

d.__len__() Same as len(d). Returns the number of cards
currently in the deck.

d.shuffle() Shuffles the cards in the deck.

d.deal() If the deck is not empty, removes and returns the
topmost card. Otherwise, returns None.

d.__str__() Same as str(d). Returns a string representation of
the deck (all the cards in it).

8.3 Data-Modeling Examples [321]

C6840_08 11/19/08 1:48 PM Page 321

May not be copied, scanned, or duplicated, in whole or in part.

method removes and returns the first card in the list, if there is one, or returns
the value None otherwise. The len function, like the str function, calls a
method (in this case, __len__) which returns the length of the list of cards. Here
is the code for Deck:

importƒrandom

#ƒTheƒdefinitionƒofƒtheƒCardƒclassƒgoesƒhere

classƒDeck(object):
ƒƒƒƒ“””ƒAƒdeckƒcontainingƒ52ƒcards.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Createsƒaƒfullƒdeckƒofƒcards.”””
ƒƒƒƒƒƒƒƒself._cardsƒ=ƒ[]
ƒƒƒƒƒƒƒƒforƒsuitƒinƒCard.SUITS:
ƒƒƒƒƒƒƒƒƒƒƒƒforƒrankƒinƒCard.RANKS:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcƒ=ƒCard(rank,ƒsuit)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._cards.append(c)

ƒƒƒƒdefƒshuffle(self):
ƒƒƒƒƒƒƒƒ“””Shufflesƒtheƒcards.”””
ƒƒƒƒƒƒƒƒrandom.shuffle(self._cards)

ƒƒƒƒdefƒdeal(self):
ƒƒƒƒƒƒƒƒ“””RemovesƒandƒreturnsƒtheƒtopƒcardƒorƒNoneƒ
ƒƒƒƒƒƒƒƒifƒtheƒdeckƒisƒempty.”””
ƒƒƒƒƒƒƒƒifƒlen(self)ƒ==ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒreturnƒNone
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒreturnƒself._cards.pop(0)

ƒƒƒƒdefƒ__len__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒnumberƒofƒcardsƒleftƒinƒtheƒdeck.”””
ƒƒƒƒƒƒƒƒreturnƒlen(self._cards)

ƒƒƒƒdefƒ__str__(self):ƒ
ƒƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstringƒrepresentationƒofƒaƒdeck.”””
ƒƒƒƒƒƒƒƒƒresultƒ=ƒ''
ƒƒƒƒƒƒƒƒƒforƒcƒinƒself._cards:
ƒƒƒƒƒƒƒƒƒƒƒƒƒresultƒ=ƒresultƒ+ƒstr(c)ƒ+ƒ'\n'
ƒƒƒƒƒƒƒƒƒreturnƒresult

CHAPTER 8 Design with Classes[322]

C6840_08 11/19/08 1:48 PM Page 322

May not be copied, scanned, or duplicated, in whole or in part.

8.3 Exercises
1 Although the use of a PIN to identify a person’s bank account is simple,

it’s not very realistic. Real banks typically assign a unique 12-digit num-
ber to each account and use this as well as the customer’s PIN during a
login at an ATM. Suggest how to rework the banking system discussed
in this section to use this information.

2 What is a class variable? When should the programmer define a class
variable rather than an instance variable?

3 Describe how the arithmetic operators can be overloaded to work with
a new class of numbers.

4 Define a method for the Bank class that returns the total assets in the
bank (the sum of all account balances).

5 Describe the benefits of pickling objects for file storage.

6 Why would you use a try-except statement in a program?

7 Two playing cards can be compared by rank. For example, an ace is less
than a 2. When c1 and c2 are cards, c1.rank < c2.rank expresses this
relationship. Explain how a method could be added to the Card class to
simplify this expression to c1 < c2.

8.4 Case Study: An ATM
In this case study, we develop a simple ATM program that uses the Bank and
SavingsAccount classes discussed in the previous section.

8.4.1 Request

Write a program that simulates a simple ATM.

8.4.2 Analysis

Our ATM user logs in with a name and a personal identification number, or PIN.
If either string is unrecognized, Python prints an error message. Otherwise, the

8.4 Case Study: An ATM [323]

C6840_08 11/19/08 1:48 PM Page 323

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Design with Classes[324]

user can repeatedly select options to get the balance, make a deposit, and make a
withdrawal. A final option allows the user to quit. The ATM program runs until a
user enters the password “CloseItDown,” so it can accept more users. Figure 8.1
shows the sample terminal-based interface.

[FIGURE 8.1] The user interface for the ATM program

The data model classes for the program are the Bank and SavingsAccount
classes developed earlier in this chapter. To support user interaction, we also
develop a new class called ATM. The class diagram in Figure 8.2 shows the
relationships among these classes.

ken% python atm.py
Enter your name: Name1
Enter your PIN: 1111
Error, unrecognized PIN
Enter your name: Name1
Enter your PIN: 1000
1 View your balance
2 Make a deposit
3 Make a withdrawal
4 Quit

Enter a number: 1
Your balance is $ 100.0
1 View your balance
2 Make a deposit
3 Make a withdrawal
4 Quit

Enter a number: 2
Enter the amount to deposit: 50
1 View your balance
2 Make a deposit
3 Make a withdrawal
4 Quit

Enter a number: 4
Have a nice day!
Enter your name: CloseItDown
>>>

C6840_08 11/19/08 1:48 PM Page 324

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 8.2] A UML diagram for the ATM program showing the program’s classes

In a class diagram, the name of each class appears in a box. The lines or
edges connecting the boxes show the relationships. Note that these edges are
labeled or contain arrows. This information describes the number of accounts in
a bank (zero or more) and the dependency of one class on another (the direction
of an arrow). Class diagrams of this type are part of a graphical notation called
the Unified Modeling Language, or UML. UML is used to describe and docu-
ment the analysis and design of complex software systems.

In general, it is a good idea to divide the code for most interactive applica-
tions into at least two sets of classes. One set of classes, which we call the view,
handles the program’s interactions with human users, including the input and
output operations. The other set of classes, called the model, represents and
manages the data used by the application. In the current case study, the Bank and
SavingsAccount classes belong to the model, whereas the ATM class belongs to
the view. One of the benefits of this separation of responsibilities is that you can
write different views for the same data model, such as a terminal-based view and
a graphical-based view, without changing a line of code in the data model.
Alternatively, you can write different representations of the data model without
altering a line of code in the views. In most of the case studies that follow, we
apply this framework, called the model/view pattern, to structure the code.

8.4.3 Design

The ATM class maintains two instance variables. Their values are the following:
� A Bank object
� The SavingsAccount of the currently logged-in user

Bank

SavingsAccount

*

ATM

8.4 Case Study: An ATM [325]

C6840_08 11/19/08 1:48 PM Page 325

May not be copied, scanned, or duplicated, in whole or in part.

At program start-up, a Bank object is loaded from a file. An ATM object is
then created for this bank. The ATM’s run method is then called. This method
enters a loop that waits for a user to enter a name and a PIN. If the name equals
a secret code, then the loop terminates. If the name and PIN match those of an
account, the ATM’s account variable is set to the user’s account, and the ATM’s
_processAccount method is called. This method displays a menu of the four
options. The selection of an option triggers a lower-level method to process that
option. Table 8.8 lists the methods in the ATM class.

[TABLE 8.8] The interface for the ATM class

Note that the names of all of the methods except run begin with the _ symbol.
The run method is the only method called by the user of the ATM class. The other
methods are auxiliary methods used to accomplish tasks within the ATM class.

The ATM constructor receives a Bank object as an argument and saves a refer-
ence to it in an instance variable. It also sets the current account to None and fills
a jump table, which we discussed in Chapter 6, with the lower-level methods that
carry out the commands.

The run method logs in a user, sets the account variable, and calls
_processAccount.

The _processAccount method displays a menu, inputs a user’s command
number, and attempts to locate a method for that number in the jump table. If a
method is not found, an error message is displayed; otherwise, the method is run.
If the method logs the user out, the account will equal None, so the command
loop can break.

ATM METHOD WHAT IT DOES

ATM(bank) Returns a new ATM object based on bank.

run() Starts a loop that waits for users to log in. Entering a
secret code for the name terminates this process.

_processAccount() Displays a menu of options for a logged-in user and
calls the appropriate methods to handle the options.

_getBalance() Displays the user’s balance.

_deposit() Allows the user to make a deposit.

_withdraw() Allows the user to make a withdrawal and displays any
error messages.

_quit() Saves the bank to its file, resets the current account to
None, and returns to the login loop.

CHAPTER 8 Design with Classes[326]

C6840_08 11/19/08 1:48 PM Page 326

May not be copied, scanned, or duplicated, in whole or in part.

8.4 Case Study: An ATM [327]

8.4.4 Implementation (Coding)

Before you can run this program, you need to create a bank file. We include a
simple function that loads a Bank object with a number of dummy accounts and
saves it to a file.

The code in atm.py defines the ATM class, instantiates a Bank and an ATM,
and executes the ATM’s run method. Here is the text of that file:

“””
File:ƒatm.py

ThisƒmoduleƒdefinesƒtheƒATMƒclassƒandƒitsƒapplication.

Toƒtest,ƒlaunchƒfromƒIDLEƒandƒrun

>>>ƒcreateBank(5)
>>>ƒmain()

Canƒbeƒmodifiedƒtoƒrunƒasƒaƒscriptƒafterƒaƒbankƒhasƒbeenƒsaved.
“””

fromƒbankƒimportƒBank,ƒSavingsAccount

classƒATM(object):
ƒƒƒƒ“””Thisƒclassƒhandlesƒterminal-basedƒATMƒtransactions.”””
ƒƒƒƒƒƒƒƒ
ƒƒƒƒSECRET_CODEƒ=ƒ“CloseItDown”

ƒƒƒƒdefƒ__init__(self,ƒbank):
ƒƒƒƒƒƒƒƒself._accountƒ=ƒNone
ƒƒƒƒƒƒƒƒself._bankƒ=ƒbank
ƒƒƒƒƒƒƒƒself._methodsƒ=ƒ{}ƒƒƒƒƒƒƒƒƒƒ#ƒJumpƒtableƒforƒcommands
ƒƒƒƒƒƒƒƒself._methods[“1”]ƒ=ƒself._getBalance
ƒƒƒƒƒƒƒƒself._methods[“2”]ƒ=ƒself._deposit
ƒƒƒƒƒƒƒƒself._methods[“3”]ƒ=ƒself._withdraw
ƒƒƒƒƒƒƒƒself._methods[“4”]ƒ=ƒself._quit

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒ“””Logsƒinƒusersƒandƒprocessesƒtheirƒaccounts.”””
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒnameƒ=ƒraw_input(“Enterƒyourƒname:ƒ“)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒnameƒ==ƒATM.SECRET_CODE:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak

continued

C6840_08 11/19/08 1:48 PM Page 327

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Design with Classes[328]

ƒƒƒƒƒƒƒƒƒƒƒƒpinƒ=ƒraw_input(“EnterƒyourƒPIN:ƒ“)
ƒƒƒƒƒƒƒƒƒƒƒƒself._accountƒ=ƒself._bank.get(pin)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒself._accountƒ==ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Error,ƒunrecognizedƒPIN”
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒself._account.getName()ƒ!=ƒname:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Error,ƒunrecognizedƒname”
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._accountƒ=ƒNone
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._processAccount()

ƒƒƒƒdefƒ_processAccount(self):
ƒƒƒƒƒƒƒƒ“””Aƒmenu-drivenƒcommandƒprocessorƒforƒaƒuser.”””
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“1ƒƒViewƒyourƒbalance”
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“2ƒƒMakeƒaƒdeposit”
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“3ƒƒMakeƒaƒwithdrawal”
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“4ƒƒQuit\n”
ƒƒƒƒƒƒƒƒƒƒƒƒnumberƒ=ƒraw_input(“Enterƒaƒnumber:ƒ“)
ƒƒƒƒƒƒƒƒƒƒƒƒtheMethodƒ=ƒself._methods.get(number,ƒNone)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒtheMethodƒ==ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Unrecognizedƒnumber”
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtheMethod()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒCallƒtheƒmethod
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒself._accountƒ==ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak

ƒƒƒƒdefƒ_getBalance(self):
ƒƒƒƒƒƒƒƒprintƒ“Yourƒbalanceƒisƒ$”,ƒself._account.getBalance()

ƒƒƒƒdefƒ_deposit(self):
ƒƒƒƒƒƒƒƒamountƒ=ƒinput(“Enterƒtheƒamountƒtoƒdeposit:ƒ“)
ƒƒƒƒƒƒƒƒself._account.deposit(amount)

ƒƒƒƒdefƒ_withdraw(self):
ƒƒƒƒƒƒƒƒamountƒ=ƒinput(“Enterƒtheƒamountƒtoƒwithdraw:ƒ“)
ƒƒƒƒƒƒƒƒmessageƒ=ƒself._account.withdraw(amount)
ƒƒƒƒƒƒƒƒifƒmessage:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒmessage

ƒƒƒƒdefƒ_quit(self):
ƒƒƒƒƒƒƒƒself._bank.save()
ƒƒƒƒƒƒƒƒself._accountƒ=ƒNone
ƒƒƒƒƒƒƒƒprintƒ“Haveƒaƒniceƒday!”

#ƒTop-levelƒfunctions
defƒmain():
ƒƒƒƒ“””InstantiateƒaƒBankƒandƒanƒATMƒandƒrunƒit.”””
ƒƒƒƒbankƒ=ƒBank(“bank.dat”)

continued

C6840_08 11/19/08 1:48 PM Page 328

May not be copied, scanned, or duplicated, in whole or in part.

8.5 Structuring Classes with Inheritance and Polymorphism [329]

ƒƒƒƒatmƒ=ƒATM(bank)
ƒƒƒƒatm.run()
ƒƒƒƒ
defƒcreateBank(numberƒ=ƒ0):
ƒƒƒƒ“””Savesƒaƒbankƒwithƒtheƒspecifiedƒnumberƒofƒaccounts.
ƒƒƒƒUsedƒduringƒtesting.”””
ƒƒƒƒbankƒ=ƒBank()
ƒƒƒƒforƒiƒinƒxrange(number):
ƒƒƒƒƒƒƒƒbank.add(SavingsAccount('Name'ƒ+ƒstr(iƒ+ƒ1),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(1000ƒ+ƒi),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ100.00))
ƒƒƒƒbank.save(“bank.datƒ“)

8.5 Structuring Classes with Inheritance and
Polymorphism
Object-based programming involves the use of objects, classes, and methods to
solve problems. Most object-oriented languages require the programmer to mas-
ter the following techniques:

1 Data encapsulation. Restricting the manipulation of an object’s state by
external users to a set of method calls.

2 Inheritance. Allowing a class to automatically reuse and extend the code
of similar but more general classes.

3 Polymorphism. Allowing several different classes to use the same gen-
eral method names.

Although Python is considered an object-oriented language, its syntax does
not enforce data encapsulation. However, Python programmers can adopt conven-
tions, such as those we have used, to achieve data encapsulation in practice. For
example, the use of an underscore symbol in an instance variable can dissuade an
external user from writing code to access the variable in an inappropriate manner.

Unlike data encapsulation, inheritance and polymorphism are built into
Python’s syntax. In this section we examine how they can be exploited to struc-
ture code.

C6840_08 11/19/08 1:48 PM Page 329

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Design with Classes[330]

8.5.1 Inheritance Hierarchies and Modeling

Objects in the natural world and objects in the world of artifacts can be classified
using inheritance hierarchies. A simplified hierarchy of natural objects is
depicted in Figure 8.3.

[FIGURE 8.3] A simplified hierarchy of objects in the natural world

At the top of a hierarchy is the most general class of objects. This class defines
features that are common to every object in the hierarchy. For example, every
physical object has a mass. Classes just below this one have these features as well as
additional ones. Thus, a living thing has a mass and can also grow and die. The
path from a given class back up to the topmost one goes through all of that given
class’s ancestors. Each class below the topmost one inherits attributes and behaviors
from its ancestors and extends these with additional attributes and behavior.

An object-oriented software system models this pattern of inheritance and exten-
sion in real-world systems by defining classes that extend other classes. In Python, all
classes automatically extend the built-in object class, which is the most general class
possible. However, it is possible to extend any existing class using the syntax

classƒ<newƒclassƒname>(<existingƒclassƒname>):

Thus, for example, PhysicalObject would extend object, LivingThing would
extend PhysicalObject, and so on.

Stone Asteroid

Living thing

InsectMammal

Physical Object

Cat Ant

Inanimate object

C6840_08 11/19/08 1:48 PM Page 330

May not be copied, scanned, or duplicated, in whole or in part.

The real advantage of inheritance in a software system is that each new sub-
class acquires all of the instance variables and methods of its ancestor classes for
free. Like function definitions and class definitions, inheritance hierarchies pro-
vide an abstraction mechanism that allows the programmer to avoid reinventing
the wheel or writing redundant code. To see how inheritance works in Python,
we now explore two examples.

8.5.2 Example: A Restricted Savings Account

So far, our examples have focused on ordinary savings accounts. Banks also pro-
vide customers with restricted savings accounts. These are like ordinary savings
accounts in most ways, but with some special features, such as allowing only a
certain number of deposits or withdrawals a month. Let’s assume that a savings
account has a name, a PIN, and a balance. You can make deposits and with-
drawals and access the attributes. Let’s also assume that this restricted savings
account permits only three withdrawals per month. The next session shows
an interaction with a RestrictedSavingsAccount that permits up to three
withdrawals:

>>>ƒaccountƒ=ƒRestrictedSavingsAccount(“Ken”,ƒ“1001”,ƒ500.00)
>>>ƒprintƒaccount
Name:ƒƒƒƒKen
PIN:ƒƒƒƒƒ1001
Balance:ƒ500.0
>>>ƒaccount.getBalance()
500.0
>>>ƒforƒcountƒinƒxrange(3):
ƒƒƒƒƒƒƒaccount.withdraw(100)
ƒƒƒ
>>>ƒaccount.withdraw(50)
'Noƒmoreƒwithdrawalsƒthisƒmonth'
>>>ƒaccount.resetCounter()
>>>ƒaccount.withdraw(50)

The fourth withdrawal has no effect on the account and it returns an error mes-
sage. A new method named resetCounter is called to enable withdrawals for the
next month.

If RestrictedSavingsAccount is defined as a subclass of SavingsAccount,
every method but withdraw can simply be inherited and used without changes.
The withdraw method is redefined in RestrictedSavingsAccount to return an
error message if the number of withdrawals has exceeded the maximum. The

8.5 Structuring Classes with Inheritance and Polymorphism [331]

C6840_08 11/19/08 1:48 PM Page 331

May not be copied, scanned, or duplicated, in whole or in part.

maximum will be maintained in a new class variable, and the monthly count of
withdrawals will be tracked in a new instance variable. Finally, a new method,
resetCounter, is included to reset the number of withdrawals to 0 at the end
of each month. Here is the code for the RestrictedSavingsAccount class,
followed by a brief explanation:

“””
File:ƒsavings.py

ThisƒmoduleƒdefinesƒtheƒRestrictedSavingsAccountƒclass.
“””
fromƒbankƒimportƒSavingsAccount

classƒRestrictedSavingsAccount(SavingsAccount):
ƒƒƒƒ“””Thisƒclassƒrepresentsƒaƒrestrictedƒsavingsƒaccount.”””

ƒƒƒƒMAX_WITHDRAWALSƒ=ƒ3
ƒƒƒƒƒƒƒƒ
ƒƒƒƒdefƒ__init__(self,ƒname,ƒpin,ƒbalanceƒ=ƒ0.0):
ƒƒƒƒƒƒƒƒ“””SameƒattributesƒasƒSavingsAccount,ƒbutƒwith
ƒƒƒƒƒƒƒƒaƒcounterƒforƒwithdrawals.”””
ƒƒƒƒƒƒƒƒSavingsAccount.__init__(self,ƒname,ƒpin,ƒbalance)
ƒƒƒƒƒƒƒƒself._counterƒ=ƒ0

ƒƒƒƒdefƒwithdraw(self,ƒamount):
ƒƒƒƒƒƒƒƒ“””RestrictsƒnumberƒofƒwithdrawalsƒtoƒMAX_WITHDRAWALS.”””
ƒƒƒƒƒƒƒƒifƒself._counterƒ==ƒRestrictedSavingsAccount.MAX_WITHDRAWALS:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Noƒmoreƒwithdrawalsƒthisƒmonth”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒmessageƒ=ƒSavingsAccount.withdraw(self,ƒamount)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒmessageƒ==ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._counterƒ+=ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒmessage

ƒƒƒƒdefƒresetCounter(self):
ƒƒƒƒƒƒƒƒself._counterƒ=ƒ0

The RestrictedSavingsAccount class includes a new class variable not
found in SavingsAccount. This variable, called MAX_WITHDRAWALS, is used to
restrict the number of withdrawals that are permitted per month.

The RestrictedSavingsAccount constructor first calls the constructor in
the SavingsAccount class to initialize the instance variables for the name, PIN,
and balance defined there. The syntax uses the class name before the dot, and
explicitly includes self as the first argument. The general form of the syntax for

CHAPTER 8 Design with Classes[332]

C6840_08 11/19/08 1:48 PM Page 332

May not be copied, scanned, or duplicated, in whole or in part.

calling a method in the parent class from within a method with the same name in
a subclass follows:

<parentƒclassƒname>.<methodƒname>(self,ƒ<otherƒarguments>)

Continuing in RestrictedSavingsAccount’s constructor, the new instance vari-
able _counter is then set to 0. The rule of thumb to remember when writing the
constructor for a subclass is that each class is responsible for initializing its own
instance variables. Thus, the constructor of the parent class should always be called.

The withdraw method is redefined in RestrictedSavingsAccount to
override the definition of the same method in SavingsAccount. You allow a
withdrawal only when the counter’s value is less than the maximum, and you
increment the counter only after a withdrawal is successful. Note that this version
of the method calls the same method in the superclass to perform the actual with-
drawal. The syntax for this is the same as is used in the constructor.

Finally, the new method resetCounter is included to allow the user to con-
tinue withdrawals in the next month.

8.5.3 Example: The Dealer and a Player in the Game of
Blackjack

The card game of blackjack is played with at least two players, one of whom is
also a dealer. The object of the game is to receive cards from the deck and play
to a count of 21 without going over 21. A card’s point equals its rank, but all
face cards are 10 points and an ace can count as either 1 or 11 points as needed.
At the beginning of the game, the dealer and the player each receive two cards
from the deck. The player can see both of her cards and just one of the dealer’s
cards initially. The player then “hits” or takes one card at a time until her total
exceeds 21 (a “bust” loss), or she “passes” (stops taking cards). When the player
passes, the dealer reveals his other card and must keep taking cards until his
total is greater than or equal to 17. If the dealer’s final total is greater than 21,
he also loses. Otherwise, the player with the higher point total wins, or else
there is a tie.

A computer program that plays this game can use a Dealer object and a
Player object. The dealer’s moves are completely automatic, whereas the player’s
moves (decisions to pass or hit) are partly controlled by a human user. A third

8.5 Structuring Classes with Inheritance and Polymorphism [333]

C6840_08 11/19/08 1:48 PM Page 333

May not be copied, scanned, or duplicated, in whole or in part.

object belonging to the Blackjack class sets up the game and manages the inter-
actions with the user. The Deck and Card classes developed earlier are also
included. A class diagram of the system is shown in Figure 8.4.

[FIGURE 8.4] The classes in the blackjack game application

Here is a sample run of the program:

>>>ƒfromƒblackjackƒimportƒBlackjack
>>>ƒgameƒ=ƒBlackjack()
>>>ƒgame.play()
Player:
2ƒofƒSpades,ƒ5ƒofƒSpades
ƒƒ7ƒpoints
Dealer:
5ƒofƒHearts
Doƒyouƒwantƒaƒhit?ƒ[y/n]:ƒy
Player:
2ƒofƒSpades,ƒ5ƒofƒSpades,ƒKingƒofƒHearts
ƒƒ17ƒpoints
Doƒyouƒwantƒaƒhit?ƒ[y/n]:ƒn
Dealer:
5ƒofƒHearts,ƒQueenƒofƒHearts,ƒ7ƒofƒDiamonds
ƒƒ22ƒpoints
Dealerƒbustsƒandƒyouƒwin

Deck Blackjack

Player

Dealer

Card

1

1

1

0..52

CHAPTER 8 Design with Classes[334]

C6840_08 11/19/08 1:48 PM Page 334

May not be copied, scanned, or duplicated, in whole or in part.

When a Player object is created, it receives two cards. A Player object can be
hit with another card, asked for the points in its hand, and asked for its string repre-
sentation. Here is the code for the Player class, followed by a brief explanation:

fromƒcardsƒimportƒDeck,ƒCard

classƒPlayer(object):
ƒƒƒƒ“””Thisƒclassƒrepresentsƒaƒplayerƒin
ƒƒƒƒaƒblackjackƒgame.”””

ƒƒƒƒdefƒ__init__(self,ƒcards):
ƒƒƒƒƒƒƒƒself._cardsƒ=ƒcards

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒstringƒrepƒofƒcardsƒandƒpoints.”””
ƒƒƒƒƒƒƒƒresultƒ=ƒ“,ƒ“.join(map(str,ƒself._cards))
ƒƒƒƒƒƒƒƒresultƒ+=ƒ“\nƒƒ“ƒ+ƒstr(self.getPoints())ƒ+ƒ“ƒpoints”
ƒƒƒƒƒƒƒƒreturnƒresult

ƒƒƒƒdefƒhit(self,ƒcard):
ƒƒƒƒƒƒƒƒself._cards.append(card)

ƒƒƒƒdefƒgetPoints(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒnumberƒofƒpointsƒinƒtheƒhand.”””
ƒƒƒƒƒƒƒƒcountƒ=ƒ0
ƒƒƒƒƒƒƒƒforƒcardƒinƒself._cards:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒcard.rankƒ>ƒ9:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒ10
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcard.rankƒ==ƒ1:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒ11
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒcard.rank
ƒƒƒƒƒƒƒƒ#ƒDeductƒ10ƒifƒAceƒisƒavailableƒandƒneededƒasƒ1
ƒƒƒƒƒƒƒƒforƒcardƒinƒself._cards:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒcountƒ<=ƒ21:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcard.rankƒ==ƒ1:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountƒ-=ƒ10
ƒƒƒƒƒƒƒƒreturnƒcount

ƒƒƒƒdefƒhasBlackjack(self):
ƒƒƒƒƒƒƒƒ“””Dealtƒ21ƒorƒnot.”””
ƒƒƒƒƒƒƒƒreturnƒlen(self._cards)ƒ==ƒ2ƒandƒself.getPoints()ƒ==ƒ21ƒ

8.5 Structuring Classes with Inheritance and Polymorphism [335]

C6840_08 11/19/08 1:48 PM Page 335

May not be copied, scanned, or duplicated, in whole or in part.

The problem of computing the points in a player’s hand is complicated by
the fact that an ace can count as either 1 or 11. The getPoints method solves
this problem by first totaling the points using an ace as 11. If this initial count is
greater than 21, then there is a need to count an ace, if there is one, as a 1. The
second loop accomplishes this by counting such aces as long as they are available
and needed. The other methods require no comment.

A Dealer object also maintains a hand of cards and recognizes the same
methods as a Player object. However, the dealer’s behavior is a bit more special-
ized. For example, the dealer at first shows just one card, and the dealer repeat-
edly hits until 17 points are reached or exceeded. Thus, as Figure 8.4 shows,
Dealer is best defined as a subclass of Player. Here is the code for the Dealer
class, followed by a brief explanation:

classƒDealer(Player):
ƒƒƒƒ“””LikeƒaƒPlayer,ƒbutƒwithƒsomeƒrestrictions.”””

ƒƒƒƒdefƒ__init__(self,ƒcards):
ƒƒƒƒƒƒƒƒ“””Initialƒstate:ƒshowƒoneƒcardƒonly.”””
ƒƒƒƒƒƒƒƒPlayer.__init__(self,ƒcards)
ƒƒƒƒƒƒƒƒself._showOneCardƒ=ƒTrue

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnƒjustƒoneƒcardƒifƒnotƒhitƒyet.”””
ƒƒƒƒƒƒƒƒifƒself._showOneCard:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒstr(self._cards[0])
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒPlayer.__str__(self)

ƒƒƒƒdefƒhit(self,ƒdeck):
ƒƒƒƒƒƒƒƒ“””Addƒcardsƒwhileƒpointsƒ<ƒ17,
ƒƒƒƒƒƒƒƒthenƒallowƒallƒtoƒbeƒshown.”””
ƒƒƒƒƒƒƒƒself._showOneCardƒ=ƒFalse
ƒƒƒƒƒƒƒƒwhileƒself._getPoints()ƒ<ƒ17:
ƒƒƒƒƒƒƒƒƒƒƒƒself._cards.append(deck.deal())

Dealer maintains an extra instance variable, _showOneCard, which restricts
the number of cards in the string representation to one card at start-up. As soon
as the dealer hits, this variable is set to False, so all of the cards will be included
in the string from then on. The hit method actually receives a deck rather than a
single card as an argument, so cards may repeatedly be dealt and added to the
dealer’s list at the close of the game.

CHAPTER 8 Design with Classes[336]

C6840_08 11/19/08 1:48 PM Page 336

May not be copied, scanned, or duplicated, in whole or in part.

The Blackjack class coordinates the interactions among the Deck object,
the Player object, the Dealer object, and the human user. Here is the code:

classƒBlackjack(object):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._deckƒ=ƒDeck()
ƒƒƒƒƒƒƒƒself._deck.shuffle()

ƒƒƒƒƒƒƒƒ#ƒPassƒtheƒplayerƒandƒtheƒdealerƒtwoƒcardsƒeach
ƒƒƒƒƒƒƒƒself._playerƒ=ƒPlayer([self._deck.deal(),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._deck.deal()])
ƒƒƒƒƒƒƒƒself._dealerƒ=ƒDealer([self._deck.deal(),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._deck.deal()])

ƒƒƒƒdefƒplay(self):
ƒƒƒƒƒƒƒƒprintƒ“Player:\n”,ƒself._player
ƒƒƒƒƒƒƒƒprintƒ“Dealer:\n”,ƒself._dealer

ƒƒƒƒƒƒƒƒ#ƒPlayerƒhitsƒuntilƒuserƒsaysƒNO
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒchoiceƒ=ƒraw_input(“Doƒyouƒwantƒaƒhit?ƒ[y/n]:ƒ“)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒchoiceƒinƒ(“Y”,ƒ“y”):
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._player.hit(self._deck.deal())
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒpointsƒ=ƒself._player.getPoints()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Player:\n”,ƒself._player
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒpointsƒ>=ƒ21:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒplayerPointsƒ=ƒself._player.getPoints()
ƒƒƒƒƒƒƒƒifƒplayerPointsƒ>ƒ21:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Youƒbustƒandƒlose”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒDealer'sƒturnƒtoƒhit
ƒƒƒƒƒƒƒƒƒƒƒƒself._dealer.hit(self._deck)
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Dealer:\n”,ƒself._dealer
ƒƒƒƒƒƒƒƒƒƒƒƒdealerPointsƒ=ƒself._dealer.getPoints()
ƒƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒDetermineƒtheƒoutcome
ƒƒƒƒƒƒƒƒƒƒƒƒifƒdealerPointsƒ>ƒ21:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Dealerƒbustsƒandƒyouƒwin”
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒdealerPointsƒ>ƒplayerPoints:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Dealerƒwins”
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒdealerPointsƒ<ƒplayerPointsƒandƒplayerPointsƒ<=ƒ21:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Youƒwin”
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒdealerPointsƒ==ƒplayerPoints:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒself._player.hasBlackjack()ƒand\ƒ

continued

8.5 Structuring Classes with Inheritance and Polymorphism [337]

C6840_08 11/19/08 1:48 PM Page 337

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnotƒself._dealer.hasBlackjack():
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ"Youƒwin"
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒelifƒnotƒself._player.hasBlackjack()ƒand\ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._dealer.hasBlackjack():
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ"Dealerƒwins"
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ"Thereƒisƒaƒtie"

8.5.4 Polymorphic Methods

As we have seen in our two examples, a subclass inherits data and methods from
its parent class. We would not bother subclassing unless the two classes shared a
substantial amount of abstract behavior. By this term, we mean that the classes
have similar sets of methods or operations. A subclass usually adds something
extra, such as a new method or a data attribute, to the ensemble provided by its
superclass. A new data attribute is included in both of our examples, and a new
method is included in the first one.

In some cases, the two classes have the same interface, or set of methods
available to external users. In these cases, one or more methods in a subclass
override the definitions of the same methods in the superclass to provide special-
ized versions of the abstract behavior. Like any object-oriented language, Python
supports this capability with polymorphic methods. The term “polymorphic”
means many bodies, and applies to two methods that have the same header, but
have different definitions in different classes. Two examples are the withdraw
method in the bank account hierarchy and the hit method in the blackjack
player hierarchy. The __str__ method is a good example of a polymorphic
method that appears throughout Python’s system of classes.

Like other abstraction mechanisms, polymorphic methods make code easier
to understand and use, because the programmer does not have to remember so
many different names.

8.5.5 Abstract Classes

An abstract class includes data and methods common to its subclasses, but is
never instantiated. For example, checking accounts and savings accounts have
similar attributes and behavior. The data and methods that they have in common
can be placed in an abstract class named Account. The SavingsAccount and
CheckingAccount classes can then extend the Account class and access these
common resources by inheritance (see the UML diagram in Figure 8.5). Any

CHAPTER 8 Design with Classes[338]

C6840_08 11/19/08 1:48 PM Page 338

May not be copied, scanned, or duplicated, in whole or in part.

special behavior or attributes can then be added to these two subclasses.
SavingsAccount and CheckingAccount are also known as concrete classes.
Unlike concrete classes, an abstract class such as Account is never instantiated.

[FIGURE 8.5] An abstract class and three concrete classes

The use of abstract classes will be important in Chapters 13-20 of this book,
where frameworks of collection classes are discussed.

8.5.6 The Costs and Benefits of Object-Oriented
Programming

Whenever you learn a new style of programming, you sooner or later become
acquainted with its costs and benefits. To hasten this process, we conclude this
section by comparing several programming styles, all of which have been used in
this book.

The approach with which this book began is called imperative programming.
Code in this style consists of input and output statements, assignment statements,
and control statements for selection and iteration. The name derives from the idea
that a program consists of a set of commands to the computer, which responds by
performing such actions as manipulating data values in memory. This style is appro-
priate for writing very short code sequences that accomplish simple tasks, such as
solving the problems that were introduced in Chapters 1 through 5 of this book.

However, as problems become more complex, the imperative programming
style does not scale well. In particular, the number of interactions among statements
that manipulate the same data variables quickly grows beyond the point of compre-
hension of a human programmer who is trying to verify or maintain the code.

Account

CheckingAccountSavingsAccount

RestrictedSavingsAccount

8.5 Structuring Classes with Inheritance and Polymorphism [339]

C6840_08 11/19/08 1:48 PM Page 339

May not be copied, scanned, or duplicated, in whole or in part.

As we saw in Chapter 6, some of this complexity can be mitigated by embed-
ding sequences of imperative code in function definitions or subprograms. It then
becomes possible to decompose complex problems into simpler subproblems that
can be solved by these subprograms. In other words, the use of subprograms
reduces the number of program components that one must keep track of.
Moreover, when each subprogram has its own temporary variables and receives
data from the surrounding program by means of explicit parameters, the number
of possible dependencies and interactions among program components also
decreases. The use of cooperating subprograms to solve problems is called
procedural programming.

Although procedural programming takes a step in the direction of controlling
program complexity, it simply masks and ultimately recapitulates the problems of
imperative programming at a higher level of abstraction. When many subpro-
grams share and modify a common data pool, as they did in some of our early
examples, it becomes difficult once again for the programmer to keep track of all
of the interactions among the subprograms during verification and maintenance.

One cause of this problem is the use of the assignment statement to modify
data. Some computer scientists have developed a style of programming that
dispenses with assignment altogether. This radically different approach, called
functional programming, views a program as a set of cooperating functions. A
function in this sense is a highly restricted subprogram. Its sole purpose is to
transform the data in its arguments into other data, its returned value. Because
assignment does not exist, functions perform computations by either evaluating
expressions or calling other functions. Selection is handled by a conditional
expression, which is like an if-else statement that returns a value, and iteration
is implemented by recursion. By restricting how functions can use data, this very
simple model of computation dramatically reduces the conceptual complexity of
programs. However, some argue that this style of programming does not conve-
niently model situations where data objects must change their state.

Object-oriented programming attempts to control the complexity of a pro-
gram while still modeling data that change their state. This style divides up the
data into relatively small units called objects. Each object is then responsible for
managing its own data. If an object needs help with its own tasks, it can call upon
another object or rely on methods defined in its superclass. The main goal is to
divide responsibilities among small, relatively independent or loosely coupled
components. Cooperating objects, when they are well designed, decrease the
likelihood that a system will break when changes are made within a component.

Although object-oriented programming has become quite popular, it can be
overused and abused. Many small and medium-sized problems can still be solved
effectively, simply, and, most important, quickly using any of the other three
styles of programming mentioned here, either individually or in combination.

CHAPTER 8 Design with Classes[340]

C6840_08 11/19/08 1:48 PM Page 340

May not be copied, scanned, or duplicated, in whole or in part.

The solutions of problems, such as numerical computations, often seem contrived
when they are cast in terms of objects and classes. For other problems, the use of
objects is easy to grasp, but their implementation in the form of classes reflects a
complex model of computation with daunting syntax and semantics. Finally,
hidden and unpleasant interactions can lurk in poorly designed inheritance hier-
archies that resemble those afflicting the most brittle procedural programs.

To conclude, whatever programming style or combination of styles you
choose to solve a problem, good design and common sense are essential.

8.5 Exercises
1 What are the benefits of having class B extend or inherit from class A?

2 Describe what the __init__ method should do in a class that extends
another class.

3 Class B extends class A. Class A defines an __str__ method that returns
the string representation of its instance variables. Class B defines a single
instance variable named _age, which is an integer. Write the code to
define the __str__ method for class B. This method should return the
combined string information from both classes. Label the data for _age
with the string “Age: “.

Summary
� A simple class definition consists of a header and a set of method defi-

nitions. Several related classes can be defined in the same module.
Each element, a module, a class, and a method, can have a separate
docstring associated with it.

� In addition to methods, a class can also include instance variables.
These represent the data attributes of the class. Each instance or
object of a class has its own chunk of memory storage for the values of
its instance variables.

� The constructor or __init__ method is called when a class is instan-
tiated. This method initializes the instance variables. The method can
expect required and/or optional arguments to allow the users of the
class to provide initial values for the instance variables.

Summary [341]

C6840_08 11/19/08 1:48 PM Page 341

May not be copied, scanned, or duplicated, in whole or in part.

� A method contains a header and a body. The first parameter of a
method is always the reserved word self. This parameter is bound to
the object with which the method is called, so that the code within the
method can reference that particular object.

� An instance variable is introduced and referenced like any other vari-
able, but is always prefixed with self. The scope of an instance
variable is the body of the enclosing class definition, whereas its life-
time is the lifetime of the object associated with it.

� Some standard operators can be overloaded for use with new classes
of objects. One overloads an operator by defining a method that has
the corresponding name.

� When a program can no longer reference an object, it is considered
dead and its storage is recycled by the garbage collector.

� A class variable is a name for a value that all instances of a class share in
common. It is created and initialized when a class is defined and must
be accessed by using the class name, a dot, and the variable name.

� Pickling is the process of converting an object to a form that can be
saved to permanent file storage. Unpickling is the inverse process.

� The try-except statement is used to catch and handle exceptions
that might be raised in a set of statements.

� The three most important features of object-oriented programming
are encapsulation, inheritance, and polymorphism. All three features
simplify programs and make them more maintainable.

� Encapsulation restricts access to an object’s data to users of the meth-
ods of its class. This helps to prevent indiscriminant changes to an
object’s data.

� Inheritance allows one class to pick up the attributes and behavior of
another class for free. The subclass may also extend its parent class by
adding data and/or methods or modifying the same methods.
Inheritance is a major means of reusing code.

� Polymorphism allows methods in several different classes to have the
same headers. This reduces the need to learn new names for standard
operations.

� A data model is a set of classes that are responsible for managing the
data of a program. A view is a set of classes that are responsible for
presenting information to a human user and handling user inputs.
The model/view pattern structures software systems using these two
sets of components.

CHAPTER 8 Design with Classes[342]

C6840_08 11/19/08 1:48 PM Page 342

May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS [343]

REVIEW QUESTIONS
1 An instance variable refers to a data value that

a is owned by an particular instance of a class and no other
b is shared in common and can be accessed by all instances of a

given class

2 The name used to refer the current instance of a class within the class
definition is

a this

b other

c self

3 The purpose of the __init__ method in a class definition is to

a build and return a string representation of the instance variables
b set the instance variables to initial values

4 A method definition

a can have zero or more parameter names
b always must have at least one parameter name, called self

5 The scope of an instance variable is

a the statements in the body of the method where it is introduced
b the entire class in which it is introduced
c the entire module where it is introduced

6 An object’s lifetime ends

a several hours after it is created
b when it can no longer be referenced anywhere in a program
c when its data storage is recycled by the garbage collector

7 A class variable is used for data that

a all instances of a class have in common
b each instance owns separately

8 Class B is a subclass of class A. The __init__ methods in both classes
expect no arguments. The call of class A’s __init__ method in class B is

a A.__init__()

b A.__init__(self)

C6840_08 11/19/08 1:48 PM Page 343

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 8 Design with Classes[344]

9 The easiest way to save objects to permanent storage is to

a convert them to strings and save this text to a text file
b pickle them using the cPickle method save

10 A polymorphic method

a has a single header but different bodies in different classes
b creates harmony in a software system

PROJECTS
1 Add methods to the Student class that compare two Student objects.

One method should test for equality. The other method should support
the other possible comparisons. In each case, the method returns the
result of the comparison of the two students’ names.

2 This project assumes that you have completed Project 1. Place several
Student objects into a list and shuffle it. Then run the sort method
with this list and display all of the students’ information.

3 The str method of the Bank class returns a string containing the
accounts in random order. Design and implement a change that causes
the accounts to be placed in the string by order of name. (Hint: You will
also have to define a new method in the SavingsAccount class.)

4 The ATM program allows a user an indefinite number of attempts to log
in. Fix the program so that it displays a message that the police will be
called after a user has had three successive failures. The program should
also shut down the bank when this happens.

5 Develop a terminal-based program that allows a bank manager to manip-
ulate the accounts in a bank. This menu-driven program should include
all of the relevant options, such as adding a new account, removing an
account, and editing an account.

6 A simple software system for a library models a library as a collection of
books and patrons. A patron can have at most three books out on loan
at any given time. Each book has a title, an author, a patron to whom it
has been checked out, and a list of patrons waiting for that book to
be returned. When a patron wants to borrow a book, that patron is

C6840_08 11/19/08 1:48 PM Page 344

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [345]

automatically added to the book’s wait list if the book is already checked
out. When a patron returns a book, it is automatically loaned to the first
patron on its wait list who can check out a book. Each patron has a name
and the number of books that patron has currently checked out. Develop
the classes Book and Patron to model these objects. Think first of the
interface or set of methods to be used with each class, and then choose
appropriate data structures for the state of the objects. Also write a short
script to test these classes.

7 Develop a Library class that can manage the books and patrons from
Project 6. This class should include methods for adding, removing, and
finding books and patrons.

8 Develop a Manager class that provides a menu-driven command proces-
sor for managing a library of the type developed in Project 7.

9 The Doctor program described in Chapter 5 combines the data model
of a doctor and the operations for handling user interaction. Restructure
this program according to the model/view pattern so that these areas of
responsibility are assigned to separate sets of classes. The program
should include a Doctor class with an interface that allows one to obtain
a greeting, a signoff message, and a reply to a patient’s string. The rest of
the program handles the user’s interactions with the Doctor object.

10 Geometric shapes can be modeled as classes. Develop classes for line
segments, circles, and rectangles. Each shape object should contain a
Turtle object and a color that allow the shape to be drawn in a Turtle
graphics window (see Chapter 7 for details). Factor the code for these
features (instance variables and methods) into an abstract Shape class.
The Circle, Rectangle, and Line classes are all subclasses of Shape.
These subclasses include the other information about the specific types
of shapes, such as a radius or a corner point and a draw method. Write a
script that uses several instances of the different shape classes to draw a
house and a stick figure.

C6840_08 11/19/08 1:48 PM Page 345

May not be copied, scanned, or duplicated, in whole or in part.

C6840_08 11/19/08 1:48 PM Page 346

This page intentionally left blank

[CHAPTER]
Graphical User Interfaces9
After completing this chapter, you will be able to:

� Structure a GUI-based program using the model/view/
controller pattern

� Instantiate and lay out different types of window objects, such as
labels, entry fields, and command buttons, in a window’s frame

� Define methods that handle events associated with window
objects

� Organize sets of window objects in nested frames
Most people do not judge a book by its cover. They are interested

in its contents, not its appearance. However, users judge a software
product by its user interface because they have no other way to access
its functionality. With the exception of Chapter 7, in which we
explored graphics and image processing, this book has focused on
programs that present a terminal-based user interface. Although this
type of user interface is perfectly adequate for some applications,
most modern computer software employs a graphical user interface
or GUI. A GUI displays text as well as small images (called icons)
that represent objects such as directories, files of different types,
command buttons, and drop-down menus. In addition to entering
text at the keyboard, the user of a GUI can select an icon with a
pointing device, such as a mouse, and move that icon around on the
display. Commands can be activated by pressing the Enter key or
Control keys, by pressing a command button, or by selecting a drop-
down menu item with the mouse. Put more simply, a GUI displays
all information, including text, graphically to its users, and allows
them to manipulate this information directly with a pointing device.

C6840_09 11/19/08 11:43 AM Page 347

May not be copied, scanned, or duplicated, in whole or in part.

In this chapter, you learn how to develop GUIs. The transition to GUIs
involves making two adjustments to your thinking. First, the structure of a GUI
program differs significantly from that of a terminal-based program. Second, a
GUI program is event driven, meaning that it is inactive until the user clicks a
button or selects a menu option. In contrast, a terminal-based program main-
tains constant control over the interactions with the user. Put differently, a
terminal-based program prompts the user to enter successive inputs, whereas
a GUI program allows the user to enter inputs in any order and waits for the
user to press a command button or select a menu option. This distinction will
become clearer as you read this chapter.

9.1 The Behavior of Terminal-Based Programs
and GUI-Based Programs
We begin by examining the look and behavior of two different versions of the
same program from a user’s point of view. This program, first introduced as
Programming Project 4 in Chapter 3, computes and displays the total distance
traveled by a ball, given three inputs—the initial height from which it is dropped,
its bounciness index, and the number of bounces. The total distance traveled for
a single bounce is the sum of the distance down and the distance back up. The
user may enter the inputs any number of times before quitting the program. The
first version of the bouncy program includes a terminal-based user interface,
whereas the second version uses a graphical user interface. Although both pro-
grams perform exactly the same function, their behavior, or look and feel, from a
user’s perspective are quite different.

9.1.1 The Terminal-Based Version

The terminal-based version of the bouncy program displays a greeting and then
a menu of command options. The user is prompted for a command number and
then enters a number from the keyboard. The program responds by either termi-
nating execution, prompting for the information for a bouncing ball, or printing
a message indicating an unrecognized command. After the program processes a
command, it displays the menu again and the same process starts over. A sample
session with this program is shown in Figure 9.1.

CHAPTER 9 Graphical User Interfaces[348]

C6840_09 11/19/08 11:43 AM Page 348

May not be copied, scanned, or duplicated, in whole or in part.

9.1 The Behavior of Terminal-Based Programs and GUI-Based Programs [349]

[FIGURE 9.1] A session with the terminal-based bouncy program

This terminal-based user interface has several obvious effects on its users:
� The user is constrained to reply to a definite sequence of prompts for

inputs. Once an input is entered, there is no way to back up and change it.
� To obtain results for a different set of input data, the user must wait for the

command menu to be displayed again. At that point, the same command
and all of the other inputs must be re-entered.

� The user can enter an unrecognized command.

Each of these effects poses a problem for users that can be solved by convert-
ing the interface to a GUI.

9.1.2 The GUI-Based Version

The GUI-based version of the bouncy program displays a window that contains
various components, also called window objects or widgets. Some of these com-
ponents look like text, while others provide visual cues as to their use. Figure 9.2
shows snapshots of a sample session with this version of the program. The snap-
shot on the left shows the interface at program start-up, whereas the snapshot on

Welcome to the bouncy program!

1 Compute the total distance
2 Quit the program

Enter a number: 1

Enter the initial height: 10
Enter the bounciness index: .6
Enter the number of bounces: 2

The total distance is 25.6

1 Compute a distance
2 Quit the program

Enter a number: 2

C6840_09 11/19/08 11:43 AM Page 349

May not be copied, scanned, or duplicated, in whole or in part.

the right shows the interface after the user has entered inputs and selected the
Compute button. This program was run on a Macintosh; on a Windows- or
Linux-based PC, the windows look slightly different.

[FIGURE 9.2] A GUI-based bouncy program

The Bouncy window in Figure 9.2 contains the following components:
� A title bar at the top of the window. This bar contains the title of the

program, “Bouncy.” It also contains three colored circles. Each circle is a
command button. The user can use the mouse to click the left circle
to quit the program, the middle circle to minimize the window, or the
right circle to zoom the window. The user can also drag the window
around the screen by holding the left mouse button on the title bar and
dragging the mouse.

� A set of labels along the left side of the window. These are text elements that
describe the inputs and outputs. For example, “Initial height” is one label.

� A set of entry fields along the right side of the window. These are boxes
within which the program can output text or receive it as input from the
user. The first three entry fields will be used for inputs, while the last field
will be used for the output. At program start-up, the fields contain default
values, as shown in the window on the left side of Figure 9.2.

� A single command button labeled Compute. When the user uses the
mouse to press this button, the program responds by using the data in the
three input fields to compute the total distance. This result is then dis-
played in the output field. Sample input data and the corresponding output
are shown in the window on the right side of Figure 9.2.

� The user can also alter the size of the window by holding the mouse on its
lower-right corner and dragging in any direction.

Although this review of features might seem tedious to anyone who regularly
uses GUI-based programs, a careful inventory is necessary for the programmer

CHAPTER 9 Graphical User Interfaces[350]

C6840_09 11/19/08 11:43 AM Page 350

May not be copied, scanned, or duplicated, in whole or in part.

who builds them. Also, a close study of these features reveals the following effects
on users:

� The user is not constrained to enter inputs in a particular order. Before she
presses the Compute button, she can edit any of the data in the three
input fields.

� Running different data sets does not require re-entering all of the data.
The user can edit just one or two values and press the Compute button.

� The user cannot enter an unrecognized command. Each command option
is presented as a virtual button to be pressed.

When we compare the effects of the two interfaces on users, the GUI seems
to be a definite improvement on the terminal-based user interface. The improve-
ment is even more noticeable as the number of command options increases and
the information to be presented grows in quantity and complexity.

9.1.3 Event-Driven Programming

Rather than guide the user through a series of prompts, a GUI-based program
opens a window and waits for the user to manipulate window objects with the
mouse. These user-generated events, such as mouse clicks, trigger operations in
the program to respond by pulling in inputs, processing them, and displaying
results. This type of software system is event-driven, and the type of program-
ming used to create it is called event-driven programming.

Like any complex program, an event-driven program is developed in several
steps. In the analysis step, the types of window objects and their arrangement in
the window are determined. Because GUI-based programs are almost always
object-oriented, this becomes a matter of choosing among GUI component
classes available in the programming language or inventing new ones if needed.
Graphic designers and cognitive psychologists might be called in to assist in this
phase, if the analysts do not already possess this type of expertise.

GUI-based programs also adhere to the model/view pattern that we intro-
duced in Chapter 8. This pattern separates the resources and responsibilities for
managing the data model from those concerned with displaying it and interacting
with the users. To a certain extent, the number, types, and arrangement of the
window objects depend on the nature of the information to be displayed and also
depend on the set of commands that will be available to the user for manipulating
that information. Thus, the developers of the GUI also have to converse with the
developers of the program’s data model.

9.1 The Behavior of Terminal-Based Programs and GUI-Based Programs [351]

C6840_09 11/19/08 11:43 AM Page 351

May not be copied, scanned, or duplicated, in whole or in part.

In the design of a GUI-based program, a third set of resources called the
controller often handles the interactions between a program’s data model and its
view. The relationships between these three sets of resources, also called the
model/view/controller pattern or MVC, are depicted in Figure 9.3.

[FIGURE 9.3] The model/view/controller pattern

Let us return to the example of the bouncy program to see how the MVC pat-
tern works. The GUI in this program consists of the window and its components,
including the labeled entry fields and the Compute button. The data model, which
admittedly is not very complex, consists of a function that receives three numeric
arguments and returns the total distance. When the user presses the Compute but-
ton, a hidden controller object automatically detects this event and triggers or calls a
controller method. This method in turn fetches the input values from the input
fields and passes them to the data model for processing. When the data model
returns its result, the controller method sends it to the output field to be displayed.
Ideally, the view knows nothing about the data model, and the data model knows
nothing about the view. The controller conducts the conversations between them.

Once the interactions among these resources have been determined, their
coding can begin. This phase consists of several steps:

1 Define a new class to represent the main application window.

2 Instantiate the classes of window objects needed for this application, such
as labels, fields, and command buttons.

3 Position these components in the window.

4 Instantiate the data model and provide for the display of any default data
in the window objects.

Program outputs

User inputs, events

View Controller

Model

CHAPTER 9 Graphical User Interfaces[352]

C6840_09 11/19/08 11:43 AM Page 352

May not be copied, scanned, or duplicated, in whole or in part.

5 Register controller methods with each window object in which an event
relevant to the application might occur.

6 Define these controller methods.

7 Define a main function that instantiates the window class and runs the
appropriate method to launch the GUI.

In coding the program, you could initially skip steps 4–6, which concern the
controller and the data model, to develop and refine the view. This would allow
you to preview the window and its layout, even though the command buttons and
other GUI elements lack functionality.

In the sections that follow, we explore these elements of GUI-based,
event-driven programming with examples in Python.

9.1 Exercises
1 Describe two fundamental differences between terminal-based user

interfaces and GUIs.

2 Describe the responsibilities of the model, view, and controller in the
MVC pattern.

3 Give an example of one application for which a terminal-based user
interface is adequate and one example that lends itself best to a GUI.

9.2 Coding Simple GUI-Based Programs
In this section, we show some examples of simple GUI-based programs in
Python. There are many libraries and toolkits of GUI components available to
the Python programmer, but in this chapter we use just two: Tkinter and
tkMessageBox. Both are standard modules that come with any Python installation.
Tkinter includes classes for windows and numerous types of window objects.
tkMessageBox includes functions for several standard pop-up dialog boxes. We
start with some short demo programs that illustrate each type of GUI component,
and, in later sections, we develop some examples with more significant functionality.

9.2 Coding Simple GUI-Based Programs [353]

C6840_09 11/19/08 11:43 AM Page 353

May not be copied, scanned, or duplicated, in whole or in part.

9.2.1 Windows and Labels

Our first demo program defines a class for a main window that displays a greeting.
In all of our GUI-based programs, this class extends Tkinter’s Frame class. The
Frame class provides the basic functionality for any window, such as the command
buttons in the title bar. Here is the code, followed by Figure 9.4, which shows a
screenshot of the window:

fromƒTkinterƒimportƒ*

classƒLabelDemo(Frame):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“LabelƒDemo”)
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒself._labelƒ=ƒLabel(self,ƒtextƒ=ƒ“Helloƒworld!”)
ƒƒƒƒƒƒƒƒself._label.grid()

defƒmain():
ƒƒƒƒ“””Instantiateƒandƒpopƒupƒtheƒwindow.”””
ƒƒƒƒLabelDemo().mainloop()

main()

[FIGURE 9.4] Displaying a text label in a window

The LabelDemo class’s __init__ method includes five statements that per-
form the following tasks:

1 Run Frame’s __init__ method to automatically initialize any variables
defined in the Frame class.

2 Reset the window’s title. In this line of code, self.master is an instance
variable defined in the Frame class. This variable refers to the root window.

CHAPTER 9 Graphical User Interfaces[354]

C6840_09 11/19/08 11:43 AM Page 354

May not be copied, scanned, or duplicated, in whole or in part.

This window in turn has an instance variable named title, which by
default is an empty string.

3 Use the grid method to set the window’s layout manager to a grid layout.
A grid layout allows the programmer to place components in the cells of
an invisible grid in the window. The nature and purpose of this grid will
become clear in upcoming examples that contain multiple window objects.

4 Create the only window component, a Label object. When a component
is created, its constructor expects the parent component as an argu-
ment. In this case, the parent of the label is the LabelDemo instance, or
self. The other arguments can be keyword arguments that specify the
component’s attributes. In this example, the label receives a text attrib-
ute, whose value is a string of text to be displayed when the label is
painted in the window.

5 Use the grid method again to position the label in the window’s grid. In
this case, the label will appear centered in the window.

The GUI is launched in the main method. This method instantiates
LabelDemo and calls its mainloop method. This method pops up the window
and waits for user events. At this point, the main method in our own code quits,
because the GUI is running a hidden, event-driven loop in a separate process.
This part of the program does not vary much from application to application, so
we omit it from the next few examples.

If you are running the program as a script from a terminal prompt, pressing
the window’s close button will quit the program normally. If you are launching the
program from an IDLE window, you should close the shell window as well as
the program’s window to terminate the process that is running the GUI.

9.2.2 Displaying Images

Our next example modifies the first one slightly, so that the program displays an
image and a caption. We use labels for both components. To create a label with an
image, two steps are required. First, the __init__ method creates an instance of
the class PhotoImage from a GIF file on disk (remember that the image file must
be in the current working directory). Then the new label’s image attribute is set to
the PhotoImage object. The label for the caption is set up with a text attribute,
as described earlier. The image label is placed in the grid before the text label.
The resulting labels are centered in a column in the window. Here is the code for

9.2 Coding Simple GUI-Based Programs [355]

C6840_09 11/19/08 11:43 AM Page 355

May not be copied, scanned, or duplicated, in whole or in part.

a program that displays a captioned image of Smokey the cat, followed by a
screenshot of the window in Figure 9.5:

fromƒTkinterƒimportƒ*

classƒImageDemo(Frame):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“ImageƒDemo”)
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒself._imageƒ=ƒPhotoImage(fileƒ=ƒ“smokey.gif”)
ƒƒƒƒƒƒƒƒself._imageLabelƒ=ƒLabel(self,ƒimageƒ=ƒself._image)
ƒƒƒƒƒƒƒƒself._imageLabel.grid()
ƒƒƒƒƒƒƒƒself._textLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Smokeyƒtheƒcat”)
ƒƒƒƒƒƒƒƒself._textLabel.grid()

[FIGURE 9.5] Displaying a captioned image

9.2.3 Command Buttons and Responding to Events

Command buttons are created and placed in a window in the same manner as
labels. Also like labels, a button can display either text or an image. When the
Button object receives a text attribute, it displays the associated string. When
the button receives an image attribute, it provides a clickable image.

To activate a button and enable it to respond to mouse clicks, you must set its
command attribute to an event-handling method. This is done in the main win-
dow’s __init__ method when the button is created. The value of the command
attribute is just the variable that refers to the event-handling method. The
method itself is then defined later in the main window class.

CHAPTER 9 Graphical User Interfaces[356]

C6840_09 11/19/08 11:43 AM Page 356

May not be copied, scanned, or duplicated, in whole or in part.

Here is the code for an example program that allows the user to press a but-
ton to change a label’s text. The text alternates between “Hello” and “Goodbye”.
Figure 9.6 shows the two states of the window.

fromƒTkinterƒimportƒ*

classƒButtonDemo(Frame):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“ButtonƒDemo”)
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒself._labelƒ=ƒLabel(self,ƒtextƒ=ƒ“Hello”)
ƒƒƒƒƒƒƒƒself._label.grid()
ƒƒƒƒƒƒƒƒself._buttonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Clickƒme”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._switch)
ƒƒƒƒƒƒƒƒself._button.grid()

ƒƒƒƒdefƒ_switch(self):
ƒƒƒƒƒƒƒƒ“””Eventƒhandlerƒforƒtheƒbutton.”””
ƒƒƒƒƒƒƒƒifƒself._label[“text”]ƒ==ƒ“Hello”:
ƒƒƒƒƒƒƒƒƒƒƒƒself._label[“text”]ƒ=ƒ“Goodbye”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._label[“text”]ƒ=ƒ“Hello”

[FIGURE 9.6] When the user presses the Click me button, the message changes from “Hello” to
“Goodbye”

Note that the _switch method examines the text attribute of the label and
sets it to the appropriate value. The attributes of each window component are
actually stored in a dictionary, so the notation for examining them and modifying
them includes the subscript operator with the name of the attribute as the key.

In programs that use several buttons, each button has its own event-handling
method. The standard procedure in the __init__ method is to create the but-
tons, set their command attribute, and lay them out in the grid. Later in the win-
dow class, the event-handling methods for all of the buttons are then defined.

9.2 Coding Simple GUI-Based Programs [357]

C6840_09 11/19/08 11:43 AM Page 357

May not be copied, scanned, or duplicated, in whole or in part.

These methods together make up the controller part of the MVC pattern dis-
cussed in Section 9.1.

9.2.4 Viewing the Images of Playing Cards

Modern game-playing programs provide graphical displays of the characters and
the setting of a game. Games that use playing cards display images of the cards.
We now present a program that allows the user to view the cards in a deck. The
GUI is shown in Figure 9.7. At start-up, the window displays the back of a card,
along with three command buttons. The user can select a command to deal a
card, shuffle the deck, or obtain a new deck. As each new card is dealt, an image
of its face and the text of its rank and suit are displayed. The user can continue to
deal cards until the deck becomes empty.

[FIGURE 9.7] A GUI for viewing playing cards

Images of playing cards are available as open source on many Web sites. On
such sites, the filenames for the images typically indicate the rank and suit of
the card. In this example, the filename for the image of the queen of spades is
12s.gif. If the entire set of files is located in a folder named DECK, the path to
this filename is actually DECK/12s.gif.

The GUI for this program will have to obtain the filename of the image for
each card displayed, as well as the filename of the image for the backside of each
card. A couple of changes to the Card class defined in Chapter 8 will provide this
information. We add an instance variable for the filename of the card’s image on
disk. At instantiation, the __init__ method uses the rank and suit information
to build a filename and sets a new instance variable to this string. Thus, each
card’s image filename can be accessed by using its fileName attribute. There is
also a single image that represents the backside of all of the cards in a file named

CHAPTER 9 Graphical User Interfaces[358]

C6840_09 11/19/08 11:43 AM Page 358

May not be copied, scanned, or duplicated, in whole or in part.

b.gif. A new class variable, BACK_NAME, is defined to be this filename. Here is
the code for these revisions to the Card class:

BACK_NAMEƒ=ƒ'DECK/b.gif'

defƒ__init__(self,ƒrank,ƒsuit):
ƒƒƒƒ“””Createsƒaƒcardƒwithƒtheƒgivenƒrank,ƒsuit,ƒand
ƒƒƒƒimageƒfilename.”””
ƒƒƒƒself.rankƒ=ƒrank
ƒƒƒƒself.suitƒ=ƒsuit
ƒƒƒƒself.fileNameƒ=ƒ'DECK/'ƒ+ƒstr(rank)ƒ+ƒsuit[0]ƒ+ƒ'.gif'

The main window class is called CardDemo. It maintains instance variables
for the deck of cards, the image of each card’s backside, and the image of the cur-
rent card. The back image is loaded at start-up and does not change. The card
image is initially None before the user deals a card. Label components are then
set up for the image and the text of a card. The image label initially holds the
backside image, whereas the text label holds the empty string. Three command
buttons are created and added to the window.

The window components are now laid out in explicit rows and columns in
the window’s grid. There are two columns and four rows. The left column con-
tains the card image and its caption, whereas the right column contains the three
command buttons. The rows and columns of the grid are numbered from 0.
Thus, the card image in the upper-left corner is located at position (0, 0) and the
topmost command button occupies position (0, 1). The grid method specifies
these positions by receiving values for the row and column attributes. Care must
be taken to position each component properly, and drawing a sketch of the grid
with example coordinates can help with the design of a layout.

Although the card image lies in the first row of the grid, it must occupy three
rows to align with the three buttons in the column to its right. A window compo-
nent can be stretched across several rows by specifying the value of the rowspan
attribute. Thus, the card image receives a rowspan of 3.

There are three event-handling methods:

1 The method _shuffle simply shuffles the deck.

2 The method _deal requests the next card from the deck. If this card is
not None, its image is loaded and displayed, and its string representation
is also obtained and displayed.

3 The method _new restores all of the data and the GUI to their initial states.

If the card just dealt equals None, the deck is empty, so method _new is called
to return the user to the initial state of the demo.

9.2 Coding Simple GUI-Based Programs [359]

C6840_09 11/19/08 11:43 AM Page 359

May not be copied, scanned, or duplicated, in whole or in part.

Here is the code:

fromƒTkinterƒimportƒ*
fromƒcardsƒimportƒCard,ƒDeck

classƒCardDemo(Frame):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“CardƒDemo”)
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒself._deckƒ=ƒDeck()
ƒƒƒƒƒƒƒƒself._backImageƒ=ƒPhotoImage(fileƒ=ƒCard.BACK_NAME)
ƒƒƒƒƒƒƒƒself._cardImageƒ=ƒNone
ƒƒƒƒƒƒƒƒself._imageLabelƒ=ƒLabel(self,ƒimageƒ=ƒself._backImage)
ƒƒƒƒƒƒƒƒself._imageLabel.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,ƒrowspanƒ=ƒ3)
ƒƒƒƒƒƒƒƒself._textLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“”)
ƒƒƒƒƒƒƒƒself._textLabel.grid(rowƒ=ƒ3,ƒcolumnƒ=ƒ0)

ƒƒƒƒƒƒƒƒself._dealButtonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Deal”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._deal)
ƒƒƒƒƒƒƒƒself._dealButton.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._shuffleButtonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Shuffle”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._shuffle)
ƒƒƒƒƒƒƒƒself._shuffleButton.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._newButtonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“NewƒDeck”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._new)
ƒƒƒƒƒƒƒƒself._newButton.grid(rowƒ=ƒ2,ƒcolumnƒ=ƒ1)

ƒƒƒƒdefƒ_deal(self):
ƒƒƒƒƒƒƒƒ“””Ifƒtheƒdeckƒisƒnotƒempty,ƒdealsƒandƒdisplaysƒthe
ƒƒƒƒƒƒƒƒnextƒcard.ƒƒOtherwise,ƒreturnsƒtheƒprogramƒtoƒits
ƒƒƒƒƒƒƒƒinitialƒstate.”””
ƒƒƒƒƒƒƒƒcardƒ=ƒself._deck.deal()
ƒƒƒƒƒƒƒƒifƒcardƒ!=ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒself._cardImageƒ=ƒPhotoImage(fileƒ=ƒcard.fileName)
ƒƒƒƒƒƒƒƒƒƒƒƒself._imageLabel[“image”]ƒ=ƒself._cardImage
ƒƒƒƒƒƒƒƒƒƒƒƒself._textLabel[“text”]ƒ=ƒstr(card)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._new()

ƒƒƒƒdefƒ_shuffle(self):
ƒƒƒƒƒƒƒƒself._deck.shuffle()

continued
ƒƒƒƒƒƒƒƒ

CHAPTER 9 Graphical User Interfaces[360]

C6840_09 11/19/08 11:43 AM Page 360

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒ_new(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒprogramƒtoƒitsƒinitialƒstate.”””
ƒƒƒƒƒƒƒƒself._deckƒ=ƒDeck()
ƒƒƒƒƒƒƒƒself._cardImageƒ=ƒNone
ƒƒƒƒƒƒƒƒself._imageLabel[“image”]ƒ=ƒself._backImage
ƒƒƒƒƒƒƒƒself._textLabel[“text”]ƒ=ƒ“”

defƒmain():
ƒƒƒƒCardDemo().mainloop()

main()

9.2.5 Entry Fields for the Input and Output of Text

Anyone who shops on the Web has used a form filler to enter a name, password,
and credit card number. A form filler consists of labeled entry fields, which allow
the user to enter and edit a single line of text. A field can also contain text output
by a program. Tkinter’s Entry class is used to display an entry field. To facilitate
the input and output of floating-point numbers, an Entry object is associated with
a container object of the DoubleVar class. This object contains the data value
that is displayed in the Entry object. The DoubleVar object’s set method is used
to output a floating-point number to the associated Entry object. Its get method
is used to input a floating-point number from the associated Entry object.

An Entry object is set up in two steps. First, its DoubleVar object is created.
Its default content is 0.0, but its set method may be run to give it a different ini-
tial value. Then the Entry is created with the DoubleVar object as the value of
its textvariable attribute. The contents of the DoubleVar object can then be
accessed or modified by any event-handler methods. The three types of data con-
tainer objects that can be used with Entry fields are listed in Table 9.1. The
methods get and set are used with all three types of containers.

[TABLE 9.1] Data container classes for different data types

TYPE OF DATA TYPE OF DATA CONTAINER

float DoubleVar

int IntVar

str (string) StringVar

9.2 Coding Simple GUI-Based Programs [361]

C6840_09 11/19/08 11:43 AM Page 361

May not be copied, scanned, or duplicated, in whole or in part.

Our next demo program recasts the circlearea program of Programming
Project 6 of Chapter 1 as a GUI program. Here is the code, followed by a screen-
shot of the GUI in Figure 9.8:

fromƒTkinterƒimportƒ*
importƒmath

classƒCircleArea(Frame):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“CircleƒArea”)
ƒƒƒƒƒƒƒƒself.grid()

ƒƒƒƒƒƒƒƒ#ƒLabelƒandƒfieldƒforƒtheƒradius
ƒƒƒƒƒƒƒƒself._radiusLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Radius”)
ƒƒƒƒƒƒƒƒself._radiusLabel.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._radiusVarƒ=ƒDoubleVar()
ƒƒƒƒƒƒƒƒself._radiusEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._radiusVar)
ƒƒƒƒƒƒƒƒself._radiusEntry.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1)

ƒƒƒƒƒƒƒƒ#ƒLabelƒandƒfieldƒforƒtheƒarea
ƒƒƒƒƒƒƒƒself._areaLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Area”)
ƒƒƒƒƒƒƒƒself._areaLabel.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._areaVarƒ=ƒDoubleVar()
ƒƒƒƒƒƒƒƒself._areaEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._areaVar)
ƒƒƒƒƒƒƒƒself._areaEntry.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ1)

ƒƒƒƒƒƒƒƒ#ƒTheƒcommandƒbutton
ƒƒƒƒƒƒƒƒself._buttonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Compute”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._area)
ƒƒƒƒƒƒƒƒself._button.grid(rowƒ=ƒ2,ƒcolumnƒ=ƒ0,ƒcolumnspanƒ=ƒ2)

ƒƒƒƒdefƒ_area(self):
ƒƒƒƒƒƒƒƒ“””Eventƒhandlerƒforƒtheƒbutton.”””
ƒƒƒƒƒƒƒƒradiusƒ=ƒself._radiusVar.get()
ƒƒƒƒƒƒƒƒareaƒ=ƒradiusƒ**ƒ2ƒ*ƒmath.pi
ƒƒƒƒƒƒƒƒself._areaVar.set(area)

defƒmain():
ƒƒƒƒCircleArea().mainloop()

CHAPTER 9 Graphical User Interfaces[362]

C6840_09 11/19/08 11:43 AM Page 362

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 9.8] The circlearea program recast as a GUI program

9.2.6 Using Pop-up Dialog Boxes

GUI-based programs rely extensively on pop-up dialog boxes that display mes-
sages, query the user for a Yes/No answer, and so forth. The tkMessageBox
module includes several functions that perform these tasks. Some of these func-
tions are listed in Table 9.2.

[TABLE 9.2] Some tkMessageBox functions

The keyword arguments for each function can receive values for the dialog
box’s title, message, and parent component, usually the main window from which
the pop-up is launched.

tkMessageBox FUNCTION WHAT IT DOES

askokcancel(title = None, Asks an ok/cancel question, returns True if
ƒƒƒƒƒƒƒƒƒƒƒƒmessage = None, OK is selected, False otherwise.
ƒƒƒƒƒƒƒƒƒƒƒƒparent = None)

askyesno(title = None, Asks a yes/no question, returns True if Yes
ƒƒƒƒƒƒƒƒƒmessage = None, is selected, False otherwise.
ƒƒƒƒƒƒƒƒƒparent = None)

showerror(title = None, Shows an error message.
ƒƒƒƒƒƒƒƒƒƒmessage = None,
ƒƒƒƒƒƒƒƒƒƒparent = None)

showinfo(title = None, Shows information.
ƒƒƒƒƒƒƒƒƒmessage = None,
ƒƒƒƒƒƒƒƒƒparent = None)

showwarning(title = None, Shows a warning message.
ƒƒƒƒƒƒƒƒƒƒƒƒmessage = None,
ƒƒƒƒƒƒƒƒƒƒƒƒparent = None)

9.2 Coding Simple GUI-Based Programs [363]

C6840_09 11/19/08 11:43 AM Page 363

May not be copied, scanned, or duplicated, in whole or in part.

Let’s add error handling to the _area method in the GUI program for com-
puting the area of a circle. To do this, we can set up the method to use a try-
except statement that catches a ValueError. This type of exception is raised
when Python attempts to convert a string with a bad format to a number. If a
ValueError is raised, the _area method pops up an error dialog box to display a
message. Here is the code, followed by a screenshot that shows the pop-up in
Figure 9.9:

defƒ_area(self):
ƒƒƒƒ“””Eventƒhandlerƒforƒtheƒbutton.”””
ƒƒƒƒtry:
ƒƒƒƒƒƒƒƒradiusƒ=ƒself._radiusVar.get()
ƒƒƒƒƒƒƒƒareaƒ=ƒradiusƒ**ƒ2ƒ*ƒmath.pi
ƒƒƒƒƒƒƒƒself._areaVar.set(area)
ƒƒƒƒexceptƒValueError:
ƒƒƒƒƒƒƒƒtkMessageBox.showerror(messageƒ=ƒ“Error:ƒBadƒformat”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒparentƒ=ƒself)

[FIGURE 9.9] A pop-up dialog box with an error message

9.2 Exercises
1 Explain what usually happens in the __init__ method of a main

window class.

2 How is the controller set up in a GUI program?

3 Describe the procedure for setting up the display of an image in a window.

4 Explain how to position a GUI component in a window’s grid layout.

5 What roles do the IntVar, DoubleVar, and StringVar classes serve in
a GUI program?

CHAPTER 9 Graphical User Interfaces[364]

C6840_09 11/19/08 11:43 AM Page 364

May not be copied, scanned, or duplicated, in whole or in part.

9.3 Case Study: A GUI-Based ATM
We now pause our survey of GUI components to develop a GUI for a significant
application. Case Study 8.4 presented an ATM with a terminal-based user inter-
face. Because we were careful to separate the model from the view in that pro-
gram, it should now be straightforward to replace that interface with a GUI.

9.3.1 Request

Replace the terminal-based interface of the ATM program with a GUI.

9.3.2 Analysis

The program retains the same functions, but presents the user with a different
look and feel. Figure 9.10 shows a sequence of user interactions with the main
window.

[FIGURE 9.10] User interactions with the GUI-based ATM

Interaction 1: Before login Interaction 2: After login

Interaction 3: After balance Interaction 4: After withdrawal

9.3 Case Study: A GUI-Based ATM [365]

C6840_09 11/19/08 11:43 AM Page 365

May not be copied, scanned, or duplicated, in whole or in part.

As you can see, the GUI includes three labeled entry fields for the user’s
name, the user’s PIN, and for the amount of money the user wants to withdraw
or deposit. A fourth field outputs messages from the program. The Name and
PIN fields are used for inputs during the login process. When the user success-
fully logs in, the name of the Login button changes to Logout. The other com-
mand buttons perform the named tasks. The field for the amount of money
contains the amount to be deposited or withdrawn from the account. The Status
field displays a greeting, the balance when it is requested, a message signaling the
success or failure of a deposit or a withdrawal, and a sign-off message.

There are no new classes, although the ATM class now extends the Frame
class. The model, consisting of the Bank and SavingsAccount classes, does
not change.

9.3.3 Design

Instead of implementing a text-based, menu-driven command processor, the
ATM class now implements a GUI-based, event-driven command processor.

The __init__ method receives a Bank object from the main function and
maintains a reference to the current user’s account, as before. Its new work lies in
creating and laying out the GUI components. There is quite a bit of work here,
but the operations are similar to those discussed in earlier examples. The only
difference is that three of the four buttons are disabled at program start-up. This
is accomplished by setting the button’s state attribute to the Tkinter constant
DISABLED. Otherwise, the __init__ method requires no further comment.

The helper methods for handling a user’s commands now become event-
handling methods associated with the command buttons. The two methods that
differ from those seen in earlier examples are _login and _logout.

The _login method takes the user’s input for the PIN and attempts to find
an account for it in the bank. If the account exists, its name is compared to the
user’s input for the name. If they match, then the following occurs:

� A welcome message is displayed in the status field.
� The login button’s text attribute is set to “Logout”.
� The login button’s command attribute is set to the _logout method, so the

user can log out.
� The other command buttons are enabled, using the Tkinter

constant NORMAL.

CHAPTER 9 Graphical User Interfaces[366]

C6840_09 11/19/08 11:43 AM Page 366

May not be copied, scanned, or duplicated, in whole or in part.

9.3 Case Study: A GUI-Based ATM [367]

The _logout method essentially resets the GUI to its initial state. Here are
the details:

� The _account variable is reset to None.
� The input fields are cleared.
� The login button’s text attribute is set to “Login”.
� The login button’s command attribute is set to the _login method, so

another user can log in.
� The other three command buttons are disabled.
� A sign-off message is displayed in the status field.

9.3.4 Implementation (Coding)

Most of the code is in the __init__ method, where the GUI and its components
are set up. The event-handling methods are similar to the methods that handle
the basic tasks in the earlier version of the program.

“””
File:ƒatm.py

ThisƒmoduleƒdefinesƒaƒGUI-basedƒATMƒclassƒandƒitsƒapplication.
“””

fromƒbankƒimportƒBank,ƒSavingsAccount
fromƒTkinterƒimportƒ*

classƒATM(Frame):
ƒƒƒƒ“””ThisƒclassƒrepresentsƒGUI-basedƒATMƒtransactions.”””
ƒƒƒƒƒƒƒƒ
ƒƒƒƒdefƒ__init__(self,ƒbank):
ƒƒƒƒƒƒƒƒ“””Initializeƒtheƒframe,ƒwidgets,ƒandƒtheƒdataƒmodel.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“ATM”)ƒ
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒself._bankƒ=ƒbank
ƒƒƒƒƒƒƒƒself._accountƒ=ƒNone

ƒƒƒƒƒƒƒƒ#ƒCreateƒandƒaddƒtheƒwidgetsƒtoƒtheƒframe.
ƒƒƒƒƒƒƒƒ#ƒDataƒcontainersƒforƒentryƒfields
ƒƒƒƒƒƒƒƒself._nameVarƒ=ƒStringVar()
ƒƒƒƒƒƒƒƒself._pinVarƒ=ƒStringVar()
ƒƒƒƒƒƒƒƒself._amountVarƒ=ƒDoubleVar()
ƒƒƒƒƒƒƒƒself._statusVarƒ=ƒStringVar()

continued

C6840_09 11/19/08 11:43 AM Page 367

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒƒƒƒƒ#ƒLabelsƒforƒentryƒfields
ƒƒƒƒƒƒƒƒself._nameLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Name”)
ƒƒƒƒƒƒƒƒself._nameLabel.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._pinLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“PIN”)
ƒƒƒƒƒƒƒƒself._pinLabel.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._amountLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Amount”)
ƒƒƒƒƒƒƒƒself._amountLabel.grid(rowƒ=ƒ2,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._statusLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Status”)
ƒƒƒƒƒƒƒƒself._statusLabel.grid(rowƒ=ƒ3,ƒcolumnƒ=ƒ0)

ƒƒƒƒƒƒƒƒ#ƒEntryƒfields
ƒƒƒƒƒƒƒƒself._nameEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._nameVar,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒjustifyƒ=ƒCENTER)
ƒƒƒƒƒƒƒƒself._nameEntry.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._pinEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._pinVar,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒjustifyƒ=ƒCENTER)
ƒƒƒƒƒƒƒƒself._pinEntry.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._amountEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._amountVar,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒjustifyƒ=ƒCENTER)
ƒƒƒƒƒƒƒƒself._amountEntry.grid(rowƒ=ƒ2,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._statusEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._statusVar,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒjustifyƒ=ƒCENTER)
ƒƒƒƒƒƒƒƒself._statusEntry.grid(rowƒ=ƒ3,ƒcolumnƒ=ƒ1)

ƒƒƒƒƒƒƒƒ#ƒCommandƒbuttons
ƒƒƒƒƒƒƒƒself._balanceButtonƒ=ƒButton(self,ƒtextƒ=ƒ“Balance”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._getBalance)
ƒƒƒƒƒƒƒƒself._balanceButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._balanceButton.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ2)
ƒƒƒƒƒƒƒƒself._depositButtonƒ=ƒButton(self,ƒtextƒ=ƒ“Deposit”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._deposit)
ƒƒƒƒƒƒƒƒself._depositButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._depositButton.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ2)
ƒƒƒƒƒƒƒƒself._withdrawButtonƒ=ƒButton(self,ƒtextƒ=ƒ“Withdraw”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._withdraw)
ƒƒƒƒƒƒƒƒself._withdrawButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._withdrawButton.grid(rowƒ=ƒ2,ƒcolumnƒ=ƒ2)
ƒƒƒƒƒƒƒƒself._loginButtonƒ=ƒButton(self,ƒtextƒ=ƒ“Login”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._login)
ƒƒƒƒƒƒƒƒself._loginButton.grid(rowƒ=ƒ3,ƒcolumnƒ=ƒ2)

ƒƒƒƒ#ƒEvent-handlingƒmethods

continued

CHAPTER 9 Graphical User Interfaces[368]

C6840_09 11/19/08 11:43 AM Page 368

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.

9.3 Case Study: A GUI-Based ATM [369]

ƒƒƒƒdefƒ_getBalance(self):
ƒƒƒƒƒƒƒƒself._statusVar.set(“Yourƒbalanceƒisƒ$%0.2f”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(self._account.getBalance()))

ƒƒƒƒdefƒ_deposit(self):
ƒƒƒƒƒƒƒƒamountƒ=ƒself._amountVar.get()
ƒƒƒƒƒƒƒƒself._account.deposit(amount)
ƒƒƒƒƒƒƒƒself._statusVar.set(“Depositƒmade”)

ƒƒƒƒdefƒ_withdraw(self):
ƒƒƒƒƒƒƒƒamountƒ=ƒself._amountVar.get()
ƒƒƒƒƒƒƒƒmessageƒ=ƒself._account.withdraw(amount)
ƒƒƒƒƒƒƒƒifƒmessage:
ƒƒƒƒƒƒƒƒƒƒƒƒself._statusVar.set(message)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._statusVar.set(“Withdrawalƒmade”)

ƒƒƒƒdefƒ_login(self):
ƒƒƒƒƒƒƒƒpinƒ=ƒself._pinVar.get()
ƒƒƒƒƒƒƒƒnameƒ=ƒself._nameVar.get()
ƒƒƒƒƒƒƒƒself._accountƒ=ƒself._bank.get(pin)
ƒƒƒƒƒƒƒƒifƒself._account:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒnameƒ==ƒself._account.getName():
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._statusVar.set(“Welcomeƒtoƒtheƒbank!”)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._loginButton[“text”]ƒ=ƒ“Logout”
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._loginButton[“command”]ƒ=ƒself._logout
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._balanceButton[“state”]ƒ=ƒNORMAL
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._depositButton[“state”]ƒ=ƒNORMAL
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._withdrawButton[“state”]ƒ=ƒNORMAL
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._statusVar.set(“Unrecognizedƒname”)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._accountƒ=ƒNone
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._statusVar.set(“Unrecognizedƒpin”)

ƒƒƒƒdefƒ_logout(self):
ƒƒƒƒƒƒƒƒself._accountƒ=ƒNone
ƒƒƒƒƒƒƒƒself._nameVar.set(“”)
ƒƒƒƒƒƒƒƒself._pinVar.set(“”)
ƒƒƒƒƒƒƒƒself._amountVar.set(0.0)
ƒƒƒƒƒƒƒƒself._loginButton[“text”]ƒ=ƒ“Login”
ƒƒƒƒƒƒƒƒself._loginButton[“command”]ƒ=ƒself._login
ƒƒƒƒƒƒƒƒself._balanceButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._depositButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._withdrawButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._statusVar.set(“Haveƒaƒniceƒday!”)

continued

C6840_09 11/19/08 11:43 AM Page 369

May not be copied, scanned, or duplicated, in whole or in part.

#ƒTop-levelƒfunctions
defƒmain():
ƒƒƒƒ“””InstantiateƒaƒbankƒandƒuseƒitƒinƒanƒATM.”””
ƒƒƒƒbankƒ=ƒBank(“bank.dat”)
ƒƒƒƒprintƒ“Theƒbankƒhasƒbeenƒloaded”
ƒƒƒƒ
ƒƒƒƒatmƒ=ƒATM(bank)
ƒƒƒƒprintƒ“RunningƒtheƒGUI”
ƒƒƒƒatm.mainloop()
ƒƒƒƒ
ƒƒƒƒbank.save()ƒƒ
ƒƒƒƒprintƒ“Theƒbankƒhasƒbeenƒupdated”

defƒcreateBank(numberƒ=ƒ0):
ƒƒƒƒ“””Savesƒaƒbankƒwithƒtheƒspecifiedƒnumberƒofƒaccounts.
ƒƒƒƒUsedƒduringƒtesting.”””
ƒƒƒƒbankƒ=ƒBank()
ƒƒƒƒforƒiƒinƒxrange(number):
ƒƒƒƒƒƒƒƒbank.add(SavingsAccount('Name'ƒ+ƒstr(iƒ+ƒ1),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(1000ƒ+ƒi),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ100.00))
ƒƒƒƒbank.save(“bank.dat”)

9.4 Other Useful GUI Resources
Many simple GUI-based applications rely on the resources that we have presented
thus far in this chapter. However, as applications become more complex and, in
fact, begin to look like the ones we use on a daily basis, other resources must come
into play. The layout of GUI components can be specified in more detail, and
groups of components can be nested in multiple panes in a window. Paragraphs of
text can be displayed in scrolling text boxes. Lists of information can be presented
for selection in scrolling list boxes and drop-down menus. The color, size, and style
of text and of some GUI components can be adjusted. Finally, GUI-based pro-
grams can be configured to respond to various keyboard events and mouse events.

In this section, we provide a brief overview of some of these advanced
resources and manipulations, so that you may use them to solve problems in the
programming projects.

CHAPTER 9 Graphical User Interfaces[370]

C6840_09 11/19/08 11:43 AM Page 370

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.

9.4.1 Colors

The Tkinter module supports the RGB color system introduced in Chapter 7.
In this system, a color consists of three integer components that specify the
intensities of red, green, and blue mixed into that color. Each integer ranges from
0 through 255, where 0 means the absence of a color component and 255 means
the total saturation of that component. When using Tkinter, the programmer
must express these values using hexadecimal notation. In Python, a hex literal
begins with the # symbol. The general form of an RGB value is #rrggbb. For
example, the values #000000, #ffffff, and #ff0000 represent the colors black,
white, and red, respectively.

Tkinter also recognizes some commonly used colors as string values. These
include “white”, “black”, “red”, “green”, “blue”, “cyan”, “yellow”, and
“magenta”.

For most GUI components, the programmer can set two color attributes: a
foreground color and a background color. The foreground color of a label or an
entry field is its text color, whereas the background color is the color of the rec-
tangular area within which the text is displayed. The symbol fg names the fore-
ground attribute and the symbol bg names the background attribute. The next
code segment sets up a label whose text is red and whose background is light gray:

self._exampleLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Example”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒfgƒ=ƒ“red”,ƒbgƒ=ƒ“#cccccc”)

A frame’s background color can also be reset. This is done when the
__init__ method of the Frame class is called. For example, the following line of
code sets the main window’s background color to blue:

Frame.__init__(self,ƒbgƒ=ƒ“blue”)

Because the background attribute of a label is unrelated to the background attrib-
ute of its parent frame, it is a good idea to set both attributes to the same color.

9.4.2 Text Attributes

The text displayed in a label, entry field, or button can also have a type font.
This includes a family, such as Helvetica, a size, such as 24, and a weight, such as
bold. Table 9.3 lists the type font attributes and their values.

9.4 Other Useful GUI Resources [371]

C6840_09 11/19/08 11:43 AM Page 371

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 9.3] Font attributes

The next code segment sets the type font of the label displayed in the first
GUI demo program of Section 9.2. The programmer first imports the tkFont
module and instantiates the Font class in the tkfont module. The keyword
arguments for the desired attributes are passed to the Font constructor. The
resulting Font object is then used to specify the font attribute of the label.
Figure 9.11 shows the original window and the new version.

fontƒ=ƒtkFont.Font(familyƒ=ƒ“Verdana”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒsizeƒ=ƒ20,ƒslantƒ=ƒ“italic”)
self._labelƒ=ƒLabel(self,ƒfontƒ=ƒfont,ƒtextƒ=ƒ“Helloƒworld!”)

[FIGURE 9.11] Setting a type font

9.4.3 Sizing and Justifying an Entry

It’s common to restrict the data in a given entry field to a fixed length, such as a
single letter (in the case of a middle initial field) or a nine-digit number (in the
case of a Social Security number). For these cases, the width of an entry field can

Original version New version

tkFont.Font ATTRIBUTE VALUES

family A string, as included in the list returned by
tkFont.getFamilies().

size An integer specifying the point size.

weight “bold” or “normal”.

slant “italic” or “roman”.

underline 1 or 0.

CHAPTER 9 Graphical User Interfaces[372]

C6840_09 11/19/08 11:43 AM Page 372

May not be copied, scanned, or duplicated, in whole or in part.

be set to the appropriate number of columns at instantiation using the width
attribute. When the width of a field can exceed the length of its content string,
this string can be aligned using the justify attribute. The next code segment
reduces the width of the radius field to seven columns and centers the text in
both fields of the circlearea program. The result is shown in Figure 9.12.

self._radiusEntryƒ=ƒEntry(self,ƒjustifyƒ=ƒ“center”,ƒwidthƒ=ƒ7,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._radiusVar)
self._areaEntryƒ=ƒEntry(self,ƒjustifyƒ=ƒ“center”,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._areaVar)

[FIGURE 9.12] Setting the size and justification of entry fields

9.4.4 Sizing the Main Window

In the GUIs that we have seen thus far, by default the main window shrink-wraps
around the components at program start-up. The user can then resize the win-
dow by dragging its lower-right corner in any direction. It is also possible for the
program to specify the window’s initial size and to disable its resizing.

In earlier examples, we set the window’s title by using the following expression:

self.master.title(<aƒstring>)

In this code, self refers to the current frame and master refers to the root
window that contains this frame. Thus, the method title is run with the
frame’s root window to insert the title into the title bar. Two other methods,
geometry and resizable, can be run with the root window to affect its sizing.

The method geometry expects a string as an argument and uses it to set the
size of the main window. This string must be of the form “widthxheight”,

Original version New version

9.4 Other Useful GUI Resources [373]

C6840_09 11/19/08 11:43 AM Page 373

May not be copied, scanned, or duplicated, in whole or in part.

where width and height are integers. Thus, the following expression sets the
window’s width and height to 200 pixels and 100 pixels, respectively:

self.master.geometry(“200x100”)

The window can then be resized at any point under program control or user
control.

The method resizable expects two integers as arguments. These values
enable or disable the window’s resizing in the horizontal and vertical directions. A
value of 0 disables, whereas a value of 1 enables. Thus, the following expression
creates a fixed size window in both directions at start-up:

self.master.resizable(0,ƒ0)

Neither the program nor the user can resize this window unless this method is
run again to enable resizing.

Generally, it is easiest for both the programmer and the user to manage a
window that is not resizable. Your goal, as a programmer, is to lay out widgets in
a manner that is pleasing to the eye and easy to manipulate, so that the user has
no reason to resize the window. However, some flexibility might occasionally be
warranted. When the window’s dimensions must exceed their shrink-wrap
defaults, the programmer must master the intricacies of the grid layout. To
these we now turn.

9.4.5 Grid Attributes

By default, a newly opened window shrink-wraps around its components and is
resizable. When the programmer or the user resizes the window, the components
stay shrink-wrapped in their grid, which in turn remains centered within the win-
dow. The widgets are also centered within their grid cells.

Occasionally, a widget must be aligned to the left or to the right in its grid
cell, the grid must expand with the surrounding window, and/or the components
themselves must expand within their grid cells. You can achieve any of these
effects by setting the appropriate grid attributes. These attributes are listed in
Table 9.4.

CHAPTER 9 Graphical User Interfaces[374]

C6840_09 11/19/08 11:43 AM Page 374

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 9.4] Grid attributes

First, we examine how to align widgets within their grid cells. For example,
the labels in the circlearea program would look better if they were left-
aligned. To do this, you specify the sticky attributes of both cells as W (west),
as follows:

self._radiusLabel.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,ƒstickyƒ=ƒW)
self._areaLabel.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0,ƒstickyƒ=ƒW)

The result is shown in Figure 9.13.

Grid ATTRIBUTE MEANING

column The column in which the widget is placed, counting from 0.
The default is 0.

columnspan The number of columns across which the widget is stretched.

ipadx The number of pixels of horizontal padding added within
the boundaries of the widget.

ipady The number of pixels of vertical padding added within the
boundaries of the widget.

padx The number of pixels of horizontal padding added between
the boundaries of the widget and its cell boundaries.

pady The number of pixels of vertical padding added between
the boundaries of the widget and its cell boundaries.

row The row in which the widget is placed, counting from 0.
The default is the next higher-numbered unoccupied row.

rowspan The number of rows across which the widget is stretched.

sticky Specifies how to distribute extra space in the widget’s cell.
Possible values are W, E, N, S, NE, NW, SE, and SW, or combi-
nations thereof, using +. For example, NE aligns the widget
in its cell’s upper-right corner, whereas W+E allows horizontal
expansion.

9.4 Other Useful GUI Resources [375]

C6840_09 11/19/08 11:43 AM Page 375

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 9.13] The circlearea GUI with left-alignment of labels

Next we consider how to get the grid cells, but not the components within
them, to expand with the window. This should have the effect of spreading the
widgets apart or drawing them closer together as the window is resized. However,
the default behavior of the widgets when the user expands the window is to stay
huddled together, in an invisible shrink-wrap, in the center of the window. To
override this behavior, you can specify an expansion weight on a given row or
column of cells. For example, if the weight on row 0 is 1 and the weight on row 1
is 2, then the first row will take one-third of the extra space and second row will
take two-thirds of the extra space created when the user resizes the window verti-
cally (the total weight of 3 is divided between the two rows as 1⁄ 3 and 2⁄ 3).
Likewise, the weights on the columns determine the relative space allotted to
them when the window is resized horizontally. To expand all of the rows and
columns evenly, you give them each a weight of 1. Figure 9.14 shows the
circlearea program without and with the expansion of the grid enabled.

[FIGURE 9.14] The circlearea GUI with row and column expansion

The methods rowconfigure and columnconfigure set the expansion
weights on rows and columns, respectively. Each method expects two arguments.
These are the number of the row or column and the weight.

Original version New version

Original version New version

CHAPTER 9 Graphical User Interfaces[376]

C6840_09 11/19/08 11:43 AM Page 376

May not be copied, scanned, or duplicated, in whole or in part.

Before setting the expansion weights of the rows and columns in the current
frame, you must set these weights for the row and column of the current frame in
the root window. After doing that, you grid the frame with the sticky attribute
set to expand in four directions. Here is the code for expanding the frame within
the root window:

self.master.rowconfigure(0,ƒweightƒ=ƒ1)
self.master.columnconfigure(0,ƒweightƒ=ƒ1)
self.grid(stickyƒ=ƒW+E+N+S)

Finally, after the widgets have been positioned in their grid cells, you set the
expansion weights of the current frame’s three rows and two columns as follows:

forƒrowƒinƒxrange(3):
ƒƒƒƒself.rowconfigure(row,ƒweightƒ=ƒ1)
forƒcolumnƒinƒxrange(2):
ƒƒƒƒself.columnconfigure(column,ƒweightƒ=ƒ1)

If the widgets are centered within their cells, their positions will now depend on
the window’s current dimensions.

Finally, let’s consider how to get widgets to expand within their cells. You
assume that their rows and columns have been set to expand as well. Then you
set the sticky attributes of the widgets’ grid cells to the appropriate values. The
value W+E expands horizontally, N+S expands vertically, and W+E+N+S expands in
all four directions to fill the cell. Figure 9.15 shows the circlearea GUI before
and after this type of expansion in all four directions is enabled.

[FIGURE 9.15] The circlearea GUI with widget expansion

Original version New version

9.4 Other Useful GUI Resources [377]

C6840_09 11/19/08 11:43 AM Page 377

May not be copied, scanned, or duplicated, in whole or in part.

9.4.6 Using Nested Frames to Organize Components

Suppose that a GUI requires a row of four command buttons beneath two
columns of labels and entry fields, as shown in Figure 9.16.

[FIGURE 9.16] A complex grid layout

This grid appears to have two columns in two rows and four columns in a
third row. It is difficult, but not impossible, to create this complex layout with a
single grid. However, it would still take a great deal of extra work with the grid
attributes to get the layout to look like the one in Figure 9.16.

A more natural design decomposes the window into two nested frames, each
containing its own grid. The top frame contains a 2 by 2 grid of labels and entry
fields, whereas the bottom frame contains a 1 by 4 grid of buttons. To code this
design, a nested frame, sometimes called a pane, is instantiated with its parent
frame as an argument. The new frame is then added to its parent’s grid and
becomes the parent of the widgets in its own grid. Here is the code for laying out
the GUI shown in Figure 9.16:

classƒComplexLayout(Frame):

ƒƒƒƒdefƒ__init__(self):

ƒƒƒƒƒƒƒƒ#ƒCreateƒtheƒmainƒframe
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“ComplexƒLayout”)
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒƒ#ƒCreateƒtheƒnestedƒframeƒforƒtheƒdataƒpane
ƒƒƒƒƒƒƒƒself._dataPaneƒ=ƒFrame(self)
ƒƒƒƒƒƒƒƒself._dataPane.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0)

continued

CHAPTER 9 Graphical User Interfaces[378]

C6840_09 11/19/08 11:43 AM Page 378

May not be copied, scanned, or duplicated, in whole or in part.

9.4 Other Useful GUI Resources [379]

ƒƒƒƒƒƒƒƒ#ƒCreateƒandƒaddƒwidgetsƒtoƒtheƒdataƒpane
ƒƒƒƒƒƒƒƒself._label1ƒ=ƒLabel(self._dataPane,ƒtextƒ=ƒ“Labelƒ1”)
ƒƒƒƒƒƒƒƒself._label1.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._entry1ƒ=ƒEntry(self._dataPane)
ƒƒƒƒƒƒƒƒself._entry1.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._label2ƒ=ƒLabel(self._dataPane,ƒtextƒ=ƒ“Labelƒ2”)
ƒƒƒƒƒƒƒƒself._label2.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._entry2ƒ=ƒEntry(self._dataPane)
ƒƒƒƒƒƒƒƒself._entry2.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ1)

ƒƒƒƒƒƒƒƒ#ƒCreateƒtheƒnestedƒframeƒforƒtheƒbuttonƒpane
ƒƒƒƒƒƒƒƒself._buttonPaneƒ=ƒFrame(self)
ƒƒƒƒƒƒƒƒself._buttonPane.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0)

ƒƒƒƒƒƒƒƒ#ƒCreateƒandƒaddƒbuttonsƒtoƒtheƒbuttonƒpane
ƒƒƒƒƒƒƒƒself._button1ƒ=ƒButton(self._buttonPane,ƒtextƒ=ƒ“B1”,)
ƒƒƒƒƒƒƒƒself._button2ƒ=ƒButton(self._buttonPane,ƒtextƒ=ƒ“B2”,)
ƒƒƒƒƒƒƒƒself._button3ƒ=ƒButton(self._buttonPane,ƒtextƒ=ƒ“B3”,)
ƒƒƒƒƒƒƒƒself._button4ƒ=ƒButton(self._buttonPane,ƒtextƒ=ƒ“B4”,)
ƒƒƒƒƒƒƒƒself._button1.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,)
ƒƒƒƒƒƒƒƒself._button2.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1,)
ƒƒƒƒƒƒƒƒself._button3.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ2,)
ƒƒƒƒƒƒƒƒself._button4.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ3,)

9.4.7 Multi-Line Text Widgets

Entry fields support the input and output of a single line of text. Python includes
a Text widget for the display of multiple lines of text. This component has a
powerful range of features and operations, but in this subsection we restrict our
discussion to simple output of text.

During instantiation, the programmer can specify the width in columns and
the height in rows of the text that is initially visible in the Text widget. The wid-
get’s wrap attribute by default is CHAR, which wraps text to the next line when a
character is about to go off the right boundary of the widget. The wrap attribute
can be set to WORD for a more pleasing effect or to NONE for no wrapping.

There are various ways to allow a user to view text that extends beyond the
visible area of a Text widget. The easiest way for the programmer is to allow the
Text widget to expand with its grid cell, as shown earlier. However, this forces
the user to expand the window to view the hidden text, and there is a limit to this
expansion. Alternatively, scroll bars can be added to a Text widget to allow the
user to scroll through the text. In this section, we examine the first alternative.

C6840_09 11/19/08 11:43 AM Page 379

May not be copied, scanned, or duplicated, in whole or in part.

As with an Entry widget, a user’s editing within a Text widget can be dis-
abled by setting its state attribute to DISABLED. However, this attribute must be
reset to NORMAL to send output to the Text widget.

Text within a Text widget is accessed by index positions. These positions are
specified not as integers, but as strings. The general format of an index is

“rowNumber.characterNumber”

where rowNumber is counted from 1 and characterNumber is counted from 0.
Thus, the index of the first character, if there is one, is “1.0”. The Tkinter con-
stant END represents the position following the last character in a Text widget.

The method insert is used to send a string to a Text widget. The method
expects an index as its first argument and a string as its second argument. The
method insert inserts the string at the position specified by the index. Thus, if
we assume that output refers to a Text widget, the expression

output.insert(“1.0”,ƒƒ“Pythonƒrules!”)

places the string before any existing text, whereas the expression

output.insert(END,ƒ“Pythonƒrules!”)

places the string after any existing text. Expressions such as the last one can be
used when you want to append outputs to a Text widget.

The method delete can be used to clear a Text widget. This method is also
index-based; as arguments it expects the beginning index and the index of the
character after the string to be deleted from the widget. Thus, the following
expression clears the widget output of all of its text:

output.delete(“1.0”,ƒƒEND)

When you want to reset the contents of a Text widget to a new string, rather
than append this string to them, you can first delete the existing contents and
then insert the new string. Our next demo program displays a 20 by 5 Text
widget and two buttons that allow the user to test these options. The user can

CHAPTER 9 Graphical User Interfaces[380]

C6840_09 11/19/08 11:43 AM Page 380

May not be copied, scanned, or duplicated, in whole or in part.

also edit the text within the Text widget. The GUI is shown in Figure 9.17.
Here is the code:

fromƒTkinterƒimportƒ*
classƒTextDemo(Frame):
ƒƒƒƒ“””Demonstratesƒaƒmulti-lineƒtextƒarea.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“TextƒDemo”)
ƒƒƒƒƒƒƒƒself.master.rowconfigure(0,ƒweightƒ=ƒ1)
ƒƒƒƒƒƒƒƒself.master.columnconfigure(0,ƒweightƒ=ƒ1)
ƒƒƒƒƒƒƒƒself.grid(stickyƒ=ƒW+E+N+S)
ƒƒƒƒƒƒƒƒself._textƒ=ƒ“Thisƒisƒaƒlongƒstringƒtoƒwrap.”
ƒƒƒƒƒƒƒƒself._outputAreaƒ=ƒText(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒwidthƒ=ƒ20,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒheightƒ=ƒ5,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒwrapƒ=ƒWORD)
ƒƒƒƒƒƒƒƒself._outputArea.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcolumnspanƒ=ƒ2,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstickyƒ=ƒW+E+N+S)
ƒƒƒƒƒƒƒƒself._showButtonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Show”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._show)
ƒƒƒƒƒƒƒƒself._showButton.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._clearButtonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Clear”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._clear)
ƒƒƒƒƒƒƒƒself._clearButton.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself.rowconfigure(0,ƒweightƒ=ƒ1)
ƒƒƒƒƒƒƒƒself.columnconfigure(0,ƒweightƒ=ƒ1)

ƒƒƒƒdefƒ_show(self):
ƒƒƒƒƒƒƒƒself._outputArea.insert(“1.0”,ƒself._text)

ƒƒƒƒdefƒ_clear(self):
ƒƒƒƒƒƒƒƒself._outputArea.delete(“1.0”,ƒEND)

[FIGURE 9.17] A Text widget

9.4 Other Useful GUI Resources [381]

C6840_09 11/19/08 11:43 AM Page 381

May not be copied, scanned, or duplicated, in whole or in part.

9.4.8 Scrolling List Boxes

Lists of strings can be displayed in list boxes. The Tkinter.Listbox class
includes a wide array of methods for managing items in a list box. Some of these
are listed in Table 9.5.

[TABLE 9.5] Some Listbox methods

Access to the items in a list box is index-based. The index of any item in a list
box may be specified with a zero-based integer. The constants ACTIVE and END
also specify index positions in a list box. The currently selected item is located at
the ACTIVE index, whereas the end of the list is at the END index. The default
selectmode attribute of a list box is MULTIPLE, meaning that many items can be
selected at once. This attribute can be reset to SINGLE. As with Text widgets, the
width and height of a list box can be specified in columns and rows.

Long lists of items typically extend beyond the visible height of a list box.
You can accommodate the user’s need to see them by allowing the list box to
expand vertically, but a much more convenient method is to associate a scroll bar
with the list box. The user moves the list of items under the visible area of the list
box by dragging this bar up and down with the mouse. The Tkinter.Scrollbar
class supports this mechanism.

Listbox METHOD WHAT IT DOES

box.activate(index) Selects the string at index, counting from 0.

box.curselection() Returns a tuple containing the currently selected
index, if there is one, or the empty tuple.

box.delete(index) Removes the string at index.

box.get(index) Returns the string at index.

box.insert(index, string) Inserts the string at index, shifting the
remaining lines down by one position.

box.see(index) Adjust the position of the list box so the string
at index is visible.

box.size() Returns the number of strings in the list box.

box.xview() Used with a horizontal scroll bar to effect
scrolling.

box.yview() Used with a vertical scroll bar to effect scrolling.

CHAPTER 9 Graphical User Interfaces[382]

C6840_09 11/19/08 11:43 AM Page 382

May not be copied, scanned, or duplicated, in whole or in part.

Let us develop a program that illustrates a scrolling list box. The GUI for
this program, shown in Figure 9.18, displays several strings in a scrolling list box
at start-up. The entry field on the right is for the input of new strings. The user
can add these to the end of the list by selecting the Add button. The user can
remove the currently selected string by selecting the Remove button. The user
selects a string by clicking it with the mouse.

[FIGURE 9.18] A scrolling list box

We now highlight important steps in the code for this program. You begin by
creating a nested frame named _listPane to hold the list box and its scroll bar.
This frame is set to expand vertically within its grid cell:

self._listPaneƒ=ƒFrame(self)
self._listPane.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,ƒstickyƒ=ƒN+S)

You then create the scroll bar and grid it within its parent widget, the list
pane. A scroll bar can have either a vertical or a horizontal orientation. Its orient
attribute is here set to VERTICAL:

self._yScrollƒ=ƒScrollbar(self._listPane,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒorientƒ=ƒVERTICAL)
self._yScroll.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1,ƒstickyƒ=ƒN+S)

The list box is then instantiated and placed in the list pane as well. Its
yscrollcommand attribute is set to the scroll bar’s set method. The scroll bar’s

9.4 Other Useful GUI Resources [383]

C6840_09 11/19/08 11:43 AM Page 383

May not be copied, scanned, or duplicated, in whole or in part.

command attribute is set to the list box’s yview method. These two methods col-
laborate to scroll the items in the list box when the user drags the scroll bar:

self._theListƒ=ƒListbox(self._listPane,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒwidthƒ=ƒ6,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒheightƒ=ƒ10,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒselectmodeƒ=ƒSINGLE,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒyscrollcommandƒ=ƒself._yScroll.set)
self._theList.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,ƒstickyƒ=ƒN+S)
self._yScroll[“command”]ƒ=ƒself._theList.yview

Several items are added to the list box, and the first one is made active:

self._theList.insert(END,ƒ“Apple”)
self._theList.insert(END,ƒ“Banana”)
self._theList.insert(END,ƒ“Cherry”)
self._theList.insert(END,ƒ“Orange”)
self._theList.activate(0)

Finally, both the main frame’s first row and the nested frame’s row are configured
to expand vertically:

self.rowconfigure(0,ƒweightƒ=ƒ1)
self._listPane.rowconfigure(0,ƒweightƒ=ƒ1)

The method to add items to the list box places them at the end of the items
currently there:

defƒ_add(self):
ƒƒƒƒ“””Ifƒanƒinputƒisƒpresent,ƒinsertƒitƒatƒthe
ƒƒƒƒendƒofƒtheƒitemsƒinƒtheƒlistƒboxƒandƒscrollƒtoƒit.”””
ƒƒƒƒitemƒ=ƒself._inputVar.get()
ƒƒƒƒifƒitemƒ!=ƒ“”:
ƒƒƒƒƒƒƒƒself._theList.insert(END,ƒitem)
ƒƒƒƒƒƒƒƒself._theList.see(END)

CHAPTER 9 Graphical User Interfaces[384]

C6840_09 11/19/08 11:43 AM Page 384

May not be copied, scanned, or duplicated, in whole or in part.

The method to remove items from the list box relies on the index of the
selected item:

defƒ_remove(self):
ƒƒƒƒ“””Ifƒthereƒareƒitemsƒinƒtheƒlist,ƒremove
ƒƒƒƒtheƒselectedƒitem.”””
ƒƒƒƒifƒself._theList.size()ƒ>ƒ0:
ƒƒƒƒƒƒƒƒself._theList.delete(ACTIVE)

9.4.9 Mouse Events

To a large extent, a user interacts with a GUI-based program by manipulating
widgets with the mouse. A hidden, event-driven loop automatically detects differ-
ent types of mouse events, such as button presses, button releases, and mouse
dragging, and triggers any corresponding event-handling methods that have been
defined in the program. We have exploited this mechanism to respond to clicks
on command buttons in many of our examples. However, the programmer can
associate methods with any mouse events that occur in any widget. Table 9.6 lists
the different types of mouse events that can occur.

[TABLE 9.6] Mouse events

You can associate a mouse event and an event-handling method with a widget
by calling the bind method. This method expects a string containing one of the

TYPE OF MOUSE EVENT DESCRIPTION

<ButtonPress-n> Mouse button n has been pressed while the mouse
cursor is over the widget; n can be 1 (left button),
2 (middle button), or 3 (right button).

<ButtonRelease-n> Mouse button n has been released while the mouse
cursor is over the widget; n can be 1 (left button),
2 (middle button), or 3 (right button).

<Bn-Motion> The mouse is moved with button n held down.

<Prefix-Button-n> The mouse has been clicked over the widget; Prefix
can be Double or Triple.

<Enter> The mouse cursor has entered the widget.

<Leave> The mouse cursor has left the widget.

9.4 Other Useful GUI Resources [385]

C6840_09 11/19/08 11:43 AM Page 385

May not be copied, scanned, or duplicated, in whole or in part.

mouse events listed in Table 9.6 as its first argument, and the method to be trig-
gered as its second argument.

For example, suppose the list box demo discussed earlier should respond by
displaying a list item in the entry field when it is selected in the list box. The
selection is finished when the mouse is released after pressing an item. Let’s
assume that a method named _get should be triggered when this happens. Then
the code for binding this method to that event for the list box is the following:

self._theList.bind(“<ButtonRelease-1>”,ƒself._get)

Now all you have to do is define the _get method. This method has a single
parameter named event. This parameter will automatically be bound to the
event object that triggered the method. The method _get does nothing if the list
box is empty. Otherwise, it fetches the index of the currently selected item and
uses it to fetch the current item itself. This string is then sent to the container
variable for the entry field. Here is the code for the _get method:

defƒ_get(self,ƒevent):
ƒƒƒƒ“””Ifƒtheƒlistƒisƒnotƒempty,ƒcopyƒtheƒselected
ƒƒƒƒstringƒtoƒtheƒentryƒfield.”””
ƒƒƒƒifƒself._theList.size()ƒ>ƒ0:
ƒƒƒƒƒƒƒƒindexƒ=ƒself._theList.curselection()[0]
ƒƒƒƒƒƒƒƒself._inputVar.set(self._theList.get(index))

9.4.10 Keyboard Events

GUI-based programs can also respond to various keyboard events. Table 9.7 lists
some commonly occurring ones.

[TABLE 9.7] Some key events

TYPE OF KEYBOARD EVENT DESCRIPTION

<KeyPress> Any key has been pressed.

<KeyRelease> Any key has been released.

<KeyPress-key> key has been pressed.

<KeyRelease-key> key has been released.

CHAPTER 9 Graphical User Interfaces[386]

C6840_09 11/19/08 11:43 AM Page 386

May not be copied, scanned, or duplicated, in whole or in part.

As with mouse events, any key events can be associated with widgets in such
a manner that the events trigger methods. Perhaps the most common event is
pressing the Return key when the mouse cursor has become the insertion point
in an entry field. This event might signal the end of an input and a request for
processing.

Key events and their handlers are associated with a widget by using the bind
method discussed earlier. Let’s revisit the circle area program to allow the user to
compute the area by pressing the Return key while the insertion point is in the
radius field.

You bind the key press event to a handler for the _radiusEntry widget as
follows:

self._radiusEntry.bind(“<KeyPress-Return>”,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒlambdaƒevent:ƒself._area())

You cannot use the _area method directly as the event handler, because _area
does not have a parameter for the event. Instead, you package a call of _area
within a lambda function that accepts the event and ignores it.

9.4 Exercises
1 Write a code segment that centers the labels RED, WHITE, and BLUE

vertically in a GUI window. The text of each label should have the color
that it names, and the window’s background color should be green. The
background color of each label should also be black.

2 Write a code segment that centers the labels COURIER, HELVETICA,
and TIMES horizontally in a GUI window. The text of each label should
have the type font family that it names. Substitute a different font if
necessary.

3 Write a code segment that uses a loop to create and place nine buttons
into a 3 by 3 grid. Each button should be labeled with a number, starting
with 1 and increasing across each row.

4 Describe how a vertical scroll bar is associated with a list box.

9.4 Other Useful GUI Resources [387]

C6840_09 11/19/08 11:43 AM Page 387

May not be copied, scanned, or duplicated, in whole or in part.

Summary
� GUI-based programs display information using graphical components

in a window. They allow a user to manipulate information by manipu-
lating GUI components with a mouse.

� A GUI-based program responds to user events by running methods to
perform various tasks.

� The model/view/controller pattern assigns the roles and responsibili-
ties in a GUI-based program to three different sets of classes. The
view is responsible for displaying data and receiving user inputs. The
model is responsible for managing the program’s data. The controller
is responsible for handling the communications between the model
and the view.

� The Tkinter module includes classes, functions, and constants used
in GUI programming.

� A GUI-based program is structured as a main window class. This class
extends the Frame class. The __init__ method in the main window
class creates and lays out the window objects. The main window class
also includes the definitions of any event-handling methods.

� Examples of window components are labels (either text or images),
command buttons, entry fields, multiline text areas, and list boxes.

� Pop-up dialog boxes are used to display messages and ask yes/no ques-
tions. Functions for these are included in the tkMessagebox class.

� Window objects can be arranged in a window under the influence of a
grid layout. The grid’s attributes can be set to allow components to
expand or align in any direction.

� Complex layouts can be decomposed into several panes of components.
� Each component has attributes for the foreground color and back-

ground color. Colors are represented using the RGB system in hexa-
decimal format.

� Text has a type font attribute that allows the programmer to specify
the family, size, and other attributes of a font.

� The command attribute of a button can be set to a method that han-
dles a button click.

� Mouse and keyboard events can be associated with handler methods
for window objects by using the bind method.

CHAPTER 9 Graphical User Interfaces[388]

C6840_09 11/19/08 11:43 AM Page 388

May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS [389]

REVIEW QUESTIONS
1 In contrast to a terminal-based program, a GUI-based program

a completely controls the order in which the user enters inputs
b can allow the user to enter inputs in any order

2 The main window class in a GUI-based program is a subclass of

a Text

b Frame

c Window

3 The attribute used to attach an event-handling method to a button is
named

a pressevent

b onclick

c command

4 The model classes are responsible for

a managing a program’s data
b displaying a program’s data

5 The controller methods

a are triggered when events occur in the view
b manage a program’s data
c display a program’s data

6 The window component that allows a user to move the text visible
beneath a Text widget is a

a list box
b label
c scroll bar

7 The sticky attribute

a controls the alignment of a window component in its grid cell
b makes it difficult for a window component to be moved

8 The field used to set frame attributes is called

a master

b mister

C6840_09 11/19/08 11:43 AM Page 389

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Graphical User Interfaces[390]

9 Generally speaking, it is better to

a define a main window of a fixed size
b allow the user to alter the size of a main window

10 The rows and columns in a grid layout are numbered starting from

a (0, 0)
b (1, 1)

PROJECTS
1 Write a GUI-based program that implements the bouncy program

example discussed in Section 9.1.

2 Write a GUI-based program that allows the user to convert temperature val-
ues between degrees Fahrenheit and degrees Celsius. The interface should
have labeled entry fields for these two values. These components should be
arranged in a grid where the labels occupy the first row and the correspon-
ding fields occupy the second row. At start-up, the Fahrenheit field should
contain 32.0 and the Celsius field should contain 0.0. The third row in the
window contains two command buttons, labeled >>>> and <<<<. When
the user presses the first button, the program should use the data in the
Fahrenheit field to compute the Celsius value, which should then be output
to the Celsius field. The second button should perform the inverse function.

3 A terminal-based program that uses Newton’s method to compute square
roots is described in Chapter 3. Recast this program as a GUI-based pro-
gram. The user should be able to view successive approximations by
clicking a command button.

The interface should have two labeled entry fields, one for the input num-
ber and the other for the output of the square root. The interface should
include two command buttons. A button labeled Estimate should compute
and display the next guess based on the previous one. A button labeled
Reset should set the input and output fields to 0.0. At start-up and after
each reset, the program’s initial guess should be 0.0. If the program’s initial
guess is 0.0 and the user’s input is greater than 0.0, the program’s first guess
should be set to the input divided by 2.0. Otherwise, the program’s new
guess should be set using Newton’s approximation formula.

C6840_09 11/19/08 11:43 AM Page 390

May not be copied, scanned, or duplicated, in whole or in part.

4 Write a GUI-based program that plays the game of Blackjack as
described in Chapter 8. The window should display images of the
player’s cards and dealer’s cards as they are drawn. The window should
include the command buttons Hit, Pass, and New Game, and a status
field to display the game’s outcome.

5 Write a GUI-based program that allows a bank manager to view and
manipulate the accounts in a bank. The window should display the infor-
mation for the currently selected account in editable entry fields.
Command buttons should allow the user to navigate to the next account
and the previous account, assuming that the accounts are ordered by a
PIN. Add a method getPins() to the Bank class. This method should
build and return a sorted list of the PINs in the bank. The GUI should
use this method to help locate the first account, next account, and previ-
ous account. Command buttons should also allow the user to remove an
account, save an account’s edited information, and add a new account.
When a new account is added, the entry fields should be reset to default
values and the Save Changes button should create the account.

6 The TidBit Computer Store (Chapter 3, Project 10) has a credit plan for
computer purchases. Inputs are the annual interest rate and the purchase
price. Monthly payments are 5 percent of the listed purchase price,
minus the down payment, which must be 10 percent of the purchase
price. Write a GUI-based program that displays labeled fields for the
inputs and a text area for the output. The program should display a
table, with appropriate headers, of a payment schedule for the lifetime of
the loan. Each row of the table should contain the following items:

� The month number (beginning with 1)
� The current total balance owed
� The interest owed for that month
� The amount of principal owed for that month
� The payment for that month
� The balance remaining after payment
The amount of interest for a month is equal to balance * rate / 12. The
amount of principal for a month is equal to the monthly payment minus
the interest owed.
Your program should include separate classes for the model and the view.
The model should include a method that expects the three inputs as
arguments and returns a formatted string for output by the view.

PROJECTS [391]

C6840_09 11/19/08 11:43 AM Page 391

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 9 Graphical User Interfaces[392]

7 Write a GUI-based program that simulates a simple pocket calculator.
The GUI displays a single entry field for output. The GUI should also
display a keypad of buttons for the 10 digits and 6 command buttons
labeled +, -, *, /, C, and =. The command C should clear the output
field. The command = calculates an answer and displays it in the field.
The program should build a string from the user’s button clicks and echo
it in the field. The program should detect any errors during this process
and display the word “ERR” in the field.

8 Write a GUI-based program that allows the user to open, edit, and save
text files. The GUI should include a labeled entry field for the filename
and a multi-line text widget for the text of the file. The user should be
able to scroll through the text by manipulating a vertical scrollbar.
Include command buttons labeled Open, Save, and New that allow the
user to open, save, and create new files. The New command should then
clear the text widget and the entry widget.

9 Write a GUI-based program that implements an image browser for your
computer’s hard disk. At start-up, the program should load a scrolling list
box with three types of items:

� The filenames of the images in the current working directory
� The names of any subdirectories within the current working directory
� The string ".."
The pathname of the current working directory is also displayed in an
entry field. When the user selects an item in the list box and presses the
Go button, one of three things can happen:

� If the item is an image filename, the image is loaded and displayed.
� If the item is a subdirectory, the program attaches to that directory

and refreshes the list box with its contents.
� If the item is the string "..", the program attaches to the parent

directory if there is one and refreshes the list box with its contents.
In the last two cases, the contents of the entry field are also updated.

10 Write a GUI-based program that allows the user to play a game of tic-
tac-toe with the computer. The main window should display a 3 by 3
grid of empty buttons. When the user presses an empty button, an X
should appear. The computer should then respond by checking for a
winner, and then placing an O on an empty button if there is no winner.
The computer should then check for a winner again. A Reset button
should reset the game and the window to their initial state. Allow the
computer to place its mark on a randomly chosen button.

C6840_09 11/19/08 11:43 AM Page 392

May not be copied, scanned, or duplicated, in whole or in part.

[CHAPTER]
MULTITHREADING, NETWORKS, AND

Client/Server Programming10
After completing this chapter, you will be able to:

� Describe what threads do and how they are manipulated in an
application

� Code an algorithm to run as a thread
� Use conditions to solve a simple synchronization problem

with threads
� Use IP addresses, ports, and sockets to create a simple

client/server application on a network
� Decompose a server application with threads to handle client

requests efficiently
� Restructure existing applications for deployment as

client/server applications on a network
Thus far in this book, we have explored ways of solving prob-

lems by using multiple cooperating algorithms and data structures.
Another commonly used strategy for problem solving involves the
use of multiple threads. Threads describe processes that can run
concurrently to solve a problem. They can also be organized in a
system of clients and servers. For example, a Web browser runs
in a client thread and allows a user to view Web pages that are sent
by a Web server, which runs in a server thread. Client and server
threads can run concurrently on a single computer or can be distrib-
uted across several computers that are linked in a network. The
technique of using multiple threads in a program is known as multi-
threading. This chapter offers an introduction to multithreading,
networks, and client/server programming. We provide just enough
material to get you started with these topics; more complete surveys
are available in advanced computer science courses.

C6840_10 11/19/08 1:30 PM Page 393

May not be copied, scanned, or duplicated, in whole or in part.

10.1 Threads and Processes
You are well aware that an algorithm describes a computational process that runs
to completion. You are also aware that a process consumes resources, such as
CPU cycles and memory. Until now, we have associated an algorithm or a pro-
gram with a single process, and we have assumed that this process runs on a sin-
gle computer. However, your program’s process is not the only one that runs on
your computer, and a single program could describe several processes that could
run concurrently on your computer or on several networked computers. The fol-
lowing historical summary shows how this is the case.

Time-sharing systems: In the late 1950s and early 1960s, computer scien-
tists developed the first time-sharing operating systems. These systems allowed
several programs to run concurrently on a single computer. Instead of giving
their programs to a human scheduler to run one after the other on a single
machine, users logged in to the computer via remote terminals. They then ran
their programs and had the illusion, if the system performed well, of having sole
possession of the machine’s resources (CPU, disk drives, printer, etc.). Behind the
scenes, the operating system created processes for these programs, gave each
process a turn at the CPU and other resources, and performed all the work of
scheduling, saving state during context switches, and so forth. Time-sharing sys-
tems are still in widespread use in the form of Web servers, e-mail servers, print
servers, and other kinds of servers on networked systems.

Multiprocessing systems: Most time-sharing systems allow a single user to
run one program and then return to the operating system to run another program
before the first program is finished. The concept of a single user running several
programs at once was extended to desktop microcomputers in the late 1980s, when
these machines became more powerful. For example, the Macintosh MultiFinder
allowed a user to run a word processor, a spreadsheet, and the Finder (the file
browser) concurrently and to switch from one application to another by selecting
an application’s window. Users of stand-alone PCs now take this capability for
granted. A related development was the ability of a program to start another pro-
gram by “forking,” or creating a new process. For example, a word processor might
create another process to print a document in the background, while the user is
staring at the window thinking about the next words to type.

Networked or distributed systems: The late 1980s and early 1990s saw the
rise of networked systems. At that time, the processes associated with a single
program or with several programs began to be distributed across several CPUs
linked by high-speed communication lines. Thus, for example, the Web browser
that appears to be running on my machine is actually making requests as a client
to a Web server application that runs on a multiuser machine at the local Internet

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[394]

C6840_10 11/19/08 1:30 PM Page 394

May not be copied, scanned, or duplicated, in whole or in part.

service provider. The problems of scheduling and running processes are more
complex on a networked system, but the basic ideas are the same.

Parallel systems: As CPUs became less expensive and smaller, it became fea-
sible to run a single program on several CPUs at once. Parallel computing is
the discipline of building the hardware architectures, operating systems, and spe-
cialized algorithms for running a program on a cluster of processors. The multi-
core technology now found in most new PCs can be used to run a single program
or multiple programs on several processors simultaneously.

10.1.1 Threads

Whether networked or stand-alone machines, most modern computers use
threads to represent processes. For example, a Web browser uses one thread to
load an image from the Internet while using another thread to format and display
text. The Python Virtual Machine runs several threads that you have already used
without realizing it. For example, the IDLE editor runs as a separate thread, as
does your main Python application program.

In Python, a thread is an object like any other in that it can hold data, be run
with methods, be stored in data structures, and be passed as parameters to meth-
ods. However, a thread can also be executed as a process. Before it can execute, a
thread’s class must implement a run method.

During its lifetime, a thread can be in various states. Figure 10.1 shows some
of the states in the lifetime of a Python thread. In this diagram, the box labeled
“The ready queue” is a data structure, whereas the box labeled “The CPU” is a
hardware resource. The thread states are the labeled ovals.

10.1 Threads and Processes [395]

C6840_10 11/19/08 1:30 PM Page 395

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 10.1] States in the life of a thread

After it is created, a thread remains inactive until someone runs its start
method. Running this method also makes the thread “ready” and places a refer-
ence to it in the ready queue. A queue is a data structure that enforces first-
come, first-served access to a single resource. The resource in this case is the
CPU, which can execute the instructions of just one thread at a time. A newly
started thread’s run method is also activated. However, before its first instruction
can be executed, the thread must wait its turn in the ready queue for access to the
CPU. After the thread gets access to the CPU and executes some instructions in
its run method, the thread can lose access to the CPU in several ways:

� Time-out—Most computers running Python programs automatically time-
out a running thread every few milliseconds. The process of automatically
timing-out, also known as time slicing, has the effect of pausing the running
thread’s execution and sending it to the rear of the ready queue. The thread
at the front of the ready queue is then given access to the CPU.

� Sleep—A thread can be put to sleep for a given number of milliseconds.
When the thread wakes up, it goes to the rear of the ready queue.

start

I/O complete

I/O interupt

complete
run

wait

notify

wake up
sleep

yield or timed out

The ready queue

The CPU

born blocked

ready

sleeping

waiting

running

dead

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[396]

C6840_10 11/19/08 1:30 PM Page 396

May not be copied, scanned, or duplicated, in whole or in part.

� Block—A thread can wait for some event, such as user input, to occur.
When a blocked thread is notified that an event has occurred, it goes to
the rear of the ready queue.

� Wait—A thread can voluntarily relinquish the CPU to wait for some con-
dition to become true. A waiting thread can be notified when the condition
becomes true and move again to the rear of the ready queue.

When a thread gives up the CPU, the computer saves its state, so that when
the thread returns to the CPU, its run method can pick up where it left off. The
process of saving or restoring a thread’s state is called a context switch.

When a thread’s run method has executed its last instruction, the thread dies
as a process but continues to exist as an object. A thread object can also die if it
raises an exception that is not handled.

Python’s threading module includes resources for creating threads and
managing multithreaded applications. The most common way to create a thread
is to define a class that extends the class threading.Thread. The new class
should include a run method that executes the algorithm in the new thread. The
start method places a thread at the rear of the ready queue. The next code seg-
ment defines a simple thread class that prints its name. The session that follows
instantiates this class and starts up the thread.

fromƒthreadingƒimportƒThread

classƒMyThread(Thread):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒThread.__init__(self,ƒnameƒ=ƒ“MyƒThread”)

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒprintƒ“Hello,ƒmyƒnameƒisƒ%s”ƒ%ƒself.getName()

>>>ƒprocessƒ=ƒMyThread()
>>>ƒprocess.start()
Hello,ƒmyƒnameƒisƒMyƒThread
>>>ƒ

Note that the thread’s run method is invoked automatically by start. The
Thread class maintains an instance variable for the thread’s name and includes
the associated methods getName and setName. Table 10.1 lists some important
Thread methods.

10.1 Threads and Processes [397]

C6840_10 11/19/08 1:30 PM Page 397

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 10.1] Some Thread Methods

Other important resources used with threads include the function
time.sleep and the class threading.Condition. We now consider some
example programs that illustrate the behavior of these resources.

10.1.2 Sleeping Threads

In our first example, we develop a program that allows the user to start several
threads. Each thread does not do much when started; it simply prints a message,
goes to sleep for a random number of seconds, and then prints a message and ter-
minates on waking up. The program allows the user to specify the number of
threads to run and the maximum sleep time. When a thread is started, it prints a
message identifying itself and its sleep time and then goes to sleep. When a thread
wakes up, it prints another message identifying itself. A session with this program is
shown in Figure 10.2. Note that the Python program is launched from a terminal
prompt rather than from an IDLE window. Because IDLE itself runs in a thread, it
is not generally a good idea to test a multithreaded application in that environment.

Thread METHOD WHAT IT DOES

__init__(name = None) Initializes the thread’s name.

getName() Returns the thread’s name.

setName(newName) Sets the thread’s name to newName.

run() Executes when the thread acquires the CPU.

start() Makes the new thread ready. Raises an
exception if run more than once.

isAlive() Returns True if the thread is alive or False
otherwise.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[398]

C6840_10 11/19/08 1:30 PM Page 398

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 10.2] A run of the sleeping threads program

The following points can be concluded from the example in Figure 10.2:
� When a thread goes to sleep, the next thread has an opportunity to acquire

the CPU and display its information in the view.
� The threads do not necessarily wake up in the order in which they were started.

The size of the sleep interval determines this order. In Figure 10.2, thread 3 has
the shortest sleep time, so it wakes up first. Thread 1 wakes up before thread 2
because their sleep intervals are the same, and 1 is started before 2.

The program consists of the class SleepyThread, a subclass of Thread,
and a main function. When called within a thread’s run method, the function
time.sleep puts that thread to sleep for the specified number of seconds.
Here is the code:

“””
File:ƒsleepythreads.py

Illustratesƒconcurrencyƒwithƒmultipleƒthreads.
“””

importƒrandom,ƒtime
fromƒthreadingƒimportƒThread

classƒSleepyThread(Thread):
ƒƒƒƒ“””Representsƒaƒsleepyƒthread.”””

ƒƒƒƒdefƒ__init__(self,ƒnumber,ƒsleepMax):
ƒƒƒƒƒƒƒƒ“””Createƒaƒthreadƒwithƒtheƒgivenƒnameƒ
ƒƒƒƒƒƒƒƒandƒaƒrandomƒsleepƒintervalƒlessƒthanƒtheƒmaximum.ƒ“””
ƒƒƒƒƒƒƒƒThread.__init__(self,ƒnameƒ=ƒ“Threadƒ“ƒ+ƒstr(number))
ƒƒƒƒƒƒƒƒself._sleepIntervalƒ=ƒrandom.randint(1,ƒsleepMax)

continued

% python sleepythreads.py
Enter the number of threads: 3
Enter the maximum sleep time: 6
Thread 1, sleep interval: 3 seconds
Thread 2, sleep interval: 3 seconds
Thread 3, sleep interval: 1 second
Thread 3 waking up
Thread 1 waking up
Thread 2 waking up

10.1 Threads and Processes [399]

C6840_10 11/19/08 1:30 PM Page 399

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒ“””Printƒtheƒthread’sƒnameƒandƒsleepƒintervalƒandƒsleep
ƒƒƒƒƒƒƒƒforƒthatƒinterval.ƒPrintƒtheƒnameƒagainƒatƒwake-up.ƒ“””
ƒƒƒƒƒƒƒƒprintƒ“%s,ƒsleepƒinterval:ƒ%dƒseconds”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(self.getName(),ƒself._sleepInterval)
ƒƒƒƒƒƒƒƒtime.sleep(self._sleepInterval)
ƒƒƒƒƒƒƒƒprintƒ“%sƒwakingƒup”ƒ%ƒself.getName()

defƒmain():
ƒƒƒƒ“””Createƒtheƒuser’sƒnumberƒofƒthreadsƒwithƒsleep
ƒƒƒƒintervalsƒlessƒthanƒtheƒuser’sƒmaximum.ƒThenƒstart
ƒƒƒƒtheƒthreads”””
ƒƒƒƒnumThreadsƒ=ƒinput(“Enterƒtheƒnumberƒofƒthreads:ƒ“)
ƒƒƒƒsleepMaxƒ=ƒinput(“Enterƒtheƒmaximumƒsleepƒtime:ƒ“)
ƒƒƒƒthreadListƒ=ƒ[]
ƒƒƒƒforƒcountƒinƒxrange(numThreads):
ƒƒƒƒƒƒƒƒthreadList.append(SleepyThread(countƒ+ƒ1,ƒsleepMax))
ƒƒƒƒforƒthreadƒinƒthreadList:ƒthread.start()

main()ƒƒƒƒ

10.1.3 Producer, Consumer, and Synchronization

In the previous example, the threads ran independently and did not interact.
However, in many applications, threads interact by sharing data. Threads that
interact by sharing data are said to have a producer/consumer relationship.
Think of an assembly line in a factory. Worker A, at the beginning of the line,
produces an item that is then ready for access by the next person on the line,
Worker B. In this case, Worker A is the producer, and Worker B is the consumer.
Worker B then becomes the producer, processing the item in some way until it is
ready for Worker C, and so on.

Three requirements must be met for the assembly line to function properly:

1 A producer must produce each item before a consumer consumes it.

2 Each item must be consumed before the producer produces the next item.

3 A consumer must consume each item just once.

Let us now consider a computer simulation of the producer/consumer rela-
tionship. In its simplest form, the relationship has only two threads: a producer and
a consumer. They share a single data cell that contains an integer. The producer
sleeps for a random interval, writes an integer to the shared cell, and generates the
next integer to be written, until the integer reaches an upper bound. The consumer

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[400]

C6840_10 11/19/08 1:30 PM Page 400

May not be copied, scanned, or duplicated, in whole or in part.

sleeps for a random interval and reads the integer from the shared cell, until the
integer reaches the upper bound. Figure 10.3 shows two runs of this program.
The user enters the number of accesses (data items produced and consumed).
The output announces that the producer and consumer threads have started up
and shows when each thread accesses the shared data.

[FIGURE 10.3] Two runs of the producer/consumer program

Some bad things happen in the second run of the program (lines in boldface
type on the right of Figure 10.3):

1 The consumer accesses the shared cell before the producer has written
its first datum.

2 The producer then writes two consecutive data (1 and 2) before the con-
sumer has accessed the cell again.

3 The consumer accesses data 2 twice.

4 The producer then writes data 4 after the consumer is finished.

The producer produces all of its data as expected, but the consumer can
access data that are not there, can miss data, and can access the same data more
than once. These are known as synchronization problems. Before we explain
why they occur, we present the essential parts of the program itself, which con-
sists of the four resources in Table 10.2.

Enter the number of accesses: 4
Starting the threads
Producer starting up
Consumer starting up
Producer setting data to 1
Consumer accessing data 1
Producer setting data to 2
Consumer accessing data 2
Producer setting data to 3
Consumer accessing data 3
Producer setting data to 4
Producer is done producing
Consumer accessing data 4
Consumer is done consuming

Enter the number of accesses: 4
Starting the threads
Producer starting up
Consumer starting up
Consumer accessing data -1
Producer setting data to 1
Producer setting data to 2
Consumer accessing data 2
Consumer accessing data 2
Producer setting data to 3
Consumer accessing data 3
Consumer is done consuming
Producer setting data to 4
Producer is done producing

10.1 Threads and Processes [401]

C6840_10 11/19/08 1:30 PM Page 401

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 10.2] The classes and main function in the producer/consumer program

The code for the main function is similar to the one in the previous example:

defƒmain():
ƒƒƒƒ“””Getƒtheƒnumberƒofƒaccessesƒfromƒtheƒuser,ƒ
ƒƒƒƒcreateƒaƒsharedƒcell,ƒandƒcreateƒandƒstartƒupƒ
ƒƒƒƒaƒproducerƒandƒaƒconsumer.”””
ƒƒƒƒaccessCountƒ=ƒinput(“Enterƒtheƒnumberƒofƒaccesses:ƒ“)
ƒƒƒƒsleepMaxƒ=ƒ4
ƒƒƒƒcellƒ=ƒSharedCell()
ƒƒƒƒproducerƒ=ƒProducer(cell,ƒaccessCount,ƒsleepMax)
ƒƒƒƒconsumerƒ=ƒConsumer(cell,ƒaccessCount,ƒsleepMax)
ƒƒƒƒprintƒ“Startingƒtheƒthreads”
ƒƒƒƒproducer.start()
ƒƒƒƒconsumer.start()

Here is the code for the classes SharedCell, Producer, and Consumer:

importƒtime,ƒrandom
fromƒthreadingƒimportƒThread,ƒcurrentThread

classƒSharedCell(object):
ƒƒƒƒ“””Sharedƒdataƒforƒtheƒproducer/consumerƒproblem.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._dataƒ=ƒ-1

continued

CLASS OR FUNCTION ROLE AND RESPONSIBILITY

main Manages the user interface. Creates the shared
cell and producer and consumer threads and
starts the threads.

SharedCell Represents the shared data, which is an integer
(initially -1).

Producer Represents the producer process. Repeatedly
writes an integer to the cell and increments the
integer, until it reaches an upper bound.

Consumer Represents the consumer process. Repeatedly
reads an integer from the cell, until it reaches
an upper bound.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[402]

C6840_10 11/19/08 1:30 PM Page 402

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒsetData(self,ƒdata):
ƒƒƒƒƒƒƒƒ“””Producer'sƒmethodƒtoƒwriteƒtoƒsharedƒdata.”””
ƒƒƒƒƒƒƒƒprintƒ“%sƒsettingƒdataƒtoƒ%d”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(currentThread().getName(),ƒdata)
ƒƒƒƒƒƒƒƒself._dataƒ=ƒdata

ƒƒƒƒdefƒgetData(self):
ƒƒƒƒƒƒƒƒ“””Consumer'sƒmethodƒtoƒreadƒfromƒsharedƒdata.”””
ƒƒƒƒƒƒƒƒprintƒ“%sƒaccessingƒdataƒ%d”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(currentThread().getName(),ƒself._data)
ƒƒƒƒƒƒƒƒreturnƒself._data

classƒProducer(Thread):
ƒƒƒƒ“””Representsƒaƒproducer.”””

ƒƒƒƒdefƒ__init__(self,ƒcell,ƒaccessCount,ƒsleepMax):
ƒƒƒƒƒƒƒƒ“””Createƒaƒproducerƒwithƒtheƒgivenƒsharedƒcell,
ƒƒƒƒƒƒƒƒnumberƒofƒaccesses,ƒandƒmaximumƒsleepƒinterval.”””
ƒƒƒƒƒƒƒƒThread.__init__(self,ƒnameƒ=ƒ“Producer”)
ƒƒƒƒƒƒƒƒself._accessCountƒ=ƒaccessCount
ƒƒƒƒƒƒƒƒself._cellƒ=ƒcell
ƒƒƒƒƒƒƒƒself._sleepMaxƒ=ƒsleepMax

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒ“””Announceƒstart-up,ƒsleep,ƒandƒwriteƒtoƒsharedƒcell
ƒƒƒƒƒƒƒƒtheƒgivenƒnumberƒofƒtimes,ƒandƒannounceƒcompletion.”””
ƒƒƒƒƒƒƒƒprintƒ“%sƒstartingƒup”ƒ%ƒself.getName()
ƒƒƒƒƒƒƒƒforƒcountƒinƒxrange(self._accessCount):
ƒƒƒƒƒƒƒƒƒƒƒƒtime.sleep(random.randint(1,ƒself._sleepMax))
ƒƒƒƒƒƒƒƒƒƒƒƒself._cell.setData(countƒ+ƒ1)
ƒƒƒƒƒƒƒƒprintƒ“%sƒisƒdoneƒproducing”ƒ%ƒself.getName()

classƒConsumer(Thread):
ƒƒƒƒ“””Representsƒaƒconsumer.”””

ƒƒƒƒdefƒ__init__(self,ƒcell,ƒaccessCount,ƒsleepMax):
ƒƒƒƒƒƒƒƒ“””Createƒaƒproducerƒwithƒtheƒgivenƒsharedƒcell,
ƒƒƒƒƒƒƒƒnumberƒofƒaccesses,ƒandƒmaximumƒsleepƒinterval.”””
ƒƒƒƒƒƒƒƒThread.__init__(self,ƒnameƒ=ƒ“Consumer”)
ƒƒƒƒƒƒƒƒself._accessCountƒ=ƒaccessCount
ƒƒƒƒƒƒƒƒself._cellƒ=ƒcell
ƒƒƒƒƒƒƒƒself._sleepMaxƒ=ƒsleepMax

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒ“””Announceƒstart-up,ƒsleep,ƒandƒreadƒfromƒsharedƒcell
ƒƒƒƒƒƒƒƒtheƒgivenƒnumberƒofƒtimes,ƒandƒannounceƒcompletion.”””
ƒƒƒƒƒƒƒƒprintƒ“%sƒstartingƒup”ƒ%ƒself.getName()
ƒƒƒƒƒƒƒƒforƒcountƒinƒxrange(self._accessCount):
ƒƒƒƒƒƒƒƒƒƒƒƒtime.sleep(random.randint(1,ƒself._sleepMax))
ƒƒƒƒƒƒƒƒƒƒƒƒvalueƒ=ƒself._cell.getData()
ƒƒƒƒƒƒƒƒprintƒ“%sƒisƒdoneƒconsuming”ƒ%ƒself.getName()

10.1 Threads and Processes [403]

C6840_10 11/19/08 1:30 PM Page 403

May not be copied, scanned, or duplicated, in whole or in part.

The cause of the synchronization problems is not hard to spot in this code.
On each pass through their main loops, the threads sleep for a random interval of
time. Thus, if the consumer thread has a shorter interval than the producer
thread on a given cycle, the consumer wakes up sooner and accesses the shared
cell before the producer has a chance to write the next datum. Conversely, if the
producer thread wakes up sooner, it accesses the shared data and writes the next
datum before the consumer has a chance to read the previous datum.

To solve this problem, we need to synchronize the actions of the producer
and consumer threads. In addition to holding data, the shared cell must be in one
of two states: writeable or not writeable. The cell is writeable if it has not yet
been written to (at start-up) or if it has just been read from. The cell is not write-
able if it has just been written to. These two conditions can now control the
callers of the setData and getData methods in the SharedCell class as follows:

1 While the cell is writeable, the caller of getData (the consumer) must
wait or suspend activity, until the producer writes a datum. When this
happens, the cell becomes not writeable, the caller of getData is notified
to resume activity, and the data are returned (to the consumer).

2 While the cell is not writeable, the caller of setData (the producer)
must wait or suspend activity, until the consumer reads a datum. When
this happens, the cell becomes writeable, the caller of setData is noti-
fied to resume activity, and the data are modified (by the producer).

To implement these restrictions, the SharedCell class now includes two
additional instance variables:

1 A Boolean flag named _writeable. If this flag is True, only writing to
the cell is allowed; if it is False, only reading from the cell is allowed.

2 An instance of the threading.Condition class. This object allows each
thread to block until the Boolean flag is in the appropriate state to write
to or read from the cell.

A Condition object is used to maintain a lock on a resource. When a thread
acquires this lock, no other thread can access the resource, even if the acquiring
thread is timed out. After a thread successfully acquires the resource, it can do its
work or relinquish the lock in either of two ways:

1 By calling the condition’s wait method. This method causes the thread
to block until it is notified that it can continue its work.

2 By calling the condition’s release method. This method unlocks the
resource and allows it to be acquired by other threads.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[404]

C6840_10 11/19/08 1:30 PM Page 404

May not be copied, scanned, or duplicated, in whole or in part.

When other threads attempt to acquire a locked resource, they block until
the thread is released or a thread holding the lock calls the condition’s notify
method. To summarize, the pattern for a thread accessing a resource with a lock
is the following:

Run acquire on the condition.
While it’s not OK to do the work

Run wait on the condition.
Do the work with the resource.
Run notify on the condition.
Run release on the condition.

Table 10.3 lists the methods of the Condition class.

[TABLE 10.3] The methods of the Condition class

Condition METHOD WHAT IT DOES

acquire() Attempts to acquire the lock. Blocks if the lock is
already taken.

release() Relinquishes the lock, leaving it to be acquired
by others.

wait() Releases the lock, blocks the current thread until
another thread calls notify or notifyAll on the
same condition, and then reacquires the lock. If
multiple threads are waiting, the notify method
wakes up only one of the threads, while notifyAll
always wakes up all of the threads.

notify() Lets the next thread waiting on the lock know that
it’s available.

notifyAll() Lets all threads waiting on the lock know that it’s
available.

10.1 Threads and Processes [405]

C6840_10 11/19/08 1:30 PM Page 405

May not be copied, scanned, or duplicated, in whole or in part.

Here is the code that shows the changes to the class SharedCell:

importƒtime,ƒrandom
fromƒthreadingƒimportƒThread,ƒcurrentThread,ƒCondition

classƒSharedCell(object):
ƒƒƒƒ“””Sharedƒdataƒforƒtheƒproducer/consumerƒproblem.”””
ƒƒƒƒ
ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._dataƒ=ƒ-1
ƒƒƒƒƒƒƒƒself._writeableƒ=ƒTrue
ƒƒƒƒƒƒƒƒself._conditionƒ=ƒCondition()

ƒƒƒƒdefƒsetData(self,ƒdata):
ƒƒƒƒƒƒƒƒ“””Producer'sƒmethodƒtoƒwriteƒtoƒsharedƒdata.”””
ƒƒƒƒƒƒƒƒself._condition.acquire()
ƒƒƒƒƒƒƒƒwhileƒnotƒself._writeable:
ƒƒƒƒƒƒƒƒƒƒƒƒself._condition.wait()
ƒƒƒƒƒƒƒƒprintƒ“%sƒsettingƒdataƒtoƒ%d”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(currentThread().getName(),ƒdata)
ƒƒƒƒƒƒƒƒself._dataƒ=ƒdata
ƒƒƒƒƒƒƒƒself._writeableƒ=ƒFalse
ƒƒƒƒƒƒƒƒself._condition.notify()
ƒƒƒƒƒƒƒƒself._condition.release()

ƒƒƒƒdefƒgetData(self):
ƒƒƒƒƒƒƒƒ“””Consumer'sƒmethodƒtoƒreadƒfromƒsharedƒdata.”””
ƒƒƒƒƒƒƒƒself._condition.acquire()
ƒƒƒƒƒƒƒƒwhileƒself._writeable:
ƒƒƒƒƒƒƒƒƒƒƒƒself._condition.wait()
ƒƒƒƒƒƒƒƒprintƒ“%sƒaccessingƒdataƒ%d”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(currentThread().getName(),ƒself._data)
ƒƒƒƒƒƒƒƒself._writeableƒ=ƒTrue
ƒƒƒƒƒƒƒƒself._condition.notify()
ƒƒƒƒƒƒƒƒself._condition.release()
ƒƒƒƒƒƒƒƒreturnƒself._data

We have only scratched the surface of the kinds of problems that can arise
when programs run several threads. For example, the producer/consumer prob-
lem can involve multiple producers and/or consumers.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[406]

C6840_10 11/19/08 1:30 PM Page 406

May not be copied, scanned, or duplicated, in whole or in part.

10.1 Exercises
1 What does a thread’s run method do?

2 What is time slicing?

3 What is a synchronization problem?

4 What is the difference between a sleeping thread and a waiting thread?

5 Discuss how one might solve a producer/consumer problem with one
producer and many consumers. You may assume that all of the con-
sumers must consume each of the data values produced.

6 Assume that a producer and a consumer have access to a shared list of
data. The producer’s role is to replace the data value at each position,
whereas the consumer simply accesses the replaced value, that is, the
producer must replace before any consumer accesses. Describe how you
would synchronize the producer and consumer so that they each can
process the entire list.

10.2 Networks, Clients, and Servers
Clients and servers are applications or processes that can run locally on a single
computer or remotely across a network of computers. As explained in the follow-
ing sections, the resources required for this type of application are IP addresses,
sockets, and threads.

10.2.1 IP Addresses

Every computer on a network has a unique identifier called an IP address (IP
stands for Internet Protocol). This address can be specified either as an IP number
or as an IP name. An IP number typically has the form ddd.ddd.ddd.ddd, where
each d is a digit. The number of digits to the right or the left of a decimal point
may vary but does not exceed three. For example, the IP number of the author’s
office computer might be 137.112.194.77. Because IP numbers can be difficult to
remember, people customarily use an IP name to specify an IP address. For exam-
ple, the IP name of the author’s computer might be lambertk.

10.2 Networks, Clients, and Servers [407]

C6840_10 11/19/08 1:30 PM Page 407

May not be copied, scanned, or duplicated, in whole or in part.

Python’s socket module includes two functions that can look up these items
of information. These functions are listed in Table 10.4, followed by a short ses-
sion showing their use.

[TABLE 10.4] socket functions for IP addresses

>>>ƒfromƒsocketƒimportƒ*
>>>ƒgethostname()
'kenneth-lamberts-powerbook-g4-15.local'
>>>ƒgethostbyname(gethostname())
'192.168.1.109'
>>>ƒgethostbyname('Ken')

Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<pyshell#7>”,ƒlineƒ1,ƒinƒ<module>
ƒƒƒƒgethostbyname('Ken')
gaierror:ƒ(7,ƒ'Noƒaddressƒassociatedƒwithƒnodename')
>>>ƒ

Note that these functions raise exceptions if they cannot locate the informa-
tion. To handle this problem, one can embed these function calls in a try-except
statement. As introduced in Chapter 8, this statement has the following form:

try:
ƒƒƒƒ<statements>
exceptƒException,ƒexception:
ƒƒƒƒ<statements>

socket FUNCTION WHAT IT DOES

gethostname() Returns the IP name of the host computer
running the Python interpreter. Raises an
exception if the computer does not have an
IP address.

gethostbyname(ipName) Returns the IP number of the computer whose
IP name is ipName. Raises an exception if
ipName cannot be found.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[408]

C6840_10 11/19/08 1:30 PM Page 408

May not be copied, scanned, or duplicated, in whole or in part.

The next code segment recovers from an unknown IP address error by printing
the exception’s error message:

try:
ƒƒƒƒprintƒgethostbyname('Ken')
exceptƒException,ƒexception:
ƒƒƒƒprintƒexception

When developing a network application, the programmer can first try it out
on a local host—that is, on a standalone computer that may or may not be con-
nected to the Internet. The computer’s IP name in this case is 'localhost'.
The IP number of a computer that acts as a local host is distinct from its IP num-
ber as an Internet host, as shown in the next session:

>>>ƒgethostbyname(gethostname())
'192.168.1.109'
>>>ƒgethostbyname('localhost')
'127.0.0.1'
>>>ƒ

When the programmer is satisfied that the application is working correctly on a
local host, the application can then be deployed on the Internet host simply by
changing the IP address. In the discussion that follows, we use a local host to
develop network applications.

10.2.2 Ports, Servers, and Clients

Clients connect to servers via objects known as ports. A port serves as a channel
through which several clients can exchange data with the same server or with dif-
ferent servers. Ports are usually specified by numbers. Some ports are dedicated
to special servers or tasks. For example, almost every computer reserves port
number 13 for the day/time server, which allows clients to obtain the date and
time. Port number 80 is reserved for a Web server, and so forth. Most computers
also have hundreds or even thousands of free ports available for use by any net-
work applications.

10.2 Networks, Clients, and Servers [409]

C6840_10 11/19/08 1:30 PM Page 409

May not be copied, scanned, or duplicated, in whole or in part.

10.2.3 Sockets and a Day/Time Client Script

You can write a Python script that is a client to a server. To do this, you need to
use a socket. A socket is an object that serves as a communication link between a
single server process and a single client process. You can create and open several
sockets on the same port of a host computer. Figure 10.4 shows the relationships
between a host computer, ports, servers, clients, and sockets.

[FIGURE 10.4] Setup of day/time host and clients

A Python day/time client script uses the socket module introduced earlier.
This script does the following:

� Creates a socket object.
� Opens the socket on a free port of the local host. We use a large number,

5000, for this port.
� Reads the day/time from the socket.
� Displays the day/time.

Here is a Python script that performs these tasks:

“””
Clientƒforƒobtainingƒtheƒdayƒandƒtime.
“””

fromƒsocketƒimportƒ*

HOSTƒ=ƒ'localhost'

continued

Server

Port

Host

Client 1 Client 2

Socket Socket

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[410]

C6840_10 11/19/08 1:30 PM Page 410

May not be copied, scanned, or duplicated, in whole or in part.

PORTƒ=ƒ5000
BUFSIZEƒ=ƒ1024
ADDRESSƒ=ƒ(HOST,ƒPORT)

serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)ƒƒƒ#ƒCreateƒaƒsocket
server.connect(ADDRESS)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒConnectƒitƒtoƒaƒhost
dayAndTimeƒ=ƒserver.recv(BUFSIZE)ƒƒƒƒƒƒƒ#ƒReadƒaƒstringƒfromƒit
printƒdayAndTime
server.close()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒCloseƒtheƒconnection

Although we cannot run this script until we write and launch the server program,
Figure 10.5 shows the client’s anticipated output.

[FIGURE 10.5] The interface of the day/time client script

As you can see, a Python socket is fairly easy to set up and use. A socket
resembles a file object, in that the programmer opens it, receives data from it,
and closes it when finished. We now explain these steps in our client script in
more detail.

The script creates a socket by running the function socket in the socket
module. This function returns a new socket object, when given a socket family
and a socket type as arguments. We use the family AF_INET and the type
SOCK_STREAM, both socket module constants, in all of our examples.

To connect the socket to a host computer, one runs the socket’s connect
method. This method expects as an argument a tuple containing the host’s IP address
and a port number. In this case, these items are 'localhost' and 5000, respectively.
These two items should be the same as the ones used in the server script.

To obtain information sent by the server, the client script runs the socket’s
recv method. This method expects as an argument the maximum size in bytes of
the string to be read from the socket.

After the client script has printed the string read from the socket, the script
closes the connection to the server by running the socket’s close method.

10.2 Networks, Clients, and Servers [411]

C6840_10 11/19/08 1:30 PM Page 411

May not be copied, scanned, or duplicated, in whole or in part.

10.2.4 A Day/Time Server Script

You can also write a day/time server script in Python to handle requests from
many clients. Figure 10.6 shows the interaction between a day/time server and
two clients in a series of screenshots. In the first shot, the day/time server script
is launched in a terminal window, and it’s waiting for a connection. In the second
shot, two successive clients are launched in a separate terminal window (you can
open several terminal windows at once). They have connected to the server and
have received the day/time. The third shot shows the updates to the server’s win-
dow after it has served these two clients. Note that the two clients terminate exe-
cution after they print their results, whereas the server appears to continue
waiting for another client.

[FIGURE 10.6] A day/time server and two clients

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[412]

C6840_10 11/19/08 1:30 PM Page 412

May not be copied, scanned, or duplicated, in whole or in part.

A Python day/time server script also uses the resources of the socket mod-
ule. The basic sequence of operations for a simple day/time server script is the
following:

Create a socket and open it on port 5000 of the local host
While true:

Wait for a connection from a client
When the connection is made, send the date to the client

Our script also displays information about the host, the port, and the client.
Here is the code, followed by a brief explanation:

“””
Serverƒforƒprovidingƒtheƒdayƒandƒtime.
“””

fromƒsocketƒimportƒ*
fromƒtimeƒimportƒctime

HOSTƒ=ƒ'localhost'ƒ
PORTƒ=ƒ5000
ADDRESSƒ=ƒ(HOST,ƒPORT)

serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)
server.bind(ADDRESS)
server.listen(5)

whileƒTrue:
ƒƒƒƒprintƒ'Waitingƒforƒconnectionƒ.ƒ.ƒ.'
ƒƒƒƒclient,ƒaddressƒ=ƒserver.accept()
ƒƒƒƒprintƒ'...ƒconnectedƒfrom:',ƒaddress
ƒƒƒƒclient.send(ctime()ƒ+ƒ'\nHaveƒaƒniceƒday!')
ƒƒƒƒclient.close()

The server script uses the same information to create a socket object as the
client script presented earlier. In particular, the IP address and port number must
be exactly the same as they are in the client’s code.

However, connecting the socket to the host and to the port so as to become a
server socket is done differently. First, the socket is bound to this address by run-
ning its bind method. Second, the socket then is made to listen for up to five
requests from clients by running its listen method.

10.2 Networks, Clients, and Servers [413]

C6840_10 11/19/08 1:30 PM Page 413

May not be copied, scanned, or duplicated, in whole or in part.

After the script enters its main loop, it prints a message indicating that it is
waiting for a connection. The socket’s accept method then pauses execution of
the script, in a manner similar to Python’s input function, to wait for a request
from a client.

When a client connects to this server, accept returns a tuple containing the
client’s socket and its address information. Our script binds the variables client
and address to these values and uses them in the next steps.

The script prints the client’s address, and then sends the current day/time to
the client by running the send method with the client’s socket. The send
method expects a string as an argument. The Python function time.ctime
returns a string representing the day/time.

Finally, the script closes the connection to the client by running the client
socket’s close method. The script then returns in its infinite loop to accept
another client connection.

10.2.5 A Two-Way Chat Script

The communication between the day/time server and its client is one-way. The
client simply receives a message from the server and then quits. In a two-way
chat, the client connects to the server, and the two programs engage in a continu-
ous communication until one of them, usually the client, chooses to quit.

Once again, there are two distinct Python scripts, one for the server and one
for the client. The setup of a two-way chat server is similar to that of the
day/time server discussed earlier. The server script creates a socket with a given
IP address and port and then enters an infinite loop to accept and handle clients.
When a client connects to the server, the server sends the client a greeting.

Instead of closing the client’s socket and listening for another client connec-
tion, the server then enters a second, nested loop. This loop engages the server in
a continuous conversation with the client. The server receives a message from the
client. If the message is an empty string, the server displays a message that the
client has disconnected, closes the client’s socket, and breaks out of the nested
loop. Otherwise, the server prints the client’s message and prompts the user for a
reply to send to the client.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[414]

C6840_10 11/19/08 1:30 PM Page 414

May not be copied, scanned, or duplicated, in whole or in part.

Here is the code for the two loops in the server script:

whileƒTrue:
ƒƒƒƒprintƒ'Waitingƒforƒconnectionƒ.ƒ.ƒ.'
ƒƒƒƒclient,ƒaddressƒ=ƒserver.accept()
ƒƒƒƒprintƒ'...ƒconnectedƒfrom:',ƒaddress
ƒƒƒƒclient.send('Welcomeƒtoƒmyƒchatƒroom!')ƒƒ#ƒSendƒgreeting

ƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒmessageƒ=ƒclient.recv(BUFSIZE)ƒƒƒƒƒƒƒ#ƒReplyƒfromƒclient
ƒƒƒƒƒƒƒƒifƒnotƒmessage:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ'Clientƒdisconnected'
ƒƒƒƒƒƒƒƒƒƒƒƒclient.close()
ƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒmessageƒ
ƒƒƒƒƒƒƒƒƒƒƒƒclient.send(raw_input('>ƒ'))ƒƒƒƒƒ#ƒReplyƒtoƒclient

The client script for the two-way chat sets up a socket in a similar manner to
the day/time client. After the client has connected to the server, it receives and
displays the server’s initial greeting message.

Instead of closing the server’s socket, the client then enters a loop to engage in
a continuous conversation with the server. This loop mirrors the loop that is run-
ning in the server script. The client’s loop prompts the user for a message to send
to the server. If this string is empty, the loop breaks. Otherwise, the client sends
the message to the server’s socket and receives the server’s reply. If this reply is the
empty string, the loop also breaks. Otherwise, the server’s reply is displayed. The
server’s socket is closed after the loop has terminated. Here is the code for the part
of the client script following the client’s connection to the server:

printƒserver.recv(BUFSIZE)ƒƒƒƒƒƒƒ#ƒTheƒserver'sƒgreeting
whileƒTrue:
ƒƒƒƒmessageƒ=ƒraw_input('>ƒ')ƒƒƒƒ#ƒGetƒmyƒreplyƒorƒquit
ƒƒƒƒifƒnotƒmessage:
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒserver.send(messageƒ+ƒ'\n')ƒƒ#ƒSendƒmyƒreplyƒtoƒtheƒserver
ƒƒƒƒreplyƒ=ƒserver.recv(BUFSIZE)ƒ#ƒGetƒtheƒserver'sƒreply
ƒƒƒƒifƒnotƒreply:
ƒƒƒƒƒƒƒƒprintƒ'Serverƒdisconnected'
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒprintƒreplyƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒDisplayƒtheƒserver'sƒreply
server.close()

10.2 Networks, Clients, and Servers [415]

C6840_10 11/19/08 1:30 PM Page 415

May not be copied, scanned, or duplicated, in whole or in part.

As you can see, it is important to synchronize the sending and the receiving
of messages between the client and the server. If you get this right, the conversa-
tion can proceed, usually without a hitch.

10.2.6 Handling Multiple Clients Concurrently

The client/server programs that we have discussed thus far are rather simple and
limited. First, the server handles a client’s request and then returns to wait for
another client. In the case of the day/time server, the processing of each request
happens so quickly that clients will never notice a delay. However, when a server
provides extensive processing, other clients will have to wait until the currently
connected client is finished.

To solve the problem of giving many clients timely access to the server, we
relieve the server of the task of handling the client’s request and assign it instead
to a separate client-handler thread. Thus, the server simply listens for client con-
nections and dispatches these to new client-handler objects. The structure of this
system is shown in Figure 10.7.

[FIGURE 10.7] A day/time server with a client handler

For our first example, let’s modify the day/time server script by adding a
client handler. This handler is an instance of a new class, ClientHandler,
defined in the server’s script. This class extends the Thread class. Its constructor
receives the client’s socket from the server and assigns it to an instance variable.

spawns

Server

Client
Handler

Client

Server application

Client application

send/recv

waits for connection
request

socket
connection

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[416]

C6840_10 11/19/08 1:30 PM Page 416

May not be copied, scanned, or duplicated, in whole or in part.

The run method includes the code to send the date to the client and close its
socket. Here is the code for the complete, revised day/time server script:

“””
Serverƒforƒprovidingƒtheƒdayƒandƒtime.ƒƒUsesƒclient
handlersƒtoƒhandleƒclients'ƒrequests.
“””

fromƒsocketƒimportƒ*
fromƒtimeƒimportƒctime
fromƒthreadingƒimportƒThread

classƒClientHandler(Thread):
ƒƒƒƒ“””Handlesƒaƒclientƒrequest.”””
ƒƒƒƒdefƒ__init__(self,ƒclient):
ƒƒƒƒƒƒƒƒThread.__init__(self)
ƒƒƒƒƒƒƒƒself._clientƒ=ƒclient
ƒƒƒ
ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒself._client.send(ctime()ƒ+ƒ'\nHaveƒaƒniceƒday!')
ƒƒƒƒƒƒƒƒself._client.close()

HOSTƒ=ƒ'localhost'
PORTƒ=ƒ5000
ADDRESSƒ=ƒ(HOST,ƒPORT)

serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)
server.bind(ADDRESS)
server.listen(5)

#ƒTheƒserverƒnowƒjustƒwaitsƒforƒconnectionsƒfromƒclients
#ƒandƒhandsƒsocketsƒoffƒtoƒclientƒhandlers
whileƒTrue:
ƒƒƒƒprintƒ'Waitingƒforƒconnectionƒ.ƒ.ƒ.'
ƒƒƒƒclient,ƒaddressƒ=ƒserver.accept()
ƒƒƒƒprintƒ'...ƒconnectedƒfrom:',ƒaddress
ƒƒƒƒhandlerƒ=ƒClientHandler(client)
ƒƒƒƒhandler.start()

The code for the client’s script does not change at all.

10.2 Networks, Clients, and Servers [417]

C6840_10 11/19/08 1:30 PM Page 417

May not be copied, scanned, or duplicated, in whole or in part.

10.2.7 Setting Up Conversations for Others

Now that we have modified the day/time server to handle multiple clients, can
we also modify the two-way chat program to support chats among multiple
clients? Let us consider first the problem of supporting multiple two-way chats.
We don’t want to involve the server in the chat, much less the human user who is
running the server. Can we first set up a chat between a human user and an auto-
mated agent? The doctor program developed in Case Study 5.5 in Chapter 5 is a
good example of an automated agent that chats with its client, who is a human user.
Building on this interaction, a doctor server program listens for requests from
clients for doctors. Upon receiving a request, the server dispatches the client’s
socket and a new Doctor object (see Programming Project 9 in Chapter 8) to a
handler thread. This thread then manages the conversation between this doctor
and the client. The server returns to field more requests from clients for sessions
with doctors. Figure 10.8 shows the structure of this program.

[FIGURE 10.8] The structure of a client/server program for patients and doctors

In the code that follows, we assume that a Doctor class is defined in the
module doctor.py. This class includes two methods. The method greeting
returns a string representing the doctor’s welcome. The method reply expects
the patient’s string as an argument and returns the doctor’s response string. The
patient or client signals the end of a session by simply pressing the return key,
which causes the client script’s loop to terminate and close its connection to the
server. Thus, the client script for this program is exactly the same as the client
script for the two-way chat program. The server script combines elements of the

spawns

Server

Client
Handler

Doctor

Client

Server application

Client application

waits for connection
request

greeting reply,
etc.

send/recv

socket
connection

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[418]

C6840_10 11/19/08 1:30 PM Page 418

May not be copied, scanned, or duplicated, in whole or in part.

two-way chat server and the day/time server for multiple clients. The client han-
dler resembles the one in the day/time server, but includes the following changes:

� The client handler’s __init__ method receives a Doctor object from the
server and assigns it to an extra instance variable.

� The client handler’s run method includes a conversation management loop
similar to the one in the chat server. However, when the client handler
receives a message from the client socket, this message is sent to the
Doctor object rather than displayed in the server’s terminal window. Then,
instead of taking input from the server’s keyboard and sending it to the
client, the server obtains this reply from the Doctor object.

Here is the code for the server, as defined in doctorserver.py:

“””
File:ƒdoctorserver.py

Serverƒforƒaƒtherapyƒsession.ƒHandlesƒmultipleƒclients
concurrently.
“””

fromƒsocketƒimportƒ*
fromƒthreadingƒimportƒThread
fromƒdoctorƒimportƒDoctor

classƒClientHandler(Thread):
ƒƒƒƒ“””Handlesƒaƒsessionƒbetweenƒaƒdoctorƒandƒaƒpatient.”””
ƒƒƒƒdefƒ__init__(self,ƒclient,ƒdr):
ƒƒƒƒƒƒƒƒThread.__init__(self)
ƒƒƒƒƒƒƒƒself._clientƒ=ƒclient
ƒƒƒƒƒƒƒƒself._drƒ=ƒdr

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒself._client.send(self._dr.greeting())
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒmessageƒ=ƒself._client.recv(BUFSIZE)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒnotƒmessage:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ'Clientƒdisconnected'
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._client.close()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._client.send(self._dr.reply(message))

continued

10.2 Networks, Clients, and Servers [419]

C6840_10 11/19/08 1:30 PM Page 419

May not be copied, scanned, or duplicated, in whole or in part.

HOSTƒ=ƒ'localhost'
PORTƒ=ƒ5000
ADDRESSƒ=ƒ(HOST,ƒPORT)
BUFSIZEƒ=ƒ1024

serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)
server.bind(ADDRESS)
server.listen(5)

whileƒTrue:
ƒƒƒƒprintƒ'Waitingƒforƒconnectionƒ.ƒ.ƒ.'
ƒƒƒƒclient,ƒaddressƒ=ƒserver.accept()
ƒƒƒƒprintƒ'...ƒconnectedƒfrom:',ƒaddress
ƒƒƒƒdrƒ=ƒDoctor()
ƒƒƒƒhandlerƒ=ƒClientHandler(client,ƒdr)
ƒƒƒƒhandler.start()

10.2 Exercises
1 Explain the role that ports and IP addresses play in a client/server

program.

2 What is a local host, and how is it used to develop networked
applications?

3 Why is it a good idea for a server to create threads to handle clients’
requests?

4 Describe how a menu-driven command processor of the type developed
for an ATM application in Chapter 8 could be run on a network.

5 The servers discussed in this section all contain infinite loops. Thus, the
applications running them cannot do anything else while the server is
waiting for a client’s request, and they cannot even gracefully be shut
down. Suggest a way to restructure these applications so that the applica-
tions can do other things, including performing a graceful shutdown.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[420]

C6840_10 11/19/08 1:30 PM Page 420

May not be copied, scanned, or duplicated, in whole or in part.

10.3 Case Study: A Multi-Client Chat Room
Chat servers can also support chats among multiple clients. In this case study, we
develop a client/server application that supports a chat room for two or more
participants.

10.3.1 Request

Write a program that supports an online chat room.

10.3.2 Analysis

The server is started like the other servers discussed in this chapter. When a
client connects, it prompts its human user for a user name and sends this string
to the server. The client then receives a welcome from the server and a message
containing a record of the conversation thus far. This record includes zero or
more chunks of text, each of which has the following format:

<day/time>ƒ<userƒname>
<message>

The client can then join the conversation by sending a message to the server. The
server receives this message, adds it to the common record, and sends that record
back to the client. Thus, a client receives an updated record whenever it sends a
message to the server. Furthermore, this record contains the messages of any
number of clients that have joined in the conversation since the server started.
A session for a client is shown in Figure 10.9.

10.3 Case Study: A Multi-Client Chat Room [421]

C6840_10 11/19/08 1:30 PM Page 421

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 10.9] A client’s session with the multi-client chat room program

The classes for this program are named ClientHandler and ChatRecord.
They have roles similar to those of the ClientHandler and the Doctor classes
in an earlier example, but there is just a single shared instance of ChatRecord for
all clients.

10.3.3 Design

This chat room program’s structure and behavior are similar to those of the
online therapy server described earlier in this chapter. However, instead of
communicating with a single autonomous software agent (a doctor), a client
communicates with the other clients. They do so by sharing a common record or
transcript of their conversation. At program startup, the server creates an instance
of the ChatRecord class and assigns this object to a module variable. The server
then passes this single record to the client handler for each new client that con-
nects to the server.

The client handler maintains instance variables for the ChatRecord and its
client’s user name. When the handler receives a message from its client, this mes-
sage is stamped with the user name and current day/time. The resulting chunk of
text is then added to the common record. The text of the entire record is then
sent back to the client.

The design of the program lends it nicely to the addition of other features,
such as saving the chat record in a text file. Other improvements include splitting

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[422]

C6840_10 11/19/08 1:30 PM Page 422

May not be copied, scanned, or duplicated, in whole or in part.

10.3 Case Study: A Multi-Client Chat Room [423]

the client’s inputs and the server’s outputs into separate text areas with a GUI, as
described in Chapter 9.

10.3.4 Implementation (Coding)

We present first the code for the client script. This script differs a bit from our
earlier examples, because it must prompt the human user for a user name and
send it to the server before entering its conversation loop. Otherwise, there are
no important changes.

“””
Clientƒforƒaƒmulti-clientƒchatƒroom.
“””

fromƒsocketƒimportƒ*

HOSTƒ=ƒ'localhost'
PORTƒ=ƒ5000
BUFSIZEƒ=ƒ1024
ADDRESSƒ=ƒ(HOST,ƒPORT)

serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)
server.connect(ADDRESS)
printƒserver.recv(BUFSIZE)
nameƒ=ƒraw_input('Enterƒyourƒname:ƒ')
server.send(name)

whileƒTrue:
ƒƒƒƒrecordƒ=ƒserver.recv(BUFSIZE)
ƒƒƒƒifƒnotƒrecord:
ƒƒƒƒƒƒƒƒprintƒ'Serverƒdisconnected'
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒprintƒrecord
ƒƒƒƒmessageƒ=ƒraw_input('>ƒ')
ƒƒƒƒifƒnotƒmessage:
ƒƒƒƒƒƒƒƒprintƒ'Serverƒdisconnected'
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒserver.send(messageƒ+ƒ'\n')
server.close()

The server script includes a definition of the ClientHandler class, which
manages the conversation for a particular client.

C6840_10 11/19/08 1:30 PM Page 423

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[424]

“””
Serverƒforƒaƒmulti-clientƒchatƒroom.
“””

fromƒsocketƒimportƒ*
fromƒchatrecordƒimportƒChatRecord
fromƒthreadingƒimportƒThread
fromƒtimeƒimportƒctime

classƒClientHandler(Thread):
ƒƒƒƒ
ƒƒƒƒdefƒ__init__(self,ƒclient,ƒrecord):
ƒƒƒƒƒƒƒƒThread.__init__(self)
ƒƒƒƒƒƒƒƒself._clientƒ=ƒclient
ƒƒƒƒƒƒƒƒself._recordƒ=ƒrecord

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒself._client.send('Welcomeƒtoƒtheƒchatƒroom!')
ƒƒƒƒƒƒƒƒself._nameƒ=ƒself._client.recv(BUFSIZE)
ƒƒƒƒƒƒƒƒself._client.send(str(self._record))
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒmessageƒ=ƒself._client.recv(BUFSIZE)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒnotƒmessage:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ'Clientƒdisconnected'
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._client.close()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒmessageƒ=ƒself._nameƒ+ƒ'ƒ'ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒctime()ƒ+ƒ'\n'ƒ+ƒmessage
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._record.add(message)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._client.send(str(self._record))

HOSTƒ=ƒ'localhost'
PORTƒ=ƒ5000
ADDRESSƒ=ƒ(HOST,ƒPORT)
BUFSIZEƒ=ƒ1024

recordƒ=ƒChatRecord()
serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)
server.bind(ADDRESS)
server.listen(5)

whileƒTrue:
ƒƒƒƒprintƒ'Waitingƒforƒconnectionƒ...'
ƒƒƒƒclient,ƒaddressƒ=ƒserver.accept()
ƒƒƒƒprintƒ'...ƒconnectedƒfrom:',ƒaddress
ƒƒƒƒhandlerƒ=ƒClientHandler(client,ƒrecord)
ƒƒƒƒhandler.start()

C6840_10 11/19/08 1:30 PM Page 424

May not be copied, scanned, or duplicated, in whole or in part.

Summary [425]

The ChatRecord class is defined in the file chatrecord.py. The class is
rather simple, but can be refined to manage other potential extensions to the pro-
gram, such as searches for a given user’s messages. Here is the code:

classƒChatRecord(object):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself.dataƒ=ƒ[]

ƒƒƒƒdefƒadd(self,ƒs):
ƒƒƒƒƒƒƒƒself.data.append(s)

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒifƒlen(self.data)ƒ==ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ'Noƒmessagesƒyet!'
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ'\n'.join(self.data)

You might have noticed that the chat record is actually shared among several
client-handler threads. This presents a potential synchronization problem of the
type discussed earlier in this chapter. If one handler is timed out in the middle of
a mutation to the record, some data might be lost or corrupted for this or other
clients. The solution of this problem is left as an exercise for you.

Summary
� Threads allow the work of a single program to be distributed among

several computational processes. These processes may be run concur-
rently on the same computer or may collaborate by running on sepa-
rate computers.

� A thread can have several states during its lifetime, such as born,
ready, executing (in the CPU), sleeping, and waiting. The queue
schedules the threads in first-come, first-served order.

� After a thread is started, it goes to the end of the ready queue to be
scheduled for a turn in the CPU.

� A thread may give up the CPU when it is timed out, goes to sleep,
waits on a condition, or finishes its run method.

� When a thread wakes up, is timed out, or is notified that it can stop
waiting, it returns to the rear of the ready queue.

C6840_10 11/19/08 1:30 PM Page 425

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[426]

� Thread synchronization problems can occur when two or more
threads share data. These threads can be synchronized by waiting on
conditions that control access to the data.

� Each computer on a network has a unique IP address that allows
other computers to locate it. An IP address contains an IP number,
but can also be labeled with an IP name.

� Servers and clients can communicate on a network by means of sock-
ets. A socket is created with a port number and an IP address of the
server on the client’s computer and on the server’s computer.

� Clients and servers communicate by sending and receiving strings
through their socket connections.

� A server can handle several clients concurrently by assigning each
client request to a separate handler thread.

REVIEW QUESTIONS
1 Multiple threads can run on the same desktop computer by means of

a timesharing
b multiprocessing
c distributed computing

2 A Thread object moves to the ready queue when

a its wait method is called
b its sleep method is called
c its start method is called

3 The method that executes a thread’s code is called

a the start method
b the run method
c the execute method

4 A lock on a resource is provided by an instance of the

a Thread class
b Condition class
c Lock class

C6840_10 11/19/08 1:30 PM Page 426

May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS [427]

5 If multiple threads share data, they can have

a total cooperation
b synchronization problems

6 The object that uniquely identifies a host computer on a network is a(n)

a port
b socket
c IP address

7 The object that allows several clients to access a server on a host
computer is a(n)

a port
b socket
c IP address

8 The object that effects a connection between an individual client and a
server is a(n)

a port
b socket
c IP address

9 The data that are transmitted between client and server are

a of any type
b strings

10 The best way for a server to handle requests from multiple clients is to

a directly handle each client’s request
b create a separate client-handler thread for each client

C6840_10 11/19/08 1:30 PM Page 427

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[428]

PROJECTS
1 Redo the producer/consumer program so that it allows multiple con-

sumers. Each consumer must be able to consume the same data before
the producer produces more data.

2 Assume that there are 5 sections of Computer Science 101, each with
20 spots for students. The computer application that assigns students to
course sections includes requests from multiple threads for spots in the
course. Write a program that allows 100 concurrently running student
threads to request and obtain spots, in such a manner that the enroll-
ment of no course exceeds the limit.

3 Restructure one of the network applications discussed in this chapter so
that it can be shut down gracefully.

4 The game of craps, which was developed as a program in Chapter 8, can
involve two players. Restructure that program as a network application,
so that a client can play against the server. The client gets to roll first,
and then it and the server alternate. The first player to get a winning roll
wins, whereas the first player to get a losing roll loses. The two players
each have their own set of dice. (Hint: The client handler on the server
side maintains the two Player objects for the game, and each Player
object should perform one roll at a time. The client signals a new roll by
pressing the enter key, whereas the server rolls automatically.)

5 Modify the multi-client chat room application discussed in this chapter
so that it maintains the chat record in a text file. The record should load
the text from the file at instantiation and save each message as it
received.

6 In the multi-client chat room application, a client must send a message
to the server to receive a record of the chat. Suggest and implement a
way for the client to receive the chat record even if it has nothing signifi-
cant to say.

7 Modify the network application for therapy discussed in this chapter so
that it handles multiple clients. Each client has its own doctor object.
The program saves the doctor object for a client when it disconnects.
Each doctor object should be associated with a patient user name. When
a new patient logs in, a new doctor is created. But when an existing
patient logs in, its doctor object is read from a file having that patient’s
user name. Each doctor object should have its own history list of a
patient’s inputs for generating replies that refer to earlier conversations.

C6840_10 11/19/08 1:30 PM Page 428

May not be copied, scanned, or duplicated, in whole or in part.

8 Design, implement, and test a network application that maintains an
online phonebook. The data model for the phonebook is saved in a file
on the server’s computer. Clients should be able to look up a person’s
phone number or add a name and number to the phonebook. The server
should handle multiple clients without delays.

9 Convert the ATM application presented in Chapter 8 to a networked
application. The client manages the user interface, whereas the server
handles transactions with the bank.

10 Modify the programs of Project 8.5 and Project 10.9 so that the ATM
server is one component of a larger application that manages the bank.
The bank manager should allow the user to view, modify, add, and
remove accounts as well as launch or shut down the ATM server.

PROJECTS [429]

C6840_10 11/19/08 1:30 PM Page 429

May not be copied, scanned, or duplicated, in whole or in part.

C6840_10 11/19/08 1:30 PM Page 430

This page intentionally left blank

[CHAPTER]
SEARCHING, SORTING, AND

Complexity Analysis11
After completing this chapter, you will be able to:

� Measure the performance of an algorithm by obtaining
running times and instruction counts with different data sets

� Analyze an algorithm’s performance by determining its order
of complexity, using big-O notation

� Distinguish the common orders of complexity and the
algorithmic patterns that exhibit them

� Distinguish between the improvements obtained by tweaking
an algorithm and reducing its order of complexity

� Write a simple linear search algorithm and a simple sort
algorithm

Earlier in this book, you learned about several criteria for assess-
ing the quality of an algorithm. The most essential criterion is cor-
rectness, but readability and ease of maintenance are also important.
This chapter examines another important criterion of the quality of
algorithms—run-time performance.

C6840_11 11/19/08 1:25 PM Page 431

May not be copied, scanned, or duplicated, in whole or in part.

Algorithms describe processes that run on real computers with finite
resources. Processes consume two resources: processing time and space or mem-
ory. When run with the same problems or data sets, processes that consume less
of these two resources are of higher quality than processes that consume more,
and so are the corresponding algorithms. In this chapter, we introduce tools for
complexity analysis—for assessing the run-time performance or efficiency of
algorithms. We also apply these tools to search algorithms and sort algorithms.

11.1 Measuring the Efficiency of Algorithms
Some algorithms consume an amount of time or memory that is below a threshold
of tolerance. For example, most users are happy with any algorithm that loads a
file in less than one second. For such users, any algorithm that meets this require-
ment is as good as any other. Other algorithms take an amount of time that is
totally impractical (say, thousands of years) with large data sets. We can’t use these
algorithms, and instead need to find others, if they exist, that perform better.

When choosing algorithms, we often have to settle for a space/time tradeoff.
An algorithm can be designed to gain faster run times at the cost of using extra
space (memory), or the other way around. Some users might be willing to pay for
more memory to get a faster algorithm, whereas others would rather settle for a
slower algorithm that economizes on memory. Memory is now quite inexpensive
for desktop and laptop computers, but not yet for miniature devices.

In any case, because efficiency is a desirable feature of algorithms, it is impor-
tant to pay attention to the potential of some algorithms for poor performance. In
this section, we consider several ways to measure the efficiency of algorithms.

11.1.1 Measuring the Run Time of an Algorithm

One way to measure the time cost of an algorithm is to use the computer’s clock
to obtain an actual run time. This process, called benchmarking or profiling,
starts by determining the time for several different data sets of the same size and
then calculates the average time. Next, similar data are gathered for larger and
larger data sets. After several such tests, enough data are available to predict how
the algorithm will behave for a data set of any size.

Consider a simple, if unrealistic, example. The following program imple-
ments an algorithm that counts from 1 to a given number. Thus, the problem
size is the number. We start with the number 1,000,000, time the algorithm, and
output the running time to the terminal window. We then double the size of this

CHAPTER 11 Searching, Sorting, and Complexity Analysis[432]

C6840_11 11/19/08 1:25 PM Page 432

May not be copied, scanned, or duplicated, in whole or in part.

number and repeat this process. After five such increases, there is a set of results
from which you can generalize. Here is the code for the tester program:

“””
File:ƒtiming1.py
Printsƒtheƒrunningƒtimesƒforƒproblemƒsizesƒthatƒdouble,
usingƒaƒsingleƒloop.
“””

importƒtime

problemSizeƒ=ƒ10000000
printƒ“%12s16s”ƒ%ƒ(“ProblemƒSize”,ƒ“Seconds”)
forƒcountƒinƒxrange(5):
ƒƒƒƒ
ƒƒƒƒstartƒ=ƒtime.time()
ƒƒƒƒ#ƒTheƒstartƒofƒtheƒalgorithm
ƒƒƒƒworkƒ=ƒ1
ƒƒƒƒforƒxƒinƒxrange(problemSize):
ƒƒƒƒƒƒƒƒworkƒ+=ƒ1
ƒƒƒƒƒƒƒƒworkƒ-=ƒ1
ƒƒƒƒ#ƒTheƒendƒofƒtheƒalgorithm
ƒƒƒƒelapsedƒ=ƒtime.time()ƒ-ƒstart
ƒƒƒƒ
ƒƒƒƒprintƒ“%12d%16.3f”ƒ%ƒ(problemSize,ƒelapsed)
ƒƒƒƒproblemSizeƒ*=ƒ2

The tester program uses the time() function in the time module to track
the running time. This function returns the number of seconds that have elapsed
between the current time on the computer’s clock and January 1, 1970 (also
called “The Epoch”). Thus, the difference between the results of two calls of
time.time() represents the elapsed time in seconds. Note also that the program
does a constant amount of work, in the form of two extended assignment state-
ments, on each pass through the loop. This work consumes enough time on each
iteration so that the total running time is significant, but has no other impact on
the results. Figure 11.1 shows the output of the program.

11.1 Measuring the Efficiency of Algorithms [433]

C6840_11 11/19/08 1:25 PM Page 433

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 11.1] The output of the tester program

A quick glance at the results reveals that the running time more or less dou-
bles when the size of the problem doubles. Thus, one might predict that the run-
ning time for a problem of size 32,000,000 would be approximately 124 seconds.

As another example, consider the following change in the tester program’s
algorithm:

forƒjƒinƒxrange(problemSize):
ƒƒƒƒforƒkƒinƒxrange(problemSize):
ƒƒƒƒƒƒƒƒworkƒ+=ƒ1
ƒƒƒƒƒƒƒƒworkƒ-=ƒ1

In this version, the extended assignments have been moved into a nested loop.
This loop iterates through the size of the problem within another loop that also
iterates through the size of the problem. This program was left running
overnight. By morning it had processed only the first data set, 1,000,000. The
program was then terminated and run again with a smaller problem size of 1000.
Figure 11.2 shows the results.

[FIGURE 11.2] The output of the second tester program with a nested loop and initial problem size
of 1000

Problem Size
1000
2000
4000
8000
16000

Seconds
0.387
1.581
6.463
25.702
102.666

Problem Size
10000000
20000000
40000000
80000000
160000000

Seconds
3.8

7.591
15.352
30.697
61.631

CHAPTER 11 Searching, Sorting, and Complexity Analysis[434]

C6840_11 11/19/08 1:25 PM Page 434

May not be copied, scanned, or duplicated, in whole or in part.

Note that when the problem size doubles, the number of seconds of running
time more or less quadruples. At this rate, it would take 175 days to process the
largest number in the previous data set!

This method permits accurate predictions of the running times of many
algorithms. However, there are two major problems with this technique:

1 Different hardware platforms have different processing speeds, so the run-
ning times of an algorithm differ from machine to machine. Also, the
running time of a program varies with the type of operating system that
lies between it and the hardware. Finally, different programming languages
and compilers produce code whose performance varies. For example, an
algorithm coded in C usually runs slightly faster than the same algorithm
in Python byte code. Thus, predictions of performance generated from the
results of timing on one hardware or software platform generally cannot
be used to predict potential performance on other platforms.

2 It is impractical to determine the running time for some algorithms with
very large data sets. For some algorithms, it doesn’t matter how fast the
compiled code or the hardware processor is. They are impractical to run
with very large data sets on any computer.

Although timing algorithms may in some cases be a helpful form of testing,
we also want an estimate of the efficiency of an algorithm that is independent of a
particular hardware or software platform. As you will learn in the next section,
such an estimate tells us how well or how poorly the algorithm would perform on
any platform.

11.1.2 Counting Instructions

Another technique used to estimate the efficiency of an algorithm is to count the
instructions executed with different problem sizes. These counts provide a good
predictor of the amount of abstract work performed by an algorithm, no matter
what platform the algorithm runs on. Keep in mind, however, that when you
count instructions, you are counting the instructions in the high-level code in
which the algorithm is written, not instructions in the executable machine lan-
guage program.

When analyzing an algorithm in this way, you distinguish between two
classes of instructions:

1 Instructions that execute the same number of times regardless of the
problem size

2 Instructions whose execution count varies with the problem size

11.1 Measuring the Efficiency of Algorithms [435]

C6840_11 11/19/08 1:25 PM Page 435

May not be copied, scanned, or duplicated, in whole or in part.

For now, you ignore instructions in the first class, because they do not figure
significantly in this kind of analysis. The instructions in the second class normally
are found in loops or recursive functions. In the case of loops, you also zero in on
instructions performed in any nested loops or, more simply, just the number of
iterations that a nested loop performs. For example, let us wire the algorithm
of the previous program to track and display the number of iterations the inner
loop executes with the different data sets:

“””
File:ƒcounting.py
Printsƒtheƒnumberƒofƒiterationsƒforƒproblemƒsizesƒ
thatƒdouble,ƒusingƒaƒnestedƒloop.
“””

problemSizeƒ=ƒ1000
printƒ“%12s%15s”ƒ%ƒ(“ProblemƒSize”,ƒ“Iterations”)
forƒcountƒinƒxrange(5):
ƒƒƒƒnumberƒ=ƒ0

ƒƒƒƒ#ƒTheƒstartƒofƒtheƒalgorithm
ƒƒƒƒworkƒ=ƒ1
ƒƒƒƒforƒjƒinƒxrange(problemSize):
ƒƒƒƒƒƒƒƒforƒkƒinƒxrange(problemSize):
ƒƒƒƒƒƒƒƒƒƒƒƒnumberƒ+=ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒworkƒ+=ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒworkƒ-=ƒ1
ƒƒƒ#ƒTheƒendƒofƒtheƒalgorithm
ƒƒƒƒ
ƒƒƒƒprintƒ“%12d%15d”ƒ%ƒ(problemSize,ƒnumber)
ƒƒƒƒproblemSizeƒ*=ƒ2

As you can see from the results, the number of iterations is the square of the
problem size (Figure 11.3).

[FIGURE 11.3] The output of a tester program that counts iterations

Problem Size
1000
2000
4000
8000
16000

Iterations
1000000
4000000
16000000
64000000
256000000

CHAPTER 11 Searching, Sorting, and Complexity Analysis[436]

C6840_11 11/19/08 1:25 PM Page 436

May not be copied, scanned, or duplicated, in whole or in part.

Here is a similar program that tracks the number of calls of a recursive
Fibonacci function, introduced in Chapter 6, for several problem sizes. Note that
the function now expects a second argument, which is a Counter object. Each
time the function is called at the top level, a new Counter object is created and
passed to it. On that call and each recursive call, the function’s counter object is
incremented.

“””
File:ƒcountfib.py
PrintsƒtheƒnumberƒofƒcallsƒofƒaƒrecursiveƒFibonacci
functionƒwithƒproblemƒsizesƒthatƒdouble.
“””

classƒCounter(object):
ƒƒƒƒ“””Tracksƒaƒcount.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._numberƒ=ƒ0

ƒƒƒƒdefƒincrement(self):
ƒƒƒƒƒƒƒƒself._numberƒ+=ƒ1

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒreturnƒstr(self._number)

defƒfib(n,ƒcounter):
ƒƒƒƒ“””CountƒtheƒnumberƒofƒcallsƒofƒtheƒFibonacci
ƒƒƒƒfunction.”””
ƒƒƒƒcounter.increment()
ƒƒƒƒifƒnƒ<ƒ3:
ƒƒƒƒƒƒƒƒreturnƒ1
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒfib(nƒ-ƒ1,ƒcounter)ƒ+ƒfib(nƒ-ƒ2,ƒcounter)

problemSizeƒ=ƒ2
printƒ“%12s%15s”ƒ%ƒ(“ProblemƒSize”,ƒ“Calls”)
forƒcountƒinƒxrange(5):
ƒƒƒƒcounterƒ=ƒCounter()

ƒƒƒƒ#ƒTheƒstartƒofƒtheƒalgorithm
ƒƒƒƒfib(problemSize,ƒcounter)
ƒƒƒƒ#ƒTheƒendƒofƒtheƒalgorithm
ƒƒƒƒ
ƒƒƒƒprintƒ“%12d%15s”ƒ%ƒ(problemSize,ƒcounter)
ƒƒƒƒproblemSizeƒ*=ƒ2

11.1 Measuring the Efficiency of Algorithms [437]

C6840_11 11/19/08 1:25 PM Page 437

May not be copied, scanned, or duplicated, in whole or in part.

The output of this program is shown in Figure 11.4.

[FIGURE 11.4] The output of a tester program that runs the Fibonacci function

As the problem size doubles, the instruction count (number of recursive calls)
grows slowly at first and then quite rapidly. At first, the instruction count is less
than the square of the problem size, but the instruction count of 1973 is signifi-
cantly larger than 256, the square of the problem size 16.

The problem with tracking counts in this way is that, with some algorithms,
the computer still cannot run fast enough to show the counts for very large prob-
lem sizes. Counting instructions is the right idea, but we need to turn to logic
and mathematical reasoning for a complete method of analysis. The only tools we
need for this type of analysis are paper and pencil.

11.1.3 Measuring the Memory Used by an Algorithm

A complete analysis of the resources used by an algorithm includes the amount of
memory required. Once again, we focus on rates of potential growth. Some algo-
rithms require the same amount of memory to solve any problem. Other algo-
rithms require more memory as the problem size gets larger. We consider several
of these algorithms in later chapters.

Problem Size
2
4
8
16
32

Calls
1
5
41

1973
4356617

CHAPTER 11 Searching, Sorting, and Complexity Analysis[438]

C6840_11 11/19/08 1:25 PM Page 438

May not be copied, scanned, or duplicated, in whole or in part.

11.1 Exercises
1 Write a tester program that counts and displays the number of iterations

of the following loop:

whileƒproblemSizeƒ>ƒ0:
ƒƒƒƒproblemSizeƒ=ƒproblemSizeƒ/ƒ2

2 Run the program you created in Exercise 1 using problem sizes of 1000,
2000, 4000, 10,000, and 100,000. As the problem size doubles or
increases by a factor of 10, what happens to the number of iterations?

3 The difference between the results of two calls of the time function
time() is an elapsed time. Because the operating system might use the
CPU for part of this time, the elapsed time might not reflect the actual
time that a Python code segment uses the CPU. Browse the Python doc-
umentation for an alternative way of recording the processing time and
describe how this would be done.

11.2 Complexity Analysis
In this section, we develop a method of determining the efficiency of algorithms that
allows us to rate them independently of platform-dependent timings or impractical
instruction counts. This method, called complexity analysis, entails reading the
algorithm and using pencil and paper to work out some simple algebra.

11.2.1 Orders of Complexity

Consider the two counting loops discussed earlier. The first loop executes n times
for a problem of size n. The second loop contains a nested loop that iterates n2

times. The amount of work done by these two algorithms is similar for small val-
ues of n, but is very different for large values of n. Figure 11.5 and Table 11.1
illustrate this divergence. Note that when we say “work,” we usually mean the
number of iterations of the most deeply nested loop.

11.2 Complexity Analysis [439]

C6840_11 11/19/08 1:25 PM Page 439

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 11.5] A graph of the amounts of work done in the tester programs

[TABLE 11.1] The amounts of work in the tester programs

The performances of these algorithms differ by what we call an order of
complexity. The performance of the first algorithm is linear in that its work
grows in direct proportion to the size of the problem (problem size of 10, work
of 10, 20 and 20, etc.). The behavior of the second algorithm is quadratic in that
its work grows as a function of the square of the problem size (problem size of
10, work of 100). As you can see from the graph and the table, algorithms with
linear behavior do less work than algorithms with quadratic behavior for most
problem sizes n. In fact, as the problem size gets larger, the performance of an
algorithm with the higher order of complexity becomes worse more quickly.

Several other orders of complexity are commonly used in the analysis of
algorithms. An algorithm has constant performance if it requires the same num-
ber of operations for any problem size. List indexing is a good example of a con-
stant-time algorithm. This is clearly the best kind of performance to have.

Another order of complexity that is better than linear but worse than con-
stant is called logarithmic. The amount of work of a logarithmic algorithm is
proportional to the log2 of the problem size. Thus, when the problem doubles in
size, the amount of work only increases by 1 (that is, just add 1).

WORK OF THE FIRST WORK OF THE SECOND
PROBLEM SIZE ALGORITHM ALGORITHM

2 2 4

10 10 100

1000 1000 1,000,000

Problem size
O

pe
ra

tio
ns

n2 n

CHAPTER 11 Searching, Sorting, and Complexity Analysis[440]

C6840_11 11/19/08 1:25 PM Page 440

May not be copied, scanned, or duplicated, in whole or in part.

The work of a polynomial time algorithm grows at a rate of nk, where k is a
constant greater than 1. Examples are n2, n3, and n10.

Although n3 is worse in some sense than n2, they are both of the polynomial
order and are better than the next higher order of complexity. An order of com-
plexity that is worse than polynomial is called exponential. An example rate of
growth of this order is 2n. Exponential algorithms are impractical to run with
large problem sizes. The most common orders of complexity used in the analysis
of algorithms are summarized in Figure 11.6 and Table 11.2.

[FIGURE 11.6] A graph of some sample orders of complexity

[TABLE 11.2] Some sample orders of complexity

11.2.2 Big-O Notation

An algorithm rarely performs a number of operations exactly equal to n, n2, or kn.
An algorithm usually performs other work in the body of a loop, above the loop,
and below the loop. For example, we might more precisely say that an algorithm
performs 2n + 3 or 2n2 operations. In the case of a nested loop, the inner loop

LOGARITHMIC LINEAR QUADRATIC EXPONENTIAL
n (log2n) (n) (n2) (2nn)

100 7 100 10,000 Off the charts

1000 10 1000 1,000,000 Off the charts

1,000,000 20 1,000,000 1,000,000,000,000 Really off the charts

Problem size

O
pe

ra
tio

ns
n2 n

log2n

2n

11.2 Complexity Analysis [441]

C6840_11 11/19/08 1:25 PM Page 441

May not be copied, scanned, or duplicated, in whole or in part.

might execute one less pass after each pass through the outer loop, so that the
total number of iterations might be more like 1⁄ 2 n2 – 1⁄ 2 n, rather than n2.

The amount of work in an algorithm typically is the sum of several terms in a
polynomial. Whenever the amount of work is expressed as a polynomial, we focus
on one term as dominant. As n becomes large, the dominant term becomes so
large that the amount of work represented by the other terms can be ignored.
Thus, for example, in the polynomial 1⁄ 2 n2 – 1⁄ 2 n, we focus on the quadratic
term, 1⁄ 2 n2, in effect dropping the linear term, 1⁄ 2 n, from consideration. We can
also drop the coefficient 1⁄ 2 because the ratio between 1⁄ 2 n2 and n2 does not
change as n grows. For example, if you double the problem size, the run times of
algorithms that are 1⁄ 2 n2 and n2 both increase by a factor of 4. This type of analy-
sis is sometimes called asymptotic analysis because the value of a polynomial
asymptotically approaches or approximates the value of its largest term as n
becomes very large.

One notation that computer scientists use to express the efficiency or compu-
tational complexity of an algorithm is called big-O notation. “O” stands for “on
the order of,” a reference to the order of complexity of the work of the algo-
rithm. Thus, for example, the order of complexity of a linear-time algorithm is
O(n). Big-O notation formalizes our discussion of orders of complexity.

11.2.3 The Role of the Constant of Proportionality

The constant of proportionality involves the terms and coefficients that are
usually ignored during big-O analysis. However, when these items are large, they
may have an impact on the algorithm, particularly for small and medium-sized
data sets. For example, no one can ignore the difference between n and n / 2,
when n is $1,000,000. In the example algorithms discussed thus far, the instruc-
tions that execute within a loop are part of the constant of proportionality, as are
the instructions that initialize the variables before the loops are entered. When
analyzing an algorithm, one must be careful to determine that any instructions do
not hide a loop that depends on a variable problem size. If that is the case, then
the analysis must move down into the nested loop, as we saw in the last example.

Let’s determine the constant of proportionality for the first algorithm dis-
cussed in this chapter. Here is the code:

workƒ=ƒ1
forƒxƒinƒxrange(problemSize):
ƒƒƒƒworkƒ+=ƒ1
ƒƒƒƒworkƒ-=ƒ1

CHAPTER 11 Searching, Sorting, and Complexity Analysis[442]

C6840_11 11/19/08 1:25 PM Page 442

May not be copied, scanned, or duplicated, in whole or in part.

Note that, aside from the loop itself, there are three lines of code, each of them
assignment statements. Each of these three statements runs in constant time.
Let’s also assume that on each iteration, the overhead of managing the loop,
which is hidden in the loop header, runs an instruction that requires constant
time. Thus, the amount of abstract work performed by this algorithm is 3n + 1.
Although this number is greater than just n, the running times for the two
amounts of work, n and 3n + 1, increase at the same rate.

11.2 Exercises
1 Assume that each of the following expressions indicates the number of

operations performed by an algorithm for a problem size of n. Point out
the dominant term of each algorithm and use big-O notation to classify it.

a 2n – 4n2 + 5n
b 3n2 + 6
c n3 + n2 – n

2 For problem size n, algorithms A and B perform n2 and 1⁄ 2 n2 + 1⁄ 2 n
instructions, respectively. Which algorithm does more work? Are there
particular problem sizes for which one algorithm performs significantly
better than the other? Are there particular problem sizes for which both
algorithms perform approximately the same amount of work?

3 At what point does an n4 algorithm begin to perform better than a
2n algorithm?

11.3 Search Algorithms
We now present several algorithms that can be used for searching and sorting
lists. We first discuss the design of an algorithm, we then show its implementa-
tion as a Python function, and, finally, we provide an analysis of the algorithm’s
computational complexity. To keep things simple, each function processes a list of
integers. Lists of different sizes can be passed as parameters to the functions. The
functions are defined in a single module that is used in the case study later in this
chapter.

11.3 Search Algorithms [443]

C6840_11 11/19/08 1:25 PM Page 443

May not be copied, scanned, or duplicated, in whole or in part.

11.3.1 Search for a Minimum

Python’s min function returns the minimum or smallest item in a list. To study
the complexity of this algorithm, let’s develop an alternative version that returns
the position of the minimum item. The algorithm assumes that the list is not
empty and that the items are in arbitrary order. The algorithm begins by treating
the first position as that of the minimum item. It then searches to the right for an
item that is smaller and, if it is found, resets the position of the minimum item to
the current position. When the algorithm reaches the end of the list, it returns
the position of the minimum item. Here is the code for the algorithm, in func-
tion ourMin:

defƒourMin(lyst):
ƒƒƒƒ“””Returnsƒtheƒpositionƒofƒtheƒminimumƒitem.”””
ƒƒƒƒminposƒ=ƒ0
ƒƒƒƒcurrentƒ=ƒ1
ƒƒƒƒwhileƒcurrentƒ<ƒlen(lyst):
ƒƒƒƒƒƒƒƒifƒlyst[current]ƒ<ƒlyst[minpos]:
ƒƒƒƒƒƒƒƒƒƒƒƒminposƒ=ƒcurrent
ƒƒƒƒƒƒƒƒcurrentƒ+=ƒ1
ƒƒƒƒreturnƒminpos

As you can see, there are three instructions outside the loop that execute the
same number of times regardless of the size of the list. Thus, we can discount
them. Within the loop, we find three more instructions. Of these, the compari-
son in the if statement and the increment of current execute on each pass
through the loop. There are no nested or hidden loops in these instructions. This
algorithm must visit every item in the list to guarantee that it has located the
position of the minimum item. Thus, the algorithm must make n – 1 comparisons
for a list of size n. Therefore, the algorithm’s complexity is O(n).

11.3.2 Linear Search of a List

Python’s in operator is implemented as a method named __contains__ in the
list class. This method searches for a particular item (called the target item)
within a list of arbitrarily arranged items. In such a list, the only way to search for
a target item is to begin with the item at the first position and compare it to the
target. If the items are equal, the method returns True. Otherwise, the method
moves on to the next position and compares items again. If the method arrives at
the last position and still cannot find the target, it returns False. This kind of

CHAPTER 11 Searching, Sorting, and Complexity Analysis[444]

C6840_11 11/19/08 1:25 PM Page 444

May not be copied, scanned, or duplicated, in whole or in part.

search is called a sequential search or a linear search. A more useful linear
search function would return the index of a target if it’s found, or –1 otherwise.
Here is the Python code for a linear search function:

defƒlinearSearch(target,ƒlyst):
ƒƒƒƒ“””Returnsƒtheƒpositionƒofƒtheƒtargetƒitemƒifƒfound,
ƒƒƒƒorƒ-1ƒotherwise.”””
ƒƒƒƒpositionƒ=ƒ0
ƒƒƒƒwhileƒpositionƒ<ƒlen(lyst):
ƒƒƒƒƒƒƒƒifƒtargetƒ==ƒlyst[position]:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒposition
ƒƒƒƒƒƒƒƒpositionƒ+=ƒ1
ƒƒƒƒreturnƒ-1

The analysis of a linear search is a bit different from the analysis of a search for a
minimum, as we shall see in the next subsection.

11.3.3 Best-Case, Worst-Case, and Average-Case
Performance

The performance of some algorithms depends on the placement of the data that
are processed. The linear search algorithm does less work to find a target at the
beginning of a list than at the end of the list. For such algorithms, one can deter-
mine the best-case performance, the worst-case performance, and the average
performance. In general, we worry more about average and worst-case perform-
ances than about best-case performances.

Our analysis of a linear search considers three cases:

1 In the worst case, the target item is at the end of the list or not in the list
at all. Then the algorithm must visit every item and perform n iterations
for a list of size n. Thus, the worst-case complexity of a linear search
is O(n).

2 In the best case, the algorithm finds the target at the first position, after
making one iteration, for an O(1) complexity.

3 To determine the average case, you add the number of iterations
required to find the target at each possible position and divide the sum
by n. Thus, the algorithm performs (n + n – 1 + n – 2 + . . . + 1) / n, or
(n + 1) / 2 iterations. For very large n, the constant factor of /2 is
insignificant, so the average complexity is still O(n).

11.3 Search Algorithms [445]

C6840_11 11/19/08 1:25 PM Page 445

May not be copied, scanned, or duplicated, in whole or in part.

Clearly, the best-case performance of a linear search is rare when compared
with the average and worst-case performances, which are essentially the same.

11.3.4 Binary Search of a List

A linear search is necessary for data that are not arranged in any particular order.
When searching sorted data, you can use a binary search.

To understand how a binary search works, think about what happens when
you look up a person’s number in a phone book. The data in a phone book are
already sorted, so you don’t do a linear search. Instead, you estimate the name’s
alphabetical position in the book, and open the book as close to that position as
possible. After you open the book, you determine if the target name lies, alpha-
betically, on an earlier page or later page, and flip back or forward through the
pages as necessary. You repeat this process until you find the name or conclude
that it’s not in the book.

Now let’s consider an example of a binary search in Python. To begin, let’s
assume that the items in the list are sorted in ascending order (as they are in a
phone book). The search algorithm goes directly to the middle position in the list
and compares the item at that position to the target. If there is a match, the algo-
rithm returns the position. Otherwise, if the target is less than the current item,
the algorithm searches the portion of the list before the middle position. If the
target is greater than the current item, the algorithm searches the portion of the
list after the middle position. The search process stops when the target is found
or the current beginning position is greater than the current ending position.

Here is the code for the binary search function:

defƒbinarySearch(target,ƒlyst):
ƒƒƒƒleftƒ=ƒ0
ƒƒƒƒrightƒ=ƒlen(lyst)ƒ-ƒ1
ƒƒƒƒwhileƒleftƒ<=ƒright:
ƒƒƒƒƒƒƒƒmidpointƒ=ƒ(leftƒ+ƒright)ƒ/ƒ2
ƒƒƒƒƒƒƒƒifƒtargetƒ==ƒlyst[midpoint]:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒmidpoint
ƒƒƒƒƒƒƒƒelifƒtargetƒ<ƒlyst[midpoint]:
ƒƒƒƒƒƒƒƒƒƒƒƒrightƒ=ƒmidpointƒ-ƒ1
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒleftƒ=ƒmidpointƒ+ƒ1
ƒƒƒƒreturnƒ-1

CHAPTER 11 Searching, Sorting, and Complexity Analysis[446]

C6840_11 11/19/08 1:25 PM Page 446

May not be copied, scanned, or duplicated, in whole or in part.

There is just one loop with no nested or hidden loops. Once again, the worst case
occurs when the target is not in the list. How many times does the loop run in
the worst case? This is equal to the number of times the size of the list can be
divided by 2 until the quotient is 1. For a list of size n, you essentially perform
the reduction n / 2 / 2 . . . / 2 until the result is 1. Let k be the number of times
we divide n by 2. To solve for k, you have n / 2k = 1, and n = 2k, and k = log2n.
Thus, the worst-case complexity of binary search is O(log2n).

Figure 11.7 shows the portions of the list being searched in a binary search
with a list of 9 items and a target item, 10, that is not in the list. The items com-
pared to the target are shaded. Note that none of the items in the left half of the
original list are visited.

[FIGURE 11.7] The items of a list visited during a binary search for 10

The binary search for the target item 10 requires four comparisons, whereas
a linear search would have required 10 comparisons. This algorithm actually
appears to perform better as the problem size gets larger. Our list of 9 items
requires at most 4 comparisons, whereas a list of 1,000,000 items requires at most
only 20 comparisons!

Binary search is certainly more efficient than linear search. However, the
kind of search algorithm we choose depends on the organization of the data in
the list. There is some additional overall cost to a binary search which has to do
with keeping the list in sorted order. In a moment, we examine several strategies
for sorting a list and analyze their complexity. But first, we provide a few words
about comparing data items.

Comparison

1

2

3

4

1 2 3 4 5 6 7 8 9

1 2 3 4 6 7 8 9

1 3 4 7

4 9

8 9

11.3 Search Algorithms [447]

C6840_11 11/19/08 1:25 PM Page 447

May not be copied, scanned, or duplicated, in whole or in part.

11.3.5 Comparing Data Items and the cmp Function

Both the binary search and the search for the minimum assume that the items in
the list are comparable with each other. In Python, this means that the items are
of the same type and that they recognize the comparison operators ==, <, and >.
Objects of several built-in Python types, such as numbers, strings, and lists, can
be compared using these operators.

To allow algorithms to use the comparison operators with a new class of
objects, the programmer should define a __cmp__ method in that class. The
header of __cmp__ is the following:

defƒ__cmp__(self,ƒother):

This method should return 0 when the two objects are equal, a number less than
0 if self is less than other, or a number greater than 0 if self is greater than
other. The criteria for comparing the objects depend on their internal structure
and on the manner in which they should be ordered.

For example, the SavingsAccount objects discussed in Chapter 8 include
three data fields, for a name, a PIN, and a balance. If we assume that the accounts
should be ordered alphabetically by name, then the following implementation of
the __cmp__ method is called for:

classƒSavingsAccount(object):
ƒƒƒƒ“””Thisƒclassƒrepresentsƒaƒsavingsƒaccount
ƒƒƒƒwithƒtheƒowner’sƒname,ƒPIN,ƒandƒbalance.”””

ƒƒƒƒdefƒ__init__(self,ƒname,ƒpin,ƒbalanceƒ=ƒ0.0):
ƒƒƒƒƒƒƒƒself._nameƒ=ƒname
ƒƒƒƒƒƒƒƒself._pinƒ=ƒpin
ƒƒƒƒƒƒƒƒself._balanceƒ=ƒbalance

ƒƒƒƒdefƒ__cmp__(self,ƒother):
ƒƒƒƒƒƒƒƒreturnƒcmp(self._name,ƒother._name)

ƒƒƒƒ#ƒOtherƒmethods

Note that the __cmp__ method calls the cmp function with the _name fields of
the two account objects. The names are strings, and the string type includes a
__cmp__ method as well. Python automatically runs the __cmp__ method when
the cmp function is called, in the same way as it runs the __str__ method
when the str function is called. The user of the account objects will likely
use the operators for the comparisons, but not the cmp function, however.

CHAPTER 11 Searching, Sorting, and Complexity Analysis[448]

C6840_11 11/19/08 1:25 PM Page 448

May not be copied, scanned, or duplicated, in whole or in part.

The next session shows a test of comparisons with several account objects:

>>>ƒs1ƒ=ƒSavingsAccount(“Ken”,ƒ“1000”,ƒ0)
>>>ƒs2ƒ=ƒSavingsAccount(“Bill”,ƒ“1001”,ƒ30)
>>>ƒs1ƒ<ƒs2
False
>>>ƒs2ƒ<ƒs1
True
>>>ƒs1ƒ>ƒs2
True
>>>ƒs2ƒ>ƒs1
False
>>>ƒs2ƒ==ƒs1
False
>>>ƒs3ƒ=ƒSavingsAccount(“Ken”,ƒ“1000”,ƒ0)
>>>ƒs1ƒ==ƒs3
True
>>>ƒs4ƒ=ƒs1
>>>ƒs4ƒ==ƒs1
True

The accounts can now be placed in a list and sorted by name.

11.3 Exercises
1 Suppose that a list contains the values

20 44 48 55 62 66 74 88 93 99

at index positions 0 through 9. Trace the values of the variables left,
right, and midpoint in a binary search of this list for the target
value 90. Repeat for the target value 44.

2 The method we usually use to look up an entry in a phone book is not
exactly the same as a binary search because, when using a phone book,
we don’t always go to the midpoint of the sublist being searched. Instead,
we estimate the position of the target based on the alphabetical position
of the first letter of the person’s last name. For example, when we are
looking up a number for “Smith,” we look toward the middle of the
second half of the phone book first, instead of in the middle of the
entire book. Suggest a modification of the binary search algorithm that
emulates this strategy for a list of names. Is its computational complexity
any better than that of the standard binary search?

11.3 Search Algorithms [449]

C6840_11 11/19/08 1:25 PM Page 449

May not be copied, scanned, or duplicated, in whole or in part.

11.4 Sort Algorithms
Computer scientists have devised many ingenious strategies for sorting a list of
items. We won’t consider all of them here. In this chapter, we examine some
algorithms that are easy to write but are inefficient. In Chapter 17, we look at
some algorithms that are harder to write, but are more efficient. Each of the
Python sort functions that we develop here operates on a list of integers and uses
a swap function to exchange the positions of two items in the list. Here is the
code for that function:

defƒswap(lyst,ƒi,ƒj):
ƒƒƒƒ“””Exchangesƒtheƒitemsƒatƒpositionsƒiƒandƒj.”””
ƒƒƒƒ#ƒYouƒcouldƒsayƒlyst[i],ƒlyst[j]ƒ=ƒlyst[j],ƒlyst[i]
ƒƒƒƒ#ƒbutƒtheƒfollowingƒcodeƒshowsƒwhatƒisƒreallyƒgoingƒon
ƒƒƒƒtempƒ=ƒlyst[i]
ƒƒƒƒlyst[i]ƒ=ƒlyst[j]
ƒƒƒƒlyst[j]ƒ=ƒtemp

11.4.1 Selection Sort

Perhaps the simplest strategy is to search the entire list for the position of the
smallest item. If that position does not equal the first position, the algorithm
swaps the items at those positions. It then returns to the second position and
repeats this process, swapping the smallest item with the item at the second posi-
tion, if necessary. When the algorithm reaches the last position in this overall
process, the list is sorted. The algorithm is called selection sort because each
pass through the main loop selects a single item to be moved. Table 11.3 shows
the states of a list of five items after each search and swap pass of selection sort.
The two items just swapped on each pass have asterisks next to them, and the
sorted portion of the list is shaded.

CHAPTER 11 Searching, Sorting, and Complexity Analysis[450]

C6840_11 11/19/08 1:25 PM Page 450

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 11.3] A trace of the data during a selection sort

Here is the Python function for a selection sort:

defƒselectionSort(lyst):
ƒƒƒƒiƒ=ƒ0
ƒƒƒƒwhileƒiƒ<ƒlen(lyst)ƒ-ƒ1:ƒƒƒƒƒƒƒƒƒ#ƒDoƒnƒ-ƒ1ƒsearches
ƒƒƒƒƒƒƒƒminIndexƒ=ƒiƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒforƒtheƒsmallest
ƒƒƒƒƒƒƒƒjƒ=ƒiƒ+ƒ1
ƒƒƒƒƒƒƒƒwhileƒjƒ<ƒlen(lyst):ƒƒƒƒƒƒƒƒƒ#ƒStartƒaƒsearch
ƒƒƒƒƒƒƒƒƒƒƒƒifƒlyst[j]ƒ<ƒlyst[minIndex]:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒminIndexƒ=ƒj
ƒƒƒƒƒƒƒƒƒƒƒƒjƒ+=ƒ1
ƒƒƒƒƒƒƒƒifƒminIndexƒ!=ƒi:ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒExchangeƒifƒneeded
ƒƒƒƒƒƒƒƒƒƒƒƒswap(lyst,ƒminIndex,ƒi)
ƒƒƒƒƒƒƒƒiƒ+=ƒ1

This function includes a nested loop. For a list of size n, the outer loop
executes n – 1 times. On the first pass through the outer loop, the inner loop
executes n – 1 times. On the second pass through the outer loop, the inner loop exe-
cutes n – 2 times. On the last pass through the outer loop, the inner loop executes
once. Thus, the total number of comparisons for a list of size n is the following:

(n – 1) + (n – 2) + … + 1 =
n (n – 1) / 2 =
1⁄ 2 n2 – 1⁄ 2 n

For large n, you can pick the term with the largest degree and drop the coeffi-
cient, so selection sort is O(n2) in all cases. For large data sets, the cost of swapping
items might also be significant. Because data items are swapped only in the outer
loop, this additional cost for selection sort is linear in the worst and average cases.

UNSORTED AFTER AFTER AFTER AFTER
LIST 1st PASS 2nd PASS 3rd PASS 4th PASS

5 1* 1 1 1

3 3 2* 2 2

1 5* 5 3* 3

2 2 3* 5* 4*

4 4 4 4 5*

11.4 Sort Algorithms [451]

C6840_11 11/19/08 1:25 PM Page 451

May not be copied, scanned, or duplicated, in whole or in part.

11.4.2 Bubble Sort

Another sort algorithm that is relatively easy to conceive and code is called a
bubble sort. Its strategy is to start at the beginning of the list and compare pairs
of data items as it moves down to the end. Each time the items in the pair are out
of order, the algorithm swaps them. This process has the effect of bubbling the
largest items to the end of the list. The algorithm then repeats the process from
the beginning of the list and goes to the next-to-last item, and so on, until it
begins with the last item. At that point, the list is sorted.

Table 11.4 shows a trace of the bubbling process through a list of five items.
This process makes four passes through a nested loop to bubble the largest item
down to the end of the list. Once again, the items just swapped are marked with
asterisks, and the sorted portion is shaded.

[TABLE 11.4] A trace of the data during a bubble sort

Here is the Python function for a bubble sort:

defƒbubbleSort(lyst):
ƒƒƒƒnƒ=ƒlen(lyst)
ƒƒƒƒwhileƒnƒ>ƒ1:ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒDoƒnƒ-ƒ1ƒbubbles
ƒƒƒƒƒƒƒƒiƒ=ƒ1ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒStartƒeachƒbubble
ƒƒƒƒƒƒƒƒwhileƒiƒ<ƒn:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒlyst[i]ƒ<ƒlyst[iƒ-ƒ1]:ƒƒ#ƒExchangeƒifƒneeded
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒswap(lyst,ƒi,ƒiƒ-ƒ1)
ƒƒƒƒƒƒƒƒƒƒƒƒiƒ+=ƒ1
ƒƒƒƒƒƒƒƒnƒ-=ƒ1

As with the selection sort, a bubble sort has a nested loop. The sorted por-
tion of the list now grows from the end of the list up to the beginning, but the

UNSORTED AFTER AFTER AFTER AFTER
LIST 1st PASS 2nd PASS 3rd PASS 4th PASS

5 4* 4 4 4

4 5* 2* 2 2

2 2 5* 1* 1

1 1 1 5* 3*

3 3 3 3 5*

CHAPTER 11 Searching, Sorting, and Complexity Analysis[452]

C6840_11 11/19/08 1:25 PM Page 452

May not be copied, scanned, or duplicated, in whole or in part.

performance of the bubble sort is quite similar to the behavior of selection sort:
the inner loop executes 1⁄ 2 n2 – 1⁄ 2 n times for a list of size n. Thus, bubble sort is
O(n2). Like selection sort, bubble sort won’t perform any swaps if the list is
already sorted. However, bubble sort’s worst-case behavior for exchanges is
greater than linear. The proof of this is left as an exercise for you.

You can make a minor adjustment to the bubble sort to improve its best-case
performance to linear. If no swaps occur during a pass through the main loop,
then the list is sorted. This can happen on any pass and in the best case will hap-
pen on the first pass. You can track the presence of swapping with a Boolean flag
and return from the function when the inner loop does not set this flag. Here is
the modified bubble sort function:

defƒbubbleSort2(lyst):
ƒƒƒƒnƒ=ƒlen(lyst)
ƒƒƒƒwhileƒnƒ>ƒ1:
ƒƒƒƒƒƒƒƒswappedƒ=ƒFalse
ƒƒƒƒƒƒƒƒiƒ=ƒ1
ƒƒƒƒƒƒƒƒwhileƒiƒ<ƒn:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒlyst[i]ƒ<ƒlyst[iƒ-ƒ1]:ƒƒ#ƒExchangeƒifƒneeded
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒswap(lyst,ƒi,ƒiƒ-ƒ1)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒswappedƒ=ƒTrue
ƒƒƒƒƒƒƒƒƒƒƒƒiƒ+=ƒ1
ƒƒƒƒƒƒƒƒifƒnotƒswapped:ƒreturnƒƒƒƒƒƒƒƒƒ#ƒReturnƒifƒnoƒswaps
ƒƒƒƒƒƒƒƒnƒ-=ƒ1

Note that this modification only improves best-case behavior. On the average,
the behavior of bubble sort is still O(n2).

11.4.3 Insertion Sort

Our modified bubble sort performs better than a selection sort for lists that are
already sorted. But our modified bubble sort can still perform poorly if many
items are out of order in the list. Another algorithm, called an insertion sort,
attempts to exploit the partial ordering of the list in a different way. The strategy
is as follows:

� On the ith pass through the list, where i ranges from 1 to n – 1, the ith
item should be inserted into its proper place among the first i items in
the list.

� After the ith pass, the first i items should be in sorted order.

11.4 Sort Algorithms [453]

C6840_11 11/19/08 1:25 PM Page 453

May not be copied, scanned, or duplicated, in whole or in part.

� This process is analogous to the way in which many people organize play-
ing cards in their hands. That is, if you hold the first i – 1 cards in order,
you pick the ith card and compare it to these cards until its proper spot
is found.

� As with our other sort algorithms, insertion sort consists of two loops. The
outer loop traverses the positions from 1 to n – 1. For each position i in
this loop, you save the item and start the inner loop at position i – 1. For
each position j in this loop, you move the item to position j + 1 until you
find the insertion point for the saved (ith) item.

Here is the code for the insertionSort function:

defƒinsertionSort(lyst):
ƒƒƒƒiƒ=ƒ1
ƒƒƒƒwhileƒiƒ<ƒlen(lyst):
ƒƒƒƒƒƒƒƒitemToInsertƒ=ƒlyst[i]
ƒƒƒƒƒƒƒƒjƒ=ƒiƒ-ƒ1
ƒƒƒƒƒƒƒƒwhileƒjƒ>=ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒitemToInsertƒ<ƒlyst[j]:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒlyst[jƒ+ƒ1]ƒ=ƒlyst[j]
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒjƒ-=ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒlyst[jƒ+ƒ1]ƒ=ƒitemToInsert
ƒƒƒƒƒƒƒƒiƒ+=ƒ1

Table 11.5 shows the states of a list of five items after each pass through the
outer loop of an insertion sort. The item to be inserted on the next pass is
marked with an arrow; after it is inserted, this item is marked with an asterisk.

[TABLE 11.5] A trace of the data during an insertion sort

UNSORTED AFTER AFTER AFTER AFTER
LIST 1st PASS 2nd PASS 3rd PASS 4th PASS

2 2 1* 1 1

5 ← 5 (no insertion) 2 2 2

1 1← 5 4* 3*

4 4 4 ← 5 4

3 3 3 3 ← 5

CHAPTER 11 Searching, Sorting, and Complexity Analysis[454]

C6840_11 11/19/08 1:25 PM Page 454

May not be copied, scanned, or duplicated, in whole or in part.

Once again, analysis focuses on the nested loop. The outer loop executes n – 1
times. In the worst case, when all of the data are out of order, the inner loop iter-
ates once on the first pass through the outer loop, twice on the second pass, and
so on, for a total of 1⁄ 2 n2 – 1⁄ 2 n times. Thus, the worst-case behavior of insertion
sort is O(n2).

The more items in the list that are in order, the better insertion sort gets
until, in the best case of a sorted list, the sort’s behavior is linear. In the average
case, however, insertion sort is still quadratic.

11.4.4 Best-Case, Worst-Case, and Average-Case
Performance Revisited

As mentioned earlier, for many algorithms, a single measure of complexity cannot
be applied to all cases. Sometimes an algorithm’s behavior improves or gets worse
when it encounters a particular arrangement of data. For example, the bubble
sort algorithm can terminate as soon as the list becomes sorted. If the input list
is already sorted, the bubble sort requires approximately n comparisons. In many
other cases, however, bubble sort requires approximately n2 comparisons. Clearly,
a more detailed analysis may be needed to make programmers aware of these
special cases.

As we discussed earlier, thorough analysis of an algorithm’s complexity
divides its behavior into three types of cases:

1 Best case—Under what circumstances does an algorithm do the least
amount of work? What is the algorithm’s complexity in this best case?

2 Worst case—Under what circumstances does an algorithm do the most
amount of work? What is the algorithm’s complexity in this worst case?

3 Average case—Under what circumstances does an algorithm do a typical
amount of work? What is the algorithm’s complexity in this typical case?

Let’s review three examples of this kind of analysis for a search for a minimum,
linear search, and bubble sort.

Because the search for a minimum algorithm must visit each number in the
list, unless it is sorted, the algorithm is always linear. Therefore, its best-case,
worst-case, and average-case performances are O(n).

11.4 Sort Algorithms [455]

C6840_11 11/19/08 1:25 PM Page 455

May not be copied, scanned, or duplicated, in whole or in part.

Linear search is a bit different. The algorithm stops and returns a result as
soon as it finds the target item. Clearly, in the best case, the target element is in the
first position. In the worst case, the target is in the last position. Therefore, the
algorithm’s best-case performance is O(1) and its worst-case performance is O(n).
To compute the average-case performance, we add up all of the comparisons
that must be made to locate a target in each position and divide by n. This is
(1 + 2 + . . . + n) / n, or n / 2. Therefore, by approximation, the average-case
performance of linear search is also O(n).

The smarter version of bubble sort can terminate as soon as the list becomes
sorted. In the best case, this happens when the input list is already sorted.
Therefore, bubble sort’s best-case performance is O(n). However, this case is rare
(1 out of n). In the worst case, even this version of bubble sort will have to bubble
each item down to its proper position in the list. The algorithm’s worst-case per-
formance is clearly O(n2). Bubble sort’s average-case performance is closer to
O(n2) than to O(n), although the demonstration of this fact is a bit more involved
than it is for linear search.

As we will see, there are algorithms whose best-case and average-case
performances are similar, but whose performance can degrade to a worst case.
Whether you are choosing an algorithm or developing a new one, it is important
to be aware of these distinctions.

11.4 Exercises
1 Which configuration of data in a list causes the smallest number of

exchanges in a selection sort? Which configuration of data causes the
largest number of exchanges?

2 Explain the role that the number of data exchanges plays in the analysis
of selection sort and bubble sort. What role, if any, does the size of the
data objects play?

3 Explain why the modified bubble sort still exhibits O(n2) behavior on
the average.

4 Explain why insertion sort works well on partially sorted lists.

CHAPTER 11 Searching, Sorting, and Complexity Analysis[456]

C6840_11 11/19/08 1:25 PM Page 456

May not be copied, scanned, or duplicated, in whole or in part.

11.5 An Exponential Algorithm: Recursive
Fibonacci
Earlier in this chapter, we ran the recursive Fibonacci function to obtain a count
of the recursive calls with various problem sizes. You saw that the number of calls
seemed to grow much faster than the square of the problem size. Here is the
code for the function once again:

defƒfib(n):
ƒƒƒƒ“””TheƒrecursiveƒFibonacciƒfunction.”””
ƒƒƒƒifƒnƒ<ƒ3:
ƒƒƒƒƒƒƒƒreturnƒ1
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒfib(nƒ-ƒ1)ƒ+ƒfib(nƒ-ƒ2)

Another way to illustrate this rapid growth of work is to display a call tree
for the function for a given problem size. Figure 11.8 shows the calls involved
when we use the recursive function to compute the sixth Fibonacci number. To
keep the diagram reasonably compact, we write (6) instead of fib(6).

[FIGURE 11.8] A call tree for fib(6)

Note that fib(4) requires only 4 recursive calls, which seems linear, but
fib(6) requires 2 calls of fib(4), among a total of 14 recursive calls. Indeed, it
gets much worse as the problem size grows, with possibly many repetitions of the
same subtrees in the call tree.

Exactly how bad is this behavior, then? If the call tree were fully balanced,
with the bottom two levels of calls completely filled in, a call with an argument
of 6 would generate 2 + 4 + 8 + 16 = 30 recursive calls. Note that the number of

(6)

(5)

(4) (3)

(4)

(3) (2)

(3)

(2) (1)

(2) (1)(2) (2) (1)

11.5 An Exponential Algorithm: Recursive Fibonacci [457]

C6840_11 11/19/08 1:25 PM Page 457

May not be copied, scanned, or duplicated, in whole or in part.

calls at each filled level is twice that of the level above it. Thus, the number of
recursive calls generally is 2n+1 – 2 in fully balanced call trees, where n is the
argument at the top or root of the call tree. This is clearly the behavior of an
exponential, O(kn) algorithm. Although the bottom two levels of the call tree for
recursive Fibonacci are not completely filled in, its call tree is close enough in
shape to a fully balanced tree to rank recursive Fibonacci as an exponential algo-
rithm. The constant k for recursive Fibonacci is approximately 1.63.

Exponential algorithms are generally impractical to run with any but very
small problem sizes. Although recursive Fibonacci is elegant in its design, there is
a less beautiful but much faster version that uses a loop to run in linear time (see
the next section).

Alternatively, recursive functions that are called repeatedly with the same
arguments, such as the Fibonacci function, can be made more efficient by a tech-
nique called memoization. According to this technique, the program maintains a
table of the values for each argument used with the function. Before the function
recursively computes a value for a given argument, it checks the table to see if that
argument already has a value. If so, that value is simply returned. If not, the com-
putation proceeds and the argument and value are added to the table afterward.

Computer scientists devote much effort to the development of fast algo-
rithms. As a rule, any reduction in the order of magnitude of complexity, say,
from O(n2) to O(n), is preferable to a “tweak” of code that reduces the constant
of proportionality.

11.6 Converting Fibonacci to a Linear Algorithm
Although the recursive Fibonacci function reflects the simplicity and elegance of
the recursive definition of the Fibonacci sequence, the run-time performance of
this function is unacceptable. A different algorithm improves on this performance
by several orders of magnitude and, in fact, reduces the complexity to linear time.
In this section, we develop this alternative algorithm and assess its performance.

Recall that the first two numbers in the Fibonacci sequence are 1s, and each
number after that is the sum of the previous two numbers. Thus, the new algo-
rithm starts a loop if n is at least the third Fibonacci number. This number will be
at least the sum of the first two (1 + 1 = 2). The loop computes this sum and then
performs two replacements: the first number becomes the second one, and the
second one becomes the sum just computed. The loop counts from 3 through n.

CHAPTER 11 Searching, Sorting, and Complexity Analysis[458]

C6840_11 11/19/08 1:25 PM Page 458

May not be copied, scanned, or duplicated, in whole or in part.

The sum at the end of the loop is the nth Fibonacci number. Here is the
pseudocode for this algorithm:

Set sum to 1
Set first to 1
Set second to 1
Set count to 3
While count <= N
ƒƒƒƒSet sum to first + second
ƒƒƒƒSet first to second
ƒƒƒƒSet second to sum
ƒƒƒƒIncrement count

The Python function fib now uses a loop. The function can be tested within
the script used for the earlier version. Here is the code for the function, followed
by the output of the script:

defƒfib(n,ƒcounter):
ƒƒƒƒ“””CountƒtheƒnumberƒofƒiterationsƒinƒtheƒFibonacci
ƒƒƒƒfunction.”””
ƒƒƒƒsumƒ=ƒ1
ƒƒƒƒfirstƒ=ƒ1
ƒƒƒƒsecondƒ=ƒ1
ƒƒƒƒcountƒ=ƒ3
ƒƒƒƒwhileƒcountƒ<=ƒn:
ƒƒƒƒƒƒƒƒcounter.increment()
ƒƒƒƒƒƒƒƒsumƒ=ƒfirstƒ+ƒsecond
ƒƒƒƒƒƒƒƒfirstƒ=ƒsecond
ƒƒƒƒƒƒƒƒsecondƒ=ƒsum
ƒƒƒƒƒƒƒƒcountƒ+=ƒ1
ƒƒƒƒreturnƒsum

ProblemƒSizeƒƒƒƒƒIterations
ƒƒƒƒƒƒƒƒƒƒƒ2ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ0
ƒƒƒƒƒƒƒƒƒƒƒ4ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ2
ƒƒƒƒƒƒƒƒƒƒƒ8ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ6
ƒƒƒƒƒƒƒƒƒƒ16ƒƒƒƒƒƒƒƒƒƒƒƒƒ14
ƒƒƒƒƒƒƒƒƒƒ32ƒƒƒƒƒƒƒƒƒƒƒƒƒ30

As you can see, the performance of the new version of the function has
improved to linear. Removing recursion by converting a recursive algorithm to
one based on a loop can often, but not always, reduce its run-time complexity.

11.6 Converting Fibonacci to a Linear Algorithm [459]

C6840_11 11/19/08 1:25 PM Page 459

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Searching, Sorting, and Complexity Analysis[460]

11.7 Case Study: An Algorithm Profiler
Profiling is the process of measuring an algorithm’s performance, by counting
instructions and/or timing execution. In this case study, we develop a program to
profile sort algorithms.

11.7.1 Request

Write a program that allows a programmer to profile different sort algorithms.

11.7.2 Analysis

The profiler should allow a programmer to run a sort algorithm on a list of num-
bers. The profiler can track the algorithm’s running time, the number of compar-
isons, and the number of exchanges. In addition, when the algorithm exchanges
two values, the profiler can print a trace of the list. The programmer can provide
her own list of numbers to the profiler or ask the profiler to generate a list of
randomly ordered numbers of a given size. The programmer can also ask for a
list of unique numbers or a list that contains duplicate values. For ease of use, the
profiler allows the programmer to specify most of these features as options before
the algorithm is run. The default behavior is to run the algorithm on a randomly
ordered list of 10 unique numbers where the running time, comparisons, and
exchanges are tracked.

The profiler is an instance of the class Profiler. The programmer profiles a
sort function by running the profiler’s test method with the function as the first
argument and any of the options mentioned earlier. The next session shows several
test runs of the profiler with the selection sort algorithm and different options:

>>>ƒfromƒprofilerƒimportƒProfiler
>>>ƒfromƒalgorithmsƒimportƒselectionSort

>>>ƒpƒ=ƒProfiler()

>>>ƒp.test(selectionSort)ƒƒƒƒƒ#ƒDefaultƒbehavior
Problemƒsize:ƒ10
Elapsedƒtime:ƒ0.0
Comparisons:ƒƒ45
Exchanges:ƒƒƒƒ7

continued

C6840_11 11/19/08 1:25 PM Page 460

May not be copied, scanned, or duplicated, in whole or in part.

11.7 Case Study: An Algorithm Profiler [461]

>>>ƒp.test(selectionSort,ƒsizeƒ=ƒ5,ƒtraceƒ=ƒTrue)
[4,ƒ2,ƒ3,ƒ5,ƒ1]
[1,ƒ2,ƒ3,ƒ5,ƒ4]
Problemƒsize:ƒ5
Elapsedƒtime:ƒ0.117
Comparisons:ƒƒ10
Exchanges:ƒƒƒƒ2

>>>ƒp.test(selectionSort,ƒsizeƒ=ƒ100)
Problemƒsize:ƒ100
Elapsedƒtime:ƒ0.044
Comparisons:ƒƒ4950
Exchanges:ƒƒƒƒ97

>>>ƒp.test(selectionSort,ƒsizeƒ=ƒ1000)
Problemƒsize:ƒ1000
Elapsedƒtime:ƒ1.628
Comparisons:ƒƒ499500
Exchanges:ƒƒƒƒ995

>>>ƒp.test(selectionSort,ƒsizeƒ=ƒ10000,ƒ
ƒƒƒƒƒƒƒƒƒƒƒexchƒ=ƒFalse,ƒcompƒ=ƒFalse)
Problemƒsize:ƒ10000
Elapsedƒtime:ƒ111.077

The programmer configures a sort algorithm to be profiled as follows:

1 Define a sort function and include a second parameter, a Profiler
object, in the sort function’s header.

2 In the sort algorithm’s code, run the methods comparison() and
exchange() with the Profiler object where relevant, to count compar-
isons and exchanges.

The interface for the Profiler class is listed in Table 11.6.

C6840_11 11/19/08 1:25 PM Page 461

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Searching, Sorting, and Complexity Analysis[462]

[TABLE 11.6] The interface for the Profiler class

11.7.3 Design

The programmer uses two modules:

1 profiler—This module defines the Profiler class.

2 algorithms—This module defines the sort functions, as configured for
profiling.

The sort functions have the same design as those discussed earlier in this
chapter, except that they receive a Profiler object as an additional parameter.
The Profiler methods comparison and exchange are run with this object
whenever a sort function performs a comparison or an exchange of data values,
respectively. In fact, any list-processing algorithm can be added to this module
and profiled just by including a Profiler parameter and running its two meth-
ods when comparisons and/or exchanges are made.

As shown in the earlier session, one imports the Profiler class and the
algorithms module into a Python shell and performs the testing at the shell
prompt. The profiler’s test method sets up the Profiler object, runs the func-
tion to be profiled, and prints the results.

Profiler METHOD WHAT IT DOES

p.test(function,ƒlystƒ=ƒNone,ƒ Runs function with the given
ƒƒƒƒƒƒƒsizeƒ=ƒ10,ƒuniqueƒ=ƒTrue,ƒ settings and prints the results.
ƒƒƒƒƒƒƒcompƒ=ƒTrue,ƒexchƒ=ƒTrue,
ƒƒƒƒƒƒƒtraceƒ=ƒFalse)

p.comparison() Increments the number of
comparisons if that option has been
specified.

p.exchange() Increments the number of exchanges
if that option has been specified.

p.__str__() Returns a string representation of the
results, depending on the options.

C6840_11 11/19/08 1:25 PM Page 462

May not be copied, scanned, or duplicated, in whole or in part.

11.7 Case Study: An Algorithm Profiler [463]

11.7.4 Implementation (Coding)

Here is a partial implementation of the algorithms module. We omit most of
the sort algorithms developed earlier in this chapter, but include one,
selectionSort, to show how the statistics are updated.

“””
File:ƒalgorithms.py
Algorithmsƒconfiguredƒforƒprofiling.
“””

defƒselectionSort(lyst,ƒprofiler):
ƒƒƒƒiƒ=ƒ0
ƒƒƒƒwhileƒiƒ<ƒlen(lyst)ƒ-ƒ1:ƒƒƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒƒminIndexƒ=ƒi
ƒƒƒƒƒƒƒƒjƒ=ƒiƒ+ƒ1
ƒƒƒƒƒƒƒƒwhileƒjƒ<ƒlen(lyst):
ƒƒƒƒƒƒƒƒƒƒƒƒprofiler.comparison()ƒƒƒƒƒƒƒƒƒ#ƒCount
ƒƒƒƒƒƒƒƒƒƒƒƒifƒlyst[j]ƒ<ƒlyst[minIndex]:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒminIndexƒ=ƒj
ƒƒƒƒƒƒƒƒƒƒƒƒjƒ+=ƒ1
ƒƒƒƒƒƒƒƒifƒminIndexƒ!=ƒi:
ƒƒƒƒƒƒƒƒƒƒƒƒswap(lyst,ƒminIndex,ƒi,ƒprofiler)
ƒƒƒƒƒƒƒƒiƒ+=ƒ1

defƒswap(lyst,ƒi,ƒj,ƒprofiler):
ƒƒƒƒ“””Exchangesƒtheƒelementsƒatƒpositionsƒiƒandƒj.”””
ƒƒƒƒprofiler.exchange()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒCount
ƒƒƒƒtempƒ=ƒlyst[i]
ƒƒƒƒlyst[i]ƒ=ƒlyst[j]
ƒƒƒƒlyst[j]ƒ=ƒtemp

#ƒTestingƒcodeƒcanƒgoƒhere,ƒoptionally

The Profiler class includes the four methods listed in the interface as well
as some helper methods for managing the clock.

C6840_11 11/19/08 1:25 PM Page 463

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Searching, Sorting, and Complexity Analysis[464]

“””
File:ƒprofiler.py

Definesƒaƒclassƒforƒprofilingƒsortƒalgorithms.
AƒProfilerƒobjectƒtracksƒtheƒlist,ƒtheƒnumberƒofƒcomparisons
andƒexchanges,ƒandƒtheƒrunningƒtime.ƒTheƒProfilerƒcanƒalso
printƒaƒtraceƒandƒcanƒcreateƒaƒlistƒofƒuniqueƒorƒduplicate
numbers.

Exampleƒuse:

fromƒprofilerƒimportƒProfiler
fromƒalgorithmsƒimportƒselectionSort

pƒ=ƒProfiler()
p.test(selectionSort,ƒsizeƒ=ƒ15,ƒcompƒ=ƒTrue,
ƒƒƒƒƒƒƒexchƒ=ƒTrue,ƒtraceƒ=ƒTrue)
“””

importƒtime
importƒrandom

classƒProfiler(object):

ƒƒƒƒdefƒtest(self,ƒfunction,ƒlystƒ=ƒNone,ƒsizeƒ=ƒ10,
ƒƒƒƒƒƒƒƒƒƒƒƒƒuniqueƒ=ƒTrue,ƒcompƒ=ƒTrue,ƒexchƒ=ƒTrue,
ƒƒƒƒƒƒƒƒƒƒƒƒƒtraceƒ=ƒFalse):
ƒƒƒƒƒƒƒƒ“””
ƒƒƒƒƒƒƒƒfunction:ƒtheƒalgorithmƒbeingƒprofiled
ƒƒƒƒƒƒƒƒtarget:ƒtheƒsearchƒtargetƒifƒprofilingƒaƒsearch
ƒƒƒƒƒƒƒƒlyst:ƒallowsƒtheƒcallerƒtoƒuseƒherƒlist
ƒƒƒƒƒƒƒƒsize:ƒtheƒsizeƒofƒtheƒlist,ƒ10ƒbyƒdefault
ƒƒƒƒƒƒƒƒunique:ƒifƒTrue,ƒlistƒcontainsƒuniqueƒintegers
ƒƒƒƒƒƒƒƒcomp:ƒifƒTrue,ƒcountƒcomparisons
ƒƒƒƒƒƒƒƒexch:ƒifƒTrue,ƒcountƒexchanges
ƒƒƒƒƒƒƒƒtrace:ƒifƒTrue,ƒprintƒtheƒlistƒafterƒeachƒexchange
ƒƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒƒRunƒtheƒfunctionƒwithƒtheƒgivenƒattributesƒandƒprint
ƒƒƒƒƒƒƒƒitsƒprofileƒresults.
ƒƒƒƒƒƒƒƒ“””
ƒƒƒƒƒƒƒƒself._compƒ=ƒcomp
ƒƒƒƒƒƒƒƒself._exchƒ=ƒexch
ƒƒƒƒƒƒƒƒself._traceƒ=ƒtrace
ƒƒƒƒƒƒƒƒifƒlystƒ!=ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒself._lystƒ=ƒlyst
ƒƒƒƒƒƒƒƒelifƒunique:
ƒƒƒƒƒƒƒƒƒƒƒƒself._lystƒ=ƒrange(1,ƒsizeƒ+ƒ1)
ƒƒƒƒƒƒƒƒƒƒƒƒrandom.shuffle(self._lyst)

continued

C6840_11 11/19/08 1:25 PM Page 464

May not be copied, scanned, or duplicated, in whole or in part.

11.7 Case Study: An Algorithm Profiler [465]

ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._lystƒ=ƒ[]
ƒƒƒƒƒƒƒƒƒƒƒƒforƒcountƒinƒxrange(size):
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._lyst.append(random.randint(1,ƒsize))
ƒƒƒƒƒƒƒƒself._exchCountƒ=ƒ0
ƒƒƒƒƒƒƒƒself._cmpCountƒ=ƒ0
ƒƒƒƒƒƒƒƒself._startClock()
ƒƒƒƒƒƒƒƒfunction(self._lyst,ƒself)
ƒƒƒƒƒƒƒƒself._stopClock()
ƒƒƒƒƒƒƒƒprintƒself

ƒƒƒƒdefƒexchange(self):
ƒƒƒƒƒƒƒƒ“””Countsƒexchangesƒifƒon.”””
ƒƒƒƒƒƒƒƒifƒself._exch:
ƒƒƒƒƒƒƒƒƒƒƒƒself._exchCountƒ+=ƒ1
ƒƒƒƒƒƒƒƒifƒself._trace:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒself._lyst

ƒƒƒƒdefƒcomparison(self):
ƒƒƒƒƒƒƒƒ“””Countsƒcomparisonsƒifƒon.”””
ƒƒƒƒƒƒƒƒifƒself._comp:
ƒƒƒƒƒƒƒƒƒƒƒƒself._cmpCountƒ+=ƒ1

ƒƒƒƒdefƒ_startClock(self):
ƒƒƒƒƒƒƒƒ“””Recordƒtheƒstartingƒtime.”””
ƒƒƒƒƒƒƒƒself._startƒ=ƒtime.time()

ƒƒƒƒdefƒ_stopClock(self):
ƒƒƒƒƒƒƒƒ“””Stopsƒtheƒclockƒandƒcomputesƒtheƒelapsedƒtime
ƒƒƒƒƒƒƒƒinƒseconds,ƒtoƒtheƒnearestƒmillisecond.”””
ƒƒƒƒƒƒƒƒself._elapsedTimeƒ=ƒround(time.time()ƒ-ƒself._start,ƒ3)

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒresultsƒasƒaƒstring.”””
ƒƒƒƒƒƒƒƒresultƒ=ƒ“Problemƒsize:ƒ“
ƒƒƒƒƒƒƒƒresultƒ+=ƒstr(len(self._lyst))ƒ+ƒ“\n”
ƒƒƒƒƒƒƒƒresultƒ+=ƒ“Elapsedƒtime:ƒ“
ƒƒƒƒƒƒƒƒresultƒ+=ƒstr(self._elapsedTime)ƒ+ƒ“\n”
ƒƒƒƒƒƒƒƒifƒself._comp:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒ“Comparisons:ƒƒ“ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒstr(self._cmpCount)ƒ+ƒ“\n”
ƒƒƒƒƒƒƒƒifƒself._exch:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒ“Exchanges:ƒƒƒƒ“ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒstr(self._exchCount)ƒ+ƒ“\n”
ƒƒƒƒƒƒƒƒreturnƒresult

C6840_11 11/19/08 1:25 PM Page 465

May not be copied, scanned, or duplicated, in whole or in part.

Summary
� Different algorithms for solving the same problem can be ranked

according to the time and memory resources that they require.
Generally, algorithms that require less running time and less memory
are considered better than those that require more of these resources.
However, there is often a tradeoff between the two types of resources.
Running time can occasionally be improved at the cost of using more
memory, or memory usage can be improved at the cost of slower
running times.

� The running time of an algorithm can be measured empirically
using the computer’s clock. However, these times will vary with the
hardware and the types of programming language used.

� Counting instructions provide another empirical measurement of the
amount of work that an algorithm does. Instruction counts can show
increases or decreases in the rate of growth of an algorithm’s work,
independently of hardware and software platforms.

� The rate of growth of an algorithm’s work can be expressed as a func-
tion of the size of its problem instances. Complexity analysis examines
the algorithm’s code to derive these expressions. Such an expression
enables the programmer to predict how well or poorly an algorithm
will perform on any computer.

� Big-O notation is a common way of expressing an algorithm’s run-
time behavior. This notation uses the form O(f(n)), where n is the size
of the algorithm’s problem and f(n) is a function expressing the
amount of work done to solve it.

� Common expressions of run-time behavior are O(log2n) (logarithmic),
O(n) (linear), O(n2) (quadratic), and O(kn) (exponential).

� An algorithm can have different best-case, worst-case, and average-
case behaviors. For example, bubble sort and insertion sort are linear
in the best case, but quadratic in the average and worst cases.

� In general, it is better to try to reduce the order of an algorithm’s
complexity than it is to try to enhance performance by tweaking
the code.

� A binary search is substantially faster than a linear search. However,
the data in the search space for a binary search must be in sorted order.

� Exponential algorithms are primarily of theoretical interest and are
impractical to run with large problem sizes.

CHAPTER 11 Searching, Sorting, and Complexity Analysis[466]

C6840_11 11/19/08 1:25 PM Page 466

May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS [467]

REVIEW QUESTIONS
1 Timing an algorithm with different problem sizes

a can give you a general idea of the algorithm’s run-time behavior
b can give you an idea of the algorithm’s run-time behavior on a

particular hardware platform and a particular software platform

2 Counting instructions

a provides the same data on different hardware and software platforms
b can demonstrate the impracticality of exponential algorithms with

large problem sizes

3 The expressions O(n), O(n2), and O(kn) are, respectively,

a exponential, linear, and quadratic
b linear, quadratic, and exponential
c logarithmic, linear, and quadratic

4 A binary search

a assumes that the data are arranged in no particular order
b assumes that the data are sorted

5 A selection sort makes at most

a n2 exchanges of data items
b n exchanges of data items

6 The best-case behavior of insertion sort and modified bubble sort is

a linear
b quadratic
c exponential

7 An example of an algorithm whose best-case, average-case, and worst-
case behaviors are the same is

a linear search
b insertion sort
c selection sort

8 Generally speaking, it is better

a to tweak an algorithm to shave a few seconds of running time
b to choose an algorithm with the lowest order of computational

complexity

C6840_11 11/19/08 1:25 PM Page 467

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Searching, Sorting, and Complexity Analysis[468]

9 The recursive Fibonacci function makes approximately

a n2 recursive calls for problems of a large size n
b 2n recursive calls for problems of a large size n

10 Each level in a completely filled binary call tree has

a twice as many calls as the level above it
b the same number of calls as the level above it

PROJECTS
1 A linear search of a sorted list can halt when the target is less than a

given element in the list. Define a modified version of this algorithm and
state the computational complexity, using big-O notation, of its best-,
worst-, and average-case performances.

2 The list method reverse reverses the elements in the list. Define a
function named reverse that reverses the elements in its list argument
(without using the method reverse!). Try to make this function as effi-
cient as possible, and state its computational complexity using big-O
notation.

3 Python’s pow function returns the result of raising a number to a given
power. Define a function expo that performs this task and state its com-
putational complexity using big-O notation. The first argument of this
function is the number and the second argument is the exponent (non-
negative numbers only). You may use either a loop or a recursive func-
tion in your implementation.

4 An alternative strategy for the expo function uses the following recursive
definition:

expo(number, exponent)
= 1, when exponent = 0
= expo(number, exponent – 1), when exponent is odd
= (expo(number, exponent / 2))2, when exponent is even

Define a recursive function expo that uses this strategy and state its
computational complexity using big-O notation.

C6840_11 11/19/08 1:25 PM Page 468

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [469]

5 Python’s list method sort includes the keyword argument reverse,
whose default value is False. The programmer can override this value to
sort a list in descending order. Modify the selectionSort function dis-
cussed in this chapter so that it allows the programmer to supply this
additional argument to redirect the sort.

6 Modify the recursive Fibonacci function to employ the memoization
technique discussed in this chapter. The function should expect a dic-
tionary as an additional argument. The top-level call of the function
receives an empty dictionary. The function’s keys and values should be
the arguments and values of the recursive calls. Also use the Counter
object discussed in this chapter to count the number of recursive calls.

7 Profile the performance of the memoized version of the Fibonacci func-
tion defined in Project 6. The function should count the number of
recursive calls. State its computational complexity using big-O notation
and justify your answer.

8 The function makeRandomList creates and returns a list of numbers of a
given size (its argument). The numbers in the list are unique and range
from 1 through the size. They are placed in random order. Here is the
code for the function:

defƒmakeRandomList(size):
ƒƒƒƒlystƒ=ƒ[]
ƒƒƒƒforƒcountƒinƒxrange(size):
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒnumberƒ=ƒrandom.randint(1,ƒsize)
ƒƒƒƒƒƒƒƒƒƒƒƒif notƒnumberƒinƒlyst:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒlyst.append(number)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒreturnƒlyst

You may assume that xrange, randint, and append are constant time
functions. You may also assume that random.randint more rarely
returns duplicate numbers as the range between its arguments increases.
State the computational complexity of this function using big-O notation
and justify your answer.

9 As discussed in Chapter 6, a computer supports the calls of recursive func-
tions using a structure called the call stack. Generally speaking, the com-
puter reserves a constant amount of memory for each call of a function.
Thus, the memory used by a recursive function can be subjected to com-
plexity analysis. State the computational complexity of the memory used
by the recursive factorial and Fibonacci functions, as defined in Chapter 6.

C6840_11 11/19/08 1:25 PM Page 469

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 11 Searching, Sorting, and Complexity Analysis[470]

10 The function that draws c-curves, and which was discussed in Chapter 7,
has two recursive calls. Here is the code:

defƒcCurve(turtle,ƒx1,ƒy1,ƒx2,ƒy2,ƒlevel):

ƒƒƒdefƒdrawLine(x1,ƒy1,ƒx2,ƒy2):
ƒƒƒƒƒƒ“””Drawsƒaƒlineƒsegmentƒbetweenƒtheƒendpoints.”””
ƒƒƒƒƒƒturtle.up()
ƒƒƒƒƒƒturtle.move(x1,ƒy1)
ƒƒƒƒƒƒturtle.down()
ƒƒƒƒƒƒturtle.move(x2,ƒy2)
ƒƒƒƒƒƒ
ƒƒƒifƒlevelƒ==ƒ0:
ƒƒƒƒƒƒdrawLine(x1,ƒy1,ƒx2,ƒy2)
ƒƒƒelse:
ƒƒƒƒƒƒxmƒ=ƒ(x1ƒ+ƒx2ƒ+ƒy1ƒ-ƒy2)ƒ/ƒ2
ƒƒƒƒƒƒymƒ=ƒ(x2ƒ+ƒy1ƒ+ƒy2ƒ-ƒx1)ƒ/ƒ2
ƒƒƒƒƒƒcCurve(turtle,ƒx1,ƒy1,ƒxm,ƒym,ƒlevelƒ-ƒ1)
ƒƒƒƒƒƒcCurve(turtle,ƒxm,ƒym,ƒx2,ƒy2,ƒlevelƒ-ƒ1)

You can assume that the function drawLine runs in constant time.
State the computational complexity of the cCurve function, in terms
of the level, using big-O notation. Also, draw a call tree for a call of
this function with a level of 3.

C6840_11 11/19/08 1:25 PM Page 470

May not be copied, scanned, or duplicated, in whole or in part.

[CHAPTER]
TOOLS FOR DESIGN, DOCUMENTATION,

and Testing12
After completing this chapter, you will be able to:

� Write scenarios and use cases for the analysis phase of a
simple software system

� Design a simple software system in which the classes have the
relationships of aggregation, composition, and inheritance

� Use UML diagrams to depict use cases, relationships among
classes, and collaborations among objects in a simple
software system

� Write preconditions and postconditions for methods
� Raise exceptions in methods when preconditions are violated
� Generate Web-based documentation of classes
� Write simple unit tests for classes
As you become familiar with the basic concepts and strategies

used in problem solving, you are more prepared to tackle more signif-
icant, interesting, and complex problems. You begin to use function
definitions and classes, as discussed in Chapters 6 and 8 respectively,
to structure complex code. You also begin to select the most efficient
algorithms for a given problem, as shown in Chapter 11. However,
there is more to good software development than throwing together a
set of code resources that solve a problem efficiently. A program must
be well designed, thoroughly documented, and carefully tested.

C6840_12 11/19/08 11:43 AM Page 471

May not be copied, scanned, or duplicated, in whole or in part.

A good design is essential to solving any complex problem. In the program-
ming world, a good design is the first step toward error-free code and speedy
project development. Even though a program might solve a problem correctly
and efficiently, its design might be so clumsy that its author, let alone others who
are unfamiliar with its inner working, can barely maintain and update it. By con-
trast, any programmer can comprehend a well-designed program. With such a
program, you can quickly see how its parts cooperate to solve a problem and how
you might modify the parts or reuse them to solve new problems.

Well-designed and well-written code is, to a certain extent, self-documenting.
However, additional documentation is a necessary guide for a thorough under-
standing of what a program does and how it does it. You should get in the habit of
reading a program’s documentation and writing your own documentation.

No matter how carefully you design and document a program, you need to
test it with equal care. A single, error-free run of a program is rarely a sign that
it is correct. Only thorough, systematic testing ensures that a program of any
significant size does what it is supposed to do. As you design and code smaller
components, you can test them independently before integrating them into the
larger system. During maintenance, you also need to test components after you
repair or extend them with new features.

Because software design, documentation, and testing are such important
parts of the software-development process, software developers have devised
numerous tools to make these steps as straightforward as possible. In addition to
editors, compilers, and interpreters, programmers use many other software tools
to design and manage the development of software. These tools come under the
broad heading of Computer Assisted Software Engineering (CASE) tools. They
include debuggers, version trackers, profilers, and test beds. In this chapter, you
will learn about some of these tools.

12.1 Software Design with UML
Programmers use various graphical notations to represent analysis and design
decisions. You have already seen flow diagrams used to illustrate the behavior of
control statements (Chapter 3), structure charts to describe the control and data
flow among functions (Chapter 6), and class diagrams to describe the relation-
ships among classes (Chapter 8). This section provides a brief overview of the
Unified Modeling Language (UML), the dominant graphical scheme currently
used in object-oriented software development. We touch only on the essentials
here. For a thorough introduction, you can consult many reference books
devoted to this topic. An excellent and free UML authoring tool is available at
http://argouml.tigris.org/.

CHAPTER 12 Tools for Design, Documentation, and Testing[472]

C6840_12 11/19/08 11:43 AM Page 472

May not be copied, scanned, or duplicated, in whole or in part.

12.1.1 UML and Modeling

As shown in each case study of this book, software development begins with a
customer or client request for a solution to a problem. During analysis, the pro-
grammer (or programming team) refines this request into a precise description of
a software system that solves the problem. In the design phase, the programmer
then takes this result and develops descriptions of how the system will carry out
its tasks. Only then, after an initial design, does coding begin. UML diagrams
come in handy during these initial phases of software development. They help
the programmer visualize, or model, the interactions of human users with the
proposed system, the relationships among its classes, and the interactions among
its objects. From these models, the programmer can then begin to construct the
code for the software.

Although the UML includes diagrams for almost any occasion, there are
three types of diagrams that you can begin to use right away. The first type, class
diagrams, is used in analysis to describe the relationships among classes. The
second type, use case diagrams, is used in analysis to describe the users’ interac-
tions with the system. The third type, collaboration diagrams, which are used
during the design phase, describes the interactions among objects.

The following discussions of class diagrams, use case diagrams, and collabo-
ration diagrams refer to a fictional online library system as a running example.
For purposes of illustration, this library system is simple. Assume it simply allows
patrons to look up books by title or author, to borrow a book, or to return a
book. A patron can have at most three books checked out at once. When a book
has been checked out, a request to borrow it automatically places the patron on a
wait list or queue for that book. When a book is returned, it is automatically
checked out to the patron at the beginning of its wait list, if that is not empty.
Library staffers can also add new books and patrons to the system or remove
existing ones. This system is complex enough to warrant analysis and design, but
simple enough to provide clear examples of the use of UML in these steps.

12.1.2 Use Case Diagrams

During analysis, the programmer consults with users of the system, both library
staff and patrons, to develop scenarios of the system’s use. Each scenario can be
broken down into a set of simple use cases. A use case is a narrative, in English,
of the steps a user takes to perform a single action. Also included in the use case

12.1 Software Design with UML [473]

C6840_12 11/19/08 11:43 AM Page 473

May not be copied, scanned, or duplicated, in whole or in part.

is a description of the system’s responses, if any. Figures 12.1 and 12.2 show the
initial use cases for a patron’s action of logging into the system and the action of
borrowing a book, respectively.

[FIGURE 12.1] The use case for logging in

[FIGURE 12.2] The use case for borrowing a book

Note that the use cases include narratives of actions that result in normal
responses by the system. However, some user interactions can also lead to abnor-
mal or error conditions. For example, the user might enter an unrecognized user
name or password or the title of a book that does not exist. Use cases can and
should also include narratives of any exceptional conditions and the correspon-
ding responses of the system.

Let’s refine the use case for borrowing a book. If the user already has three
books checked out, an appropriate message is displayed. Otherwise, if the title
does not exist in the library, the user receives a different message. Otherwise, if
the requested book has already been checked out to another patron, the user is
put at the end of a wait list of patrons who want that book and the user is
informed of this step. When the book’s current borrower returns it, the book is
automatically checked out to the patron at the front of the book’s wait list, if that
list is not empty. Figure 12.3 shows a refinement of the use case for borrowing a
book that accounts for these conditions.

Borrow a book
1. The patron selects the command to borrow a book.
2. The patron enters the title of the book.
3. The library system performs the transaction and displays a message.

Logging in
1. The patron enters her user name.
2. The patron enters her password.
3. The library system displays a greeting and a menu of commands.

CHAPTER 12 Tools for Design, Documentation, and Testing[474]

C6840_12 11/19/08 11:43 AM Page 474

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 12.3] The use case for borrowing a book, with additional conditions

Use case diagrams in the UML translate the narratives of use cases into a
pictorial representation. Figure 12.4 shows an example of a use case diagram that
corresponds to the two use cases discussed here.

[FIGURE 12.4] A use case diagram for logging in and borrowing a book

Use cases and use case diagrams enable the programmer to accomplish
several things:

1 They result in a precise statement of the functional requirements of the
software system, in other words, the “what it does,” from the users’ per-
spective. These requirements will serve as the benchmarks or standards
to determine whether the software is correct or does what it is supposed
to do during testing.

2 They can serve as the basis for writing user documentation, in the form
of manuals and online help systems for the software.

login

borrow a book

Borrow a book
1. The patron selects the command to borrow a book.
2. The patron enters the title of the book.
3. Library system responses to this request:
 a. If the title does not exist, display an error message.
 b. Otherwise, if the patron already has three books checked out, display an
 error message.
 c. Otherwise, if the book is already check out to this patron, display an error
 message.
 d. Otherwise, if the book is already checked out to another patron, display a
 message that the patron has been put on the wait list for that book.
 e. Otherwise, display a message that the transaction was successful.

12.1 Software Design with UML [475]

C6840_12 11/19/08 11:43 AM Page 475

May not be copied, scanned, or duplicated, in whole or in part.

3 They allow the programmer to determine which classes need to be cho-
sen or developed to realize the requirements of the system. As we said in
Chapter 8, nouns in a problem description typically indicate classes of
objects, whereas verbs indicate their behavior.

12.1.3 Class Diagrams

During the discovery of classes for a system, their relationships can be modeled
with class diagrams in the UML. The simplest such diagrams show a relationship
of association between two classes. Continuing with our example, three of the
principal nouns in our use case narratives are patron, book, and wait list. Figure 12.5
shows the associations among the three corresponding classes, Patron, Book, and
PatronQueue. In this diagram, each class name appears in a box and the edges
connecting them represent the associations.

[FIGURE 12.5] A simple class diagram with associations

Mere associations do not tell us much about how classes are related. Are the
relationships one-way or two-way? Does class A depend on class B, and class B also
depend on class A? Or, is the relationship one-way, allowing access to B from A,
but not to A from B?

In general, software components are easier to maintain if they have fewer
dependencies and access paths. For example, a patron queue object knows about
and can access the patrons it contains. However, there’s no need for a patron
object to know that it is in the queue. Although it might seem natural for a book
object to know about its current borrower and conversely, for the borrower to
know about the book object, one of these directions might be dropped in favor of
a simpler design.

Book Patron

PatronQueue

CHAPTER 12 Tools for Design, Documentation, and Testing[476]

C6840_12 11/19/08 11:43 AM Page 476

May not be copied, scanned, or duplicated, in whole or in part.

The programmer can also specify a role that one class plays in relation to
another. For example, in relation to a book, a patron plays the role of a borrower.
Figure 12.6 refines the class diagram to show the dependencies among the classes
and their roles. Note that the labels on the edges name the roles of the adjacent
classes. The arrows indicate the directions of the associations.

[FIGURE 12.6] Roles and directed associations

An important characteristic of the relationship between two classes is the
relationship’s multiplicity—that is, the number of instances of one class that are
related to the other class. The relationships among the Book, Patron, and
PatronQueue classes in our example have the following multiplicities:

� A book can have zero or one borrower.
� A patron can have at most three books checked out.
� A patron queue can hold zero or more patrons.
� A patron can be waiting on zero or more books.
� A book has exactly one patron queue.
� A patron queue belongs to exactly one book.

Figure 12.7 refines the class diagram for our example to show some of these mul-
tiplicities. Multiplicities other than 1 are placed on the edge near the designated
class. If no multiplicity notation is present, it is assumed to be exactly 1.

wait
list

borrower
waiting

Book Patron

PatronQueue

12.1 Software Design with UML [477]

C6840_12 11/19/08 11:43 AM Page 477

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 12.7] Multiplicity in class relationships

Multiplicities are expressed with the following notations:

Note that the arrows representing directed associations (shown in Figure 12.6)
can be dropped in favor of using edges with markers that indicate the relationships
of aggregation or composition (see Figure 12.8). Instances of one class are said to
aggregate under an instance of another class if they are contained in it and they can
continue to exist without it. For example, the Patron class aggregates under
PatronQueue because the patrons can continue to exist even if the queue that con-
tains them ceases to exist. As Figure 12.8 shows, the visual marker for an aggrega-
tion is the outline of a diamond. Composition is a special case of aggregation in
which the contained object ceases to exist when the object that contains it is
destroyed. Thus, a patron queue composes under a book, because the queue (but
not its patrons) disappears when its book goes away. The visual marker for a
composition is a filled diamond.

TYPE OF MULTIPLICITY EXAMPLE WHAT IT MEANS

N 3 A fixed number

low..high 1..3 A number in the given range

* * Zero or more

low..* 2..* low or more

wait
list

borrower
waiting

Book Patron

PatronQueue

*

0..1

CHAPTER 12 Tools for Design, Documentation, and Testing[478]

C6840_12 11/19/08 11:43 AM Page 478

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 12.8] Aggregation and composition

What does all of this detail in the class diagram help us do? This part of
analysis determines the roles and responsibilities of the classes in a system. We
can see from the diagram in Figure 12.8 that, among other things, a book is
responsible for tracking its borrower and, indirectly through its patron queue,
the other patrons waiting for it. This information leads directly to the next step,
determining the interactions among objects in the system that will realize the
system’s behavior.

12.1.4 Collaboration Diagrams

In the design phase of the software-development process, the programmer works
out the attributes and operations of the system’s various classes. These attributes
and operations will, in turn, become instance variables and methods during cod-
ing. You just learned that classes are designed with a view toward collaboration
with other classes in the system. The attributes and operations of a given class
are often designed to fit into a sequence of operations that perform a particular
task. As she did when she examined the interactions of users with a system, the
programmer begins this part of software development with scenarios. However,
all of the actors in these scenarios are software objects or instances of the system’s
classes. In other words, a system function or task is broken down into a set of
method calls on objects, and coordinating these becomes the focus of design.

To return to our library example, consider the task of borrowing a book. For
this example, we add two more classes to the system: Library, which manages Book
and Patron objects, and LibraryView, which handles interactions with the user.
The user selects the command to borrow a book in the user interface and enters the
title of the book to be requested. The user interface, itself a software object of the
class LibraryView, then runs the method borrowBook with the Library object.

wait
list

borrower
waiting

Patron

*

0..1
Book

PatronQueue

12.1 Software Design with UML [479]

C6840_12 11/19/08 11:43 AM Page 479

May not be copied, scanned, or duplicated, in whole or in part.

This operation takes the book title and a Patron object as arguments and handles
the request. The information returned is a message describing the results, which
may include a successful borrowing, a wait for the book, a notice that the user
already has three books checked out, a notice that the user already has checked out
the requested book, or a failure to locate that book in the library. Either of the first
two results also produces a change of state in objects in the system.

We now develop the sequence of operations required to accomplish this task.
A summary of the operations follows:

1 The user selects the command to borrow a book.

2 The user enters a book’s title.

3 The Library method borrowBook is called with the title and patron as
arguments.

4 If the patron already has three books checked out, return a message to
that effect.

5 Otherwise, if the book’s title is not in the library, return a message to
that effect.

6 Otherwise, if the book is already checked out to this patron, return a
message to that effect.

7 Otherwise, if the book is already checked out to another patron, place
the current patron at the end of the book’s wait list and return a message
to that effect.

8 Otherwise, make the book’s borrower the patron, increment the patron’s
number of books, and return a message to that effect.

Steps 4 and 5 query the Patron and Library objects, respectively. The other
collaborators in this scenario are a Book object and a PatronQueue object. These
two objects come into play only if the process reaches Step 6 in our scenario.
They handle Steps 6 through 8. The Book method borrow is called with the
Patron object as an argument at Step 6, and the PatronQueue method add is
called with the Patron object as an argument at Step 7.

Figure 12.9 shows these interactions among objects in a collaboration dia-
gram. Each box represents an individual object, whose class labels the box. The
numbers next to the labeled actions correspond to the numbers listed in our
scenario. For example, the action labeled 3: borrowBook(title, patron)
is a method that the LibraryView object calls on the Library object. The
arrow next to the label points from the caller or client object to the called or
server object.

CHAPTER 12 Tools for Design, Documentation, and Testing[480]

C6840_12 11/19/08 11:43 AM Page 480

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 12.9] A collaboration diagram for borrowing a book

12.1.5 From Collaboration Diagram to Code

The programmer can use the collaboration diagram in Figure 12.9 to write the
methods borrowBook in the Library class and borrow in the Book class. We
assume that the Library class maintains a dictionary of the books, keyed by
title, named _books. The Book class has two relevant instance variables, named
_borrower for its patron/borrower and _waitList for its queue of waiting
patrons. The Patron methods getNumberBooks() and incBooksOut() and
the PatronQueue method add(patron) are used to perform the auxiliary tasks.
Here are the methods borrowBook in the Library class and borrow in the
Book class:

classƒLibrary(object):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._booksƒ=ƒ{}
ƒƒƒƒƒƒƒƒself._patronsƒ=ƒ{}

4: getNumberBooks()
:Patron

:PatronQueue:Book
7: add(patron)

8: incBooksOut()
6: borrow(patron)

:Library
5: get(title, None)

3: borrowBook(title, patron)

1: select borrow
2: enter a title

:LibraryView

12.1 Software Design with UML [481]

continued

C6840_12 11/19/08 11:43 AM Page 481

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒborrowBook(self,ƒtitle,ƒpatron):
ƒƒƒƒƒƒƒƒ“””Libraryƒmethodƒcalledƒtoƒborrowƒaƒbook.”””
ƒƒƒƒƒƒƒƒbookƒ=ƒself._books.get(title,ƒNone)
ƒƒƒƒƒƒƒƒifƒpatron.getNumberBooks()ƒ==ƒ3:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Thisƒpatronƒalreadyƒhasƒthreeƒbooksƒout”
ƒƒƒƒƒƒƒƒelifƒbookƒ==ƒNone:ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Thereƒisƒnoƒbookƒwithƒthatƒtitle”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒbook.borrow(patron)

classƒBook(object):

ƒƒƒƒdefƒ__init__(self,ƒtitle,ƒauthor):
ƒƒƒƒƒƒƒƒself._titleƒ=ƒtitle
ƒƒƒƒƒƒƒƒself._authorƒ=ƒauthor
ƒƒƒƒƒƒƒƒself._borrowerƒ=ƒNone
ƒƒƒƒƒƒƒƒself._waitListƒ=ƒPatronQueue()

ƒƒƒƒdefƒborrow(self,ƒpatron):
ƒƒƒƒƒƒƒƒ“””Bookƒmethodƒcalledƒtoƒborrowƒaƒbook.”””
ƒƒƒƒƒƒƒƒifƒself._borrowerƒ==ƒpatron:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Thisƒpatronƒalreadyƒhasƒthisƒbook”
ƒƒƒƒƒƒƒƒelifƒself._borrowerƒ!=ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒself._waitList.add(patron)
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Thisƒpatronƒhasƒbeenƒaddedƒtoƒtheƒwaitƒlist”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._borrowerƒ=ƒpatron
ƒƒƒƒƒƒƒƒƒƒƒƒpatron.incBooksOut()
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Thisƒpatronƒhasƒsuccessfullyƒborrowedƒ“\ƒ+ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“theƒbook”ƒ

12.1.6 Inheritance

In Chapter 8, we discussed subclassing, a technique that helps eliminate redundant
code in similar classes. The idea is to factor common methods and data into a sin-
gle superclass. The subclasses then inherit these attributes for free. The inheritance
relationship between two classes is depicted with an outlined arrowhead in a class
diagram. One example of this relationship is found in a restricted savings account
application, which behaves just like a savings account application, except that the
user can make at most three withdrawals per month. The relationship between the
two classes that model this behavior is shown in Figure 12.10.

CHAPTER 12 Tools for Design, Documentation, and Testing[482]

C6840_12 11/19/08 11:43 AM Page 482

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 12.10] The inheritance relationship

Note that the arrow in this diagram is similar to those in earlier figures, in that
it also shows the direction of the relationship. A RestrictedSavingsAccount
knows all about a SavingsAccount, but a SavingsAccount knows nothing what-
soever about a RestrictedSavingsAccount.

12.1 Exercises
1 Write the use case for returning a book to the library, as discussed in this

section.

2 Modify the class diagram shown in Figure 12.8 to include the Library
class. You should assume that that a library contains zero or more books
and patrons.

3 Explain the difference between aggregation and composition; use an
example.

4 A blackjack game uses a deck of cards. As cards are dealt from the deck,
it gradually becomes empty. Draw a class diagram that shows the rela-
tionships among the classes Card, Deck, and BlackjackGame. Be sure to
show any multiplicities in the relationships.

5 Jack decides to rework the banking system, which already includes the classes
BankView, Bank, SavingsAccount, and RestrictedSavingsAccount.
He wants to add another class for checking accounts. He sees that savings
accounts and checking accounts both have some common attributes and
behaviors that they can inherit from a superclass named Account. The bank

SavingsAccount

RestrictedSavingsAccount

12.1 Software Design with UML [483]

C6840_12 11/19/08 11:43 AM Page 483

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.

contains zero or more instances of each of the three types of accounts. Draw
a class diagram that shows the relationships among the classes in this new
version of the system.

6 Write the scenario and draw a collaboration diagram for the action of
returning a book to the library, as discussed in this section.

12.2 Documentation
Each program example, script, or Python module presented in this book includes
program comments, in the form of Python docstrings, that identify the filename
and the purpose of the software. By now, you will have developed the habit of
including this type of information in your own program files. In Chapters 5, 6,
and 8, you also learned to document smaller software components, such as func-
tions, classes, and methods, with similar notation, or comments. In this section,
we examine ways to make documentation more systematic and informative. You
will also learn about a tool, pydoc, which you can use to generate documentation
that can be viewed with a Web browser.

12.2.1 Writing APIs

The term Application Programming Interface (API) refers to the interfaces
for a programming language’s built-in resources. Most interfaces also include
documentation. You can browse the API for the current version of Python at
Python’s Web site (http://docs.python.org/). You can also access information about
an API from within a Python shell by entering the help function with the name
of the resource as an argument (a library resource must first be imported). For
example, to display information about lists, you can enter help(list).

An API contains all of the information needed to use a given resource,
whether it is a module, a class, a method, or a function. What should this infor-
mation include? It should include the same information provided for the

CHAPTER 12 Tools for Design, Documentation, and Testing[484]

C6840_12 11/19/08 11:43 AM Page 484

May not be copied, scanned, or duplicated, in whole or in part.

12.2 Documentation [485]

continued

resources discussed in this book. The following list summarizes the recom-
mended information for each type of resource:

� Module—A module’s documentation includes the module’s filename, a
brief statement of the module’s purpose, and a summary of the resources
that it includes. For example, the math module defines functions used in
mathematical calculations.

� Class—A class’s documentation includes the name of the class and its super-
class, and a brief statement of the class’s purpose. It might also include a
short list of the operations available to the client (the class’s interface).

� Method—A method’s documentation includes its header and a brief state-
ment of what the method does (not how it does it), the types of arguments
that it expects, and the type of value it returns.

� Function—A function’s documentation includes the same information
included in the documentation for a method.

The documentation of modules and classes requires no further comment. The most
detailed, finely grained, and most often consulted documentation belongs to func-
tions and methods. Until now, this documentation has focused primarily on a
method’s or a function’s arguments and the value it returns. However, methods dif-
fer from functions in two important respects. Unlike functions, methods often mod-
ify the state of an object on which they are called. Also, methods might be involved
in exceptional conditions, such as the attempt to get or remove an item from an
empty list. In this section, we focus on strategies for documenting and dealing with
these considerations and how they are related to methods and their classes.

12.2.2 Revisiting the Student Class

Let’s review the documentation of the Student class introduced in Chapter 8.
This class maintains a student’s name and list of test scores. The programmer can
use methods to get the student’s name, get or reset the ith score, get the student’s
highest score, and get the student’s average score. Here is the code for this class
as presented in Chapter 8:

“””
File:ƒstudent.py
Resourcesƒtoƒmanageƒaƒstudent'sƒnameƒandƒtestƒscores.
“””

C6840_12 11/19/08 11:43 AM Page 485

May not be copied, scanned, or duplicated, in whole or in part.

classƒStudent(object):
ƒƒƒƒ“””Representsƒaƒstudent.”””

ƒƒƒƒdefƒ__init__(self,ƒname,ƒnumber):
ƒƒƒƒƒƒƒƒ“””Allƒscoresƒareƒinitiallyƒ0.”””
ƒƒƒƒƒƒƒƒself._nameƒ=ƒname
ƒƒƒƒƒƒƒƒself._scoresƒ=ƒ[]
ƒƒƒƒƒƒƒƒforƒcountƒinƒrange(number):
ƒƒƒƒƒƒƒƒƒƒƒƒself._scores.append(0)

ƒƒƒƒdefƒgetName(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstudent'sƒname.”””
ƒƒƒƒƒƒƒƒreturnƒself._name
ƒƒ
ƒƒƒƒdefƒsetScore(self,ƒi,ƒscore):
ƒƒƒƒƒƒƒƒ“””Resetsƒtheƒithƒscore,ƒcountingƒfromƒ1.”””
ƒƒƒƒƒƒƒƒself._scores[iƒ-ƒ1]ƒ=ƒscore

ƒƒƒƒdefƒgetScore(self,ƒi):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒithƒscore,ƒcountingƒfromƒ1.”””
ƒƒƒƒƒƒƒƒreturnƒself._scores[iƒ-ƒ1]
ƒƒƒ
ƒƒƒƒdefƒgetAverage(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒaverageƒscore.”””
ƒƒƒƒƒƒƒƒsumƒ=ƒreduce(lambdaƒx,ƒy:ƒxƒ+ƒy,ƒself._scores)
ƒƒƒƒƒƒƒƒreturnƒsumƒ/ƒlen(self._scores)
ƒƒƒƒ
ƒƒƒƒdefƒgetHighScore(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒhighestƒscore.”””
ƒƒƒƒƒƒƒƒreturnƒreduce(lambdaƒx,ƒy:ƒmax(x,ƒy),ƒself._scores)
ƒ
ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstringƒrepresentationƒofƒtheƒstudent.”””
ƒƒƒƒƒƒƒƒreturnƒ“Name:ƒ“ƒ+ƒself._nameƒƒ+ƒ“\nScores:ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒ“.join(map(str,ƒself._scores))

Most of the methods in the Student class are accessors, meaning that they
allow the user to examine the state of a student object but not modify it. Only
one of these methods, getScore, even expects an argument. Accessor methods
are generally the easiest ones to document, especially those that expect no argu-
ments. A simple statement about the type and meaning of the value returned by
the method usually suffices.

The method setScore is the only mutator method. It expects two argu-
ments, a position and a score, it modifies the state of the student object, and it
does not return a value.

CHAPTER 12 Tools for Design, Documentation, and Testing[486]

C6840_12 11/19/08 11:43 AM Page 486

May not be copied, scanned, or duplicated, in whole or in part.

Clearly, the methods getScore and setScore call for further attention. Note
that the methods’ docstrings appear to give the client information about the argu-
ments to pass and the actions that will be performed. However, the comments are
so concise that the person reading the documentation might gloss over important
facts. For example, the reader might miss the fact that the positions of the scores
are counted from 1 rather than 0. Moreover, there is no information about what
will happen if a careless reader passes to either method a position less than 1 or
greater than the number of scores. Software developers do not like to live with
this type of uncertainty. We now examine a more precise and informative way to
document these methods and a way to deal with potential error conditions.

12.2.3 Preconditions and Postconditions

A precondition is a statement of what must be true before a method is invoked if
the method is to run correctly. A postcondition is a statement of what will be
true after the method has finished execution. One can think of preconditions and
postconditions as the subject of an imaginary conversation between a method’s
author and its user:

Author: Here are the things that you must guarantee to be true before my
method is invoked. They are its preconditions.

User: Fine. And what do you guarantee will be the case if I do that?

Author: Here are the things that I guarantee to be true when my method
finishes execution. They are its postconditions.

Preconditions usually describe the state of any parameters and instance variables
that a method is about to access. Postconditions describe the state of any parame-
ters and instance variables that the method has changed.

A method’s preconditions and postconditions can be specified in its doc-
string. To return to our example, the method getScore in the Student class has
one precondition: the integer argument must fall in the range from 1 through the
number of scores. If the user satisfies this precondition, then the method is guar-
anteed to return the appropriate score. The method has no other postconditions.
Here is the code for the method header with a revised docstring:

defƒgetScore(self,ƒi):
ƒƒƒƒ“””Returnsƒtheƒithƒscore,ƒcountingƒfromƒ1.
ƒƒƒƒPrecondition:ƒ1ƒ<=ƒiƒ<=ƒnumberƒofƒscores”””

12.2 Documentation [487]

C6840_12 11/19/08 11:43 AM Page 487

May not be copied, scanned, or duplicated, in whole or in part.

The method setScore has two parameters, the position and the score. This
method has the same precondition on the position as getScore, and also has a pre-
condition on the score. The score must range from 0 through 100. As a mutator
method, setScore also has a postcondition. If the two preconditions are satisfied,
the ith score in the student object is reset to the given score. The postcondition
thus describes a change of state in the student object. Here is the revised code:

defƒsetScore(self,ƒi,ƒscore):
ƒƒƒƒ“””Resetsƒtheƒithƒscore.
ƒƒƒƒPreconditions:ƒ1ƒ<=ƒiƒ<=ƒnumberƒofƒscores
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ0ƒ<=ƒscoreƒ<=ƒ100
ƒƒƒƒPostcondition:ƒscoreƒatƒithƒpositionƒisƒresetƒtoƒscore.”””

12.2.4 Enforcing Preconditions with Exceptions

Preconditions and postconditions can serve as excellent reminders (to both authors
and users) of the way in which these methods will behave if the preconditions are
adhered to. However, the mere presence of preconditions in the documentation
does not prevent users from violating them through misreading or carelessness.
How, then, will the inevitable errors be detected, and who is responsible for detect-
ing and handling them?

Let’s return to our example and consider what happens when a programmer
fails to observe the precondition of the method getScore. If she enters a position
greater than the length of the scores list, the list object will raise an exception.
The program will crash, hopefully during testing and before release, so the pro-
grammer can detect and correct the error. However, the error message will state
that an index error has occurred during access to the student object’s list, not that
the precondition of the method getScore has been violated. Deciphering this
error message seems like an unnecessary expenditure of the programmer’s mental
energy. Moreover, this message reveals information about the internal structure of
the Student class that the programmer has no need or right to know.

But even worse, consider what might happen if the programmer passes a 0 to
getScore. The score at the end of the student’s list will be returned, because the
method computes an actual list index of -1. The result does not crash the pro-
gram, but becomes a logic error that might go undetected until program release.

The best way to avoid these problems is for the method’s author to guarantee
that an exception will be raised if a precondition is violated. The type of error
raised and the message provided can then focus the user’s attention on the
method’s precondition and nothing else.

CHAPTER 12 Tools for Design, Documentation, and Testing[488]

C6840_12 11/19/08 11:43 AM Page 488

May not be copied, scanned, or duplicated, in whole or in part.

Returning to our example, the author decides to raise an IndexError, one of
Python’s standard exception types, with an appropriate error message if the user
passes an invalid number to the method getScore. The syntax for raising an
exception is the following:

raiseƒ<errorƒtype>,ƒ<aƒstringƒmessage>

The method’s documentation is also updated to convey this information. Here is
the revised code for the complete method:

defƒgetScore(self,ƒi):
ƒƒƒƒ“””Returnsƒtheƒithƒscore,ƒcountingƒfromƒ1.
ƒƒƒƒPrecondition:ƒ1ƒ<=ƒiƒ<=ƒnumberƒofƒscores
ƒƒƒƒRaises:ƒIndexErrorƒifƒiƒ<ƒ1ƒorƒiƒ>ƒnumberƒofƒscores”””
ƒƒƒƒifƒiƒ<ƒ1ƒorƒiƒ>ƒlen(self._scores):
ƒƒƒƒƒƒƒƒraiseƒIndexError,ƒ“Positionƒoutƒofƒrange”
ƒƒƒƒreturnƒself._scores[iƒ-ƒ1]

The code for the method setScore can be modified in a similar manner to
detect violations of its preconditions. Generally, the logical complement of a
method’s precondition is tested in a simple if statement. One if statement is
used for each precondition.

A programmer should try to raise a type of exception that is specifically
related to the kind of condition being enforced. You can get help on Python’s
exception types by importing the exceptions module and entering
help(exceptions). Figure 12.11 lists the hierarchy of the standard exception
types, beginning with BaseException as the most general class.

[FIGURE 12.11] Python’s standard exception types (continued)

BaseException
 Exception
 GeneratorExit
 StandardError
 ArithmeticError
 FloatingPointError
 OverflowError
 ZeroDivisionError
 AssertionError
 AttributeError

12.2 Documentation [489]

C6840_12 11/19/08 11:43 AM Page 489

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 12.11] Python’s standard exception types

If you cannot think of the appropriate type of exception to use, the generic
Exception type is always available, or you can define your own specific type of
exception by subclassing this class.

12.2.5 Web-Based Documentation with pydoc

As we mentioned earlier, programmer-authored documentation is always available
in the Python shell. To obtain it, you enter the help function with the resource

 EOFError
 EnvironmentError
 IOError
 OSError
 ImportError
 LookupError
 IndexError
 KeyError
 MemoryError
 NameError
 UnboundLocalError
 ReferenceError
 RuntimeError
 NotImplementedError
 SyntaxError
 IndentationError
 TabError
 SystemError
 TypeError
 ValueError
 UnicodeError
 UnicodeDecodeError
 UnicodeEncodeError
 UnicodeTranslateError
 StopIteration

CHAPTER 12 Tools for Design, Documentation, and Testing[490]

C6840_12 11/19/08 11:43 AM Page 490

May not be copied, scanned, or duplicated, in whole or in part.

name as an argument. Here is the output of help with the revised documentation
for our Student class:

>>>ƒhelp(Student)
HelpƒonƒclassƒStudentƒinƒmoduleƒ__main__:

classƒStudent(__builtin__.object)
ƒ|ƒƒRepresentsƒaƒstudent.
ƒ|ƒƒ
ƒ|ƒƒMethodsƒdefinedƒhere:
ƒ|ƒƒ
ƒ|ƒƒ__init__(self,ƒname,ƒnumber)
ƒ|ƒƒƒƒƒƒAllƒscoresƒareƒinitiallyƒ0.
ƒ|ƒƒ
ƒ|ƒƒ__str__(self)
ƒ|ƒƒƒƒƒƒReturnsƒtheƒstringƒrepresentationƒofƒtheƒstudent.
ƒ|ƒƒ
ƒ|ƒƒgetAverage(self)
ƒ|ƒƒƒƒƒƒReturnsƒtheƒaverageƒscore.
ƒ|ƒƒ
ƒ|ƒƒgetHighScore(self)
ƒ|ƒƒƒƒƒƒReturnsƒtheƒhighestƒscore.
ƒ|ƒƒ
ƒ|ƒƒgetName(self)
ƒ|ƒƒƒƒƒƒReturnsƒtheƒstudent'sƒname.
ƒ|ƒƒ
ƒ|ƒƒgetScore(self,ƒi)
ƒ|ƒƒƒƒƒƒReturnsƒtheƒithƒscore,ƒcountingƒfromƒ1.
ƒ|ƒƒƒƒƒƒPrecondition:ƒ1ƒ<=ƒiƒ<=ƒnumberƒofƒscores
ƒ|ƒƒƒƒƒƒRaises:ƒIndexErrorƒifƒiƒ<ƒ1ƒorƒiƒ>ƒnumberƒofƒscores
ƒ|ƒƒ
ƒ|ƒƒsetScore(self,ƒi,ƒscore)
ƒ|ƒƒƒƒƒƒResetsƒtheƒithƒscore.
ƒ|ƒƒƒƒƒƒPreconditions:ƒ1ƒ<=ƒiƒ<=ƒnumberƒofƒscores
ƒ|ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ0ƒ<=ƒscoreƒ<=ƒ100
ƒ|ƒƒƒƒƒƒPostcondition:ƒscoreƒatƒithƒpositionƒisƒresetƒtoƒscore.
ƒ|ƒƒƒƒƒƒRaises:ƒIndexErrorƒifƒiƒ<ƒ1ƒorƒiƒ>ƒnumberƒofƒscores
ƒ|ƒƒƒƒƒƒƒƒƒƒƒƒƒƒValueErrorƒifƒscoreƒ<ƒ0ƒorƒscoreƒ>ƒ100
ƒ|ƒƒ
ƒ|ƒƒ–––

Another way to consult program documentation is via a Web browser.
Python includes a tool called pydoc that allows the programmer to generate doc-
umentation from a module in the form of a Web page. The Web page documen-
tation for the Student class discussed earlier is shown in Figure 12.12.

12.2 Documentation [491]

C6840_12 11/19/08 11:43 AM Page 491

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 12.12] Viewing Python documentation in a Web browser

CHAPTER 12 Tools for Design, Documentation, and Testing[492]

C6840_12 11/19/08 11:43 AM Page 492

May not be copied, scanned, or duplicated, in whole or in part.

To create this page, you perform the following steps:

Step 1 Open a terminal window and navigate to the directory that contains your
Python source file (in this case, student.py).

Step 2 Run the following command at the terminal command prompt:
pydocƒ-wƒstudentƒ>ƒstudent.html

This command creates the Web page file student.html in the current directory.
You can then launch this file to view the documentation in your Web browser.

Note that in Figure 12.12, the object class is a link. If you have a set of
related modules, then you can generate a set of Web pages containing all the
relevant links by placing them in the same directory.

12.2 Exercises
1 The PatronQueue class includes the method peek, which was not dis-

cussed earlier. This method expects no arguments and returns but does
not remove the patron at the front of the queue. Does this method have
preconditions? If so, what are they?

2 Write the header and documentation for the PatronQueue method
peek. Be sure to include any information about preconditions and
exceptions that might be raised.

3 The PatronQueue class also includes the method isEmpty, which was
not discussed earlier. This method expects no arguments and returns
True if the queue is empty and False otherwise. Write a code segment,
to be included in the method peek, that raises an exception if the queue
is empty.

4 Jason claims the author of a method should be responsible for checking
for violations of preconditions, whereas Sara counters that checking for
violations is the user’s responsibility. Who is right, and why?

12.3 Testing
Simple programs, such as those presented in the first few chapters of this book, can
be written in a matter of minutes, run once or twice to see if they work correctly, be
turned in as homework assignments, and thrown away when they are returned with

12.3 Testing [493]

C6840_12 11/19/08 11:43 AM Page 493

May not be copied, scanned, or duplicated, in whole or in part.

a grade. However, the complex programs that drive our information-based world do
not and could not receive this kind of treatment. Our lives and livelihoods depend
on them. After they are deployed, they remain in use for many years. When errors
turn up, they are fixed with patches or new releases. However, a great deal of time,
effort, and money is spent trying to prevent software errors from ever happening. In
this section, we examine testing, the discipline that searches for program errors and
builds confidence that software works correctly.

12.3.1 What to Test

Before you begin testing, you must determine which aspects of your program you
want to verify. There are several features of a program’s behavior that we might
want to consider:

1 Is the program user friendly? No matter how correct a program is, if it
is difficult to use, it is unacceptable.

2 Is the program robust? That is, does it behave well when presented with
invalid or unexpected inputs? A program is inadequate if it crashes when
the user misunderstands the input requirements or makes a keyboard
error. In contrast, a robust program rejects invalid inputs and signals the
user to try again.

3 Is the program reliable? How often does it fail and how severe are the
consequences of a failure? A program that frequently destroys half a day’s
work is not reliable.

4 Does the program provide acceptable performance? A program that
takes 10 hours to sort a list of numbers might be correct, but it is not
very useful.

Although all of these aspects of software are important, in this section we
confine our attention to a more minimal sense of program correctness. For our
purposes, a reasonable definition of correct is that the program produces the
expected outputs when operating on inputs that fall within specified limits.

12.3.2 Three Approaches to Choosing Test Data

Testing appears to be a matter of choosing inputs that will show, to our satisfac-
tion, that a program produces the correct outputs. How do we do this? There are
three basic approaches to testing: haphazard, black box, and white box.

CHAPTER 12 Tools for Design, Documentation, and Testing[494]

C6840_12 11/19/08 11:43 AM Page 494

May not be copied, scanned, or duplicated, in whole or in part.

12.3.2.1 Haphazard Testing

The haphazard approach is the one you might be tempted to use late at night the
day before a program is due. Just bang on the program with a few inputs until it
breaks, fix the bugs that show up, and call it correct. Considering that the possi-
ble combinations of inputs for a complex program can run into the billions and
beyond, randomly trying out a few of these is not going to be very effective.

12.3.2.2 Black-Box Testing

In black-box testing, you try to be more organized in your choice of inputs.
Consider the simple example of a payroll program that computes pay differently
for regular hours and overtime hours. Although there are many possible values
for hours worked, you do not need to try all of them to feel confident that the
program works correctly. When constructing the test data, you observe that all
hours between 0 and 40 are in some sense equivalent, as are all hours over 40. So
you might decide to test the program with just the inputs 30 and 50. Generally,
inputs can be partitioned into clusters of equivalent data, such that if a program
works correctly on one set of values from a cluster, it works equally well for all
other values in the same cluster. Just to be on the safe side, you should also test
the program for values on the boundaries between clusters. For the payroll prob-
lem, this means adding the values 0 and 40 to our test data. Finally, we should
consider data that you know are unreasonable. For the payroll problem, we could
include –15, 3045, and “3ax6” in the test data.

There are difficulties with black-box testing. It is easy to overlook some clus-
ters, and worse, the number of clusters can be so large that we cannot possibly
consider them all. It is important to note that the construction of the test data is
made without consideration or knowledge of the program’s internal workings.
That’s why the process is called black-box testing.

12.3.2.3 White-Box Testing

In white-box testing, you attempt to concoct test data that exercise all parts of our
program. To do so, you examine the code closely and then formulate the test data,
but the task can be difficult. Imagine a program consisting of a dozen if-else
statements following each other in sequence. When testing this program, pru-
dence recommends using test data that cause each branch of each if-else
statement to be executed at least once. This is called code coverage and perhaps
could be achieved with as few as two sets of inputs. The first set might exercise
all of the if clauses, while the second set exercises all the else clauses.

12.3 Testing [495]

C6840_12 11/19/08 11:43 AM Page 495

May not be copied, scanned, or duplicated, in whole or in part.

However, such an approach is woefully inadequate. What you really need are
test data that exercise every possible combination of if clauses and else clauses, of
which there are 212, or 4096. That is, the test data should exercise every possible
path through the program. Keep in mind that this is just a simple example. A typi-
cal program might contain an enormous number of paths. Unfortunately, the fact
that every path through a program has been tested tells you nothing about whether
or not the program’s logic takes into account all the different combinations of
inputs. Thus, you should combine black-box testing with white-box testing.

12.3.3 When to Test

There are four points during the coding process at which test data can be used.
These are called unit testing, integration testing, acceptance testing, and
regression testing.

12.3.3.1 Unit Testing

In an object-oriented setting, it is possible to test classes in isolation. To perform
a unit test, you write code that instantiates an object of the desired type and then
run a series of methods that subject it to a thorough workout.

12.3.3.2 Integration Testing

After all classes have been tested in isolation, you need to confirm that they work
together properly. To the extent possible, it is best to bring classes into the test
environment one at a time. If classes are tossed together too soon, it is difficult to
track down the source of errors. By bringing new classes into the test environ-
ment one at a time, you have a better chance of isolating errors quickly.

But this strategy does raise a tricky question: How can you run the system
before all the classes are included? There are two answers. First, you can imple-
ment the system in a stepwise fashion, at each stage adding features, until you
work your way up to the complete system. Second, for some of the classes, you
can substitute simplified prototypes that have the same interfaces as the classes
they replace, but without all of their internal processing capabilities.

12.3.3.3 Acceptance Testing

Once the system has been completed, it must go through one final phase of testing
under conditions identical to those in which it will eventually be used on a daily

CHAPTER 12 Tools for Design, Documentation, and Testing[496]

C6840_12 11/19/08 11:43 AM Page 496

May not be copied, scanned, or duplicated, in whole or in part.

basis. Whereas during integration testing, the system runs against data artificially
designed to exercise specific features, now it must be determined if the system
functions adequately in a real-life setting.

12.3.3.4 Regression Testing

After you go to the trouble of devising a good set of test data for a program, you
should keep the test data for later use. Then, anytime you change the program,
you can rerun it on the test data to make sure that your modifications have not
unintentionally broken some feature that previously worked correctly.

12.3.4 Proofs of Program Correctness

Even the most thorough and careful tests can only build our subjective confi-
dence in a program’s correctness. Testing cannot actually demonstrate the pro-
gram’s correctness. This fact leads us to look for other ways to prove a program’s
correctness.

We can start by proving that a program is correct in a strictly mathematical
sense. The form of the statement we attempt to prove might be something like
this: Given inputs of type X, then program Y produces outputs of type Z.
Regrettably, proving that even the simplest program is correct is quite tedious,
and most programmers are much worse at mathematics than they are at program-
ming. Their proofs of correctness might be even more suspect than their code.
Nonetheless, programs of significant size have been proven correct, and an
understanding of the basic processes involved can help anyone reason more effec-
tively about the programs he or she writes.

At this point, people sometimes wonder why we do not automate the process
of determining program correctness. There are, after all, theorem-proving pro-
grams. However, before investing a lot of effort in trying to write a general-
purpose correctness-proving program, you need to keep a rather amazing fact in
mind. It is a proven, incontestable, mathematical truth that it is impossible to
write a program that performs the following seemingly simple task: take as input
the code for an arbitrary program, X, and a list of arbitrary inputs for that pro-
gram, Y, and then determine if X will stop or run forever when presented with Y.
This is called the halting problem. It is impossible, not just difficult, to write a
program that can solve it, not just at this time and place, but at any time and in
any place by any species in the universe.

12.3 Testing [497]

C6840_12 11/19/08 11:43 AM Page 497

May not be copied, scanned, or duplicated, in whole or in part.

12.3.5 Unit Testing in Python

To mitigate the difficulty of testing software, programmers have constructed software
tools that automate testing to a certain extent. The programmer Kent Beck devel-
oped one of the first tools for the unit testing of classes. Beck originally wrote this
tool for the Smalltalk programming language. He and another programmer, Erich
Gamma, then wrote a similar tool, called junit, that is now widely used by Java pro-
grammers. In addition, they developed pyunit, a tool for unit testing in Python.

A unit test consists of a set of test cases for a given class. Each test case is a
method that runs tests on an individual method in the class. The tests take the form
of assertions. An assertion is a method that expects a Boolean expression as an
argument. If the expression is True, then this particular test passes; otherwise, it
fails. If all of the assertions succeed, then the entire test case succeeds. During the
execution of a test case, the unit test tool automatically records each failure and the
associated information, such as the text of the Boolean expressions that fail.

A complete set of test cases, or a test suite, can be run whenever a change is
made to the class under development. The test suite can be run from the shell or
a terminal prompt. The unit test tool displays a trace of the test failures that
allow the programmer to pinpoint the sources of errors quickly.

To illustrate the features of unit testing in Python, let’s develop a unit test for
the Student class discussed earlier in this chapter. Our first example shows a sin-
gle test case for the Student method getName. Here is the code for this script,
in the file teststudent.py, followed by an explanation:

“””
File:ƒteststudent.py
UnitƒtestƒsuiteƒforƒtheƒStudentƒclass.
“””

fromƒstudentƒimportƒStudent
importƒunittest

classƒTestStudent(unittest.TestCase):
ƒƒƒƒ“””DefinesƒaƒunitƒtestƒsuiteƒforƒtheƒStudentƒclass.”””

ƒƒƒƒdefƒsetUp(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒaƒtestƒfixtureƒwithƒ5ƒscores.”””
ƒƒƒƒƒƒƒƒself._studentƒ=ƒStudent(“TEST”,ƒ5)

continued

CHAPTER 12 Tools for Design, Documentation, and Testing[498]

C6840_12 11/19/08 11:43 AM Page 498

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒtestGetName(self):
ƒƒƒƒƒƒƒƒ“””TestƒcaseƒforƒgetName.”””
ƒƒƒƒƒƒƒƒself.assertEquals(“TEST”,ƒself._student.getName())ƒ

#ƒCreatesƒaƒsuiteƒandƒrunsƒtheƒtext-basedƒunitƒtestƒonƒit
suiteƒ=ƒunittest.makeSuite(TestStudent)
unittest.TextTestRunner().run(suite)

To create this test case, the programmer imports the module unittest and
then defines a new class, TestStudent, that is a subclass of the class
unittest.TestCase. The new class inherits from TestCase the methods for
making assertions mentioned earlier. TestStudent also includes one instance
variable that refers to the Student object to be tested.

The programmer then defines the method setup. This method automati-
cally initializes the Student variable before each test case is run. The set of
objects initialized in setup are also called the test fixture for the unit test.

The single test case, a method called testGetName, is then defined. This
method runs the TestCase method assertEquals with a given string and the
string returned by the Student method getName. If the two strings are not
equal, assertEquals automatically outputs an informative error message. By
convention, the name of each test case consists of the prefix test and the name
of the method being tested.

The last two lines of code in the script actually run the test. The unittest
function makeSuite creates a TestSuite object from the TestStudent class.
This suite is then run for terminal-based output with an instance of the class
unittest.TextTestRunner.

The output of a successful test is shown in Figure 12.13. We then change
the string in the test case to “Ken” to force a test failure, which is shown in
Figure 12.14.

[FIGURE 12.13] A successful unit test of the Student class

.
--
Ran 1 test in 0.007s

OK

12.3 Testing [499]

C6840_12 11/19/08 11:44 AM Page 499

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Tools for Design, Documentation, and Testing[500]

[FIGURE 12.14] A failed unit test of the Student class

As methods are added to a class, test cases for them can be added to the
class’s unit test. Our next example shows the addition of test cases for the meth-
ods getScore, setScore, getHighScore, and getAverage in the Student
class. The code in setup is modified to include the scores from 1 through 5.
Some of the new test cases also use the TestCase method assertRaises. This
method verifies that an exception is raised in the method under review. Here is
the code for our updated version of the TestStudent class:

classƒTestStudent(unittest.TestCase):
ƒƒƒƒ“””DefinesƒaƒunitƒtestƒsuiteƒforƒtheƒStudentƒclass.”””

ƒƒƒƒdefƒsetUp(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒaƒtestƒfixture.ƒScoresƒareƒ1-5.”””
ƒƒƒƒƒƒƒƒself._studentƒ=ƒStudent(“TEST”,ƒ5)
ƒƒƒƒƒƒƒƒforƒindexƒinƒxrange(1,ƒ6):
ƒƒƒƒƒƒƒƒƒƒƒƒscoreƒ=ƒself._student.setScore(index,ƒindex)

ƒƒƒƒdefƒtestGetName(self):
ƒƒƒƒƒƒƒƒ“””TestƒcaseƒforƒgetName.”””
ƒƒƒƒƒƒƒƒself.assertEquals(“TEST”,ƒself._student.getName())ƒ

ƒƒƒƒdefƒtestGetAverage(self):
ƒƒƒƒƒƒƒƒ“””ƒTestƒcaseƒforƒgetAverage.”””
ƒƒƒƒƒƒƒƒaverageƒ=ƒself._student.getAverage()
ƒƒƒƒƒƒƒƒself.assertEquals(3,ƒaverage)

continued
ƒƒƒƒ

F
==
FAIL: Unit test for getName.
--
Traceback (most recent call last):
 File "/Users/ken/teststudent.py", line 18, in testGetName
 self.assertEquals("KEN", self._student.getName())
AssertionError: 'KEN' != 'TEST'

--
Ran 1 test in 0.003s

FAILED (failures=1)

C6840_12 11/19/08 11:44 AM Page 500

May not be copied, scanned, or duplicated, in whole or in part.

12.3 Testing [501]

ƒƒƒƒdefƒtestGetHighScore(self):
ƒƒƒƒƒƒƒƒ“””ƒTestƒcaseƒforƒgetHighScore.”””
ƒƒƒƒƒƒƒƒhighƒ=ƒself._student.getHighScore()
ƒƒƒƒƒƒƒƒself.assertEquals(5,ƒhigh)

ƒƒƒƒdefƒtestGetScore(self):
ƒƒƒƒƒƒƒƒ“””ƒTestƒcaseƒforƒgetScore.”””
ƒƒƒƒƒƒƒƒforƒindexƒinƒxrange(1,ƒ6):
ƒƒƒƒƒƒƒƒƒƒƒƒscoreƒ=ƒself._student.getScore(index)
ƒƒƒƒƒƒƒƒƒƒƒƒself.assertEquals(index,ƒscore)
ƒƒƒƒƒƒƒƒself.assertRaises(IndexError,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._student.getScore,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ0)
ƒƒƒƒƒƒƒƒself.assertRaises(IndexError,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._student.getScore,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ6)
ƒƒ
ƒƒƒƒdefƒtestSetScore(self):
ƒƒƒƒƒƒƒƒ“””TestƒcaseƒforƒsetScore.”””
ƒƒƒƒƒƒƒƒforƒindexƒinƒxrange(1,ƒ6):
ƒƒƒƒƒƒƒƒƒƒƒƒscoreƒ=ƒself._student.setScore(index,ƒindexƒ+ƒ1)
ƒƒƒƒƒƒƒƒforƒindexƒinƒxrange(1,ƒ6):
ƒƒƒƒƒƒƒƒƒƒƒƒscoreƒ=ƒself._student.getScore(index)
ƒƒƒƒƒƒƒƒƒƒƒƒself.assertEquals(indexƒ+ƒ1,ƒscore)ƒ

Note that the setup method is automatically run before each test case is run.
That means that each test case is run with a fresh Student object, so changes to
this object in one test case will not affect the results of another test case.

The TestCase class includes a significant number of methods that you can
use to make assertions about your code. Table 12.1 lists several of these.

[TABLE 12.1] Some methods for making assertions in the TestCase class

Although unit tests are ideal for testing individual classes, to a certain extent
they can also be used during integration testing. For example, a test case for the
Book method borrow, which we developed in the first section of this chapter,

TestCase METHOD WHAT IT DOES

assert_(aBoolean) Signals a failure if aBoolean is False.

assertEquals(x, y) Signals a failure if x and y are not equal.

assertRaises(e, f, x,…,y) Tests that exception e is raised when f is
called with arguments x, ..., y.

fail() Signals a failure unconditionally.

C6840_12 11/19/08 11:44 AM Page 501

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Tools for Design, Documentation, and Testing[502]

involves the use of the classes Book, Patron, and PatronQueue. The setup
method for this unit test would instantiate both Book and Patron. Likewise, the
test case for the Library method borrowBook would include a setup method
that creates Patron and Book objects as well as a Library object. Naturally, the
unit tests for these classes would be developed in a bottom-up manner.

The TestCase class also includes and runs a teardown method. This
method is automatically run at the conclusion of the execution of each test case.
The programmer can override this method in a unit test to perform cleanup
operations. For example, a test case might require an open network connection,
so its cleanup would entail closing the network connection.

By developing and running a good unit test for each class, the programmer
can focus on writing code and leave the testing to an automated assistant. Kent
Beck actually encourages programmers to write their unit tests both before and
while they write the classes to be tested. This type of test-driven development
encourages the detection of errors early in the coding process and increases the
likelihood of thorough white-box testing.

12.3 Exercises
1 Explain the difference between black-box testing and white-box testing.

2 List three advantages of a unit test tool.

3 What is the purpose of the method setup in a unit test?

Suggestions for Further Reading
Beck, Kent, Test Driven Development: By Example (Boston: Addison-
Wesley, 2002).

Fowler, Martin, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd Edition (Boston: Addison-Wesley, 2003).

C6840_12 11/19/08 11:44 AM Page 502

May not be copied, scanned, or duplicated, in whole or in part.

Summary [503]

Summary
� The Unified Modeling Language (UML) is the leading graphical

notation for depicting the structure and behavior of object-oriented
software systems.

� A use case describes the steps performed during a single interaction of
a human user with a software system. The description can be in writ-
ing or in the form of a UML use case diagram.

� A class diagram shows the relationships among the classes of a soft-
ware system. The relationships can be labeled with roles, a direction,
and a multiplicity.

� A collaboration diagram shows the interactions among objects
required to complete a given task in a software system.

� Preconditions and postconditions form the subject of an agreement
between the author of a method and its client. A precondition states
what the client must do to enable a method to guarantee its results. A
postcondition states the results to be guaranteed if a method’s precon-
ditions are satisfied.

� The author of a method can enforce a precondition by raising an
exception if that precondition is not satisfied.

� Complete documentation of a method includes information about any
preconditions, postconditions, and exceptions that it might raise.

� The programmer can generate Web-based documentation for a
Python resource by running the pydoc tool.

� In black-box testing, the programmer selects test data that produce
the expected results for normal inputs and abnormal inputs. In white-
box testing, the programmer selects test data that exercise all of the
possible execution paths in a given resource.

� A unit test subjects a given class to a thorough workout. pyunit
provides a tool for automating unit tests.

� Integration testing examines the behavior of cooperating classes that
have already been unit tested.

� Acceptance testing subjects a software system to examination under
realistic conditions.

� Regression testing is performed when any part of a software system is
repaired or extended.

C6840_12 11/19/08 11:44 AM Page 503

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 12 Tools for Design, Documentation, and Testing[504]

REVIEW QUESTIONS
1 UML class diagrams show

a the interactions among objects
b the relationships among classes

2 Aggregation is a relationship in which

a an instance of one class can contain instances of another
b one class inherits data and operations from another

3 UML collaboration diagrams show

a the interactions among objects
b the relationships among classes

4 The symbol for a multiplicity of zero or more items in UML is

a 0..n
b *

5 The assertion of what must be true before a method is to execute cor-
rectly is called its

a argument
b precondition

6 The assertion of the results that are guaranteed to be true after a method
executes is called its

a return value
b postcondition

7 Adherence to a precondition can be enforced by

a proper programmer training
b testing for it and raising an exception if it is not satisfied

8 Testing that attempts to exercise all of the possible execution paths in a
program is called

a black-box testing
b white-box testing

C6840_12 11/19/08 11:44 AM Page 504

May not be copied, scanned, or duplicated, in whole or in part.

9 Testing that exercises a program under realistic conditions is called

a integration testing
b acceptance testing

10 A method that runs tests on another method in a unit test is called a

a test case
b test fixture
c test suite

PROJECTS
1 Select a programming project from Chapters 8–10 and develop a set of

use cases for that program.

2 Select a programming project from Chapters 8–10 and develop a class
diagram for that program.

3 Select a programming project from Chapters 8–10 and develop at least
one collaboration diagram for that program.

4 Select a programming project from Chapters 8–10 that requires you to
develop some methods with preconditions and/or postconditions. Add
documentation of these items to the program, enforce any preconditions
by raising exceptions, and generate Web pages using the pydoc tool.

5 Select a programming project from Chapters 8-10 and develop unit tests
for each of the program’s classes.

PROJECTS [505]

C6840_12 11/19/08 11:44 AM Page 505

May not be copied, scanned, or duplicated, in whole or in part.

C6840_12 11/19/08 11:44 AM Page 506

This page intentionally left blank

[CHAPTER]
COLLECTIONS, ARRAYS, AND

Linked Structures13
After completing this chapter, you will be able to:

� Recognize different categories of collections and the operations
on them

� Understand the difference between an abstract data type and
the concrete data structures used to implement it

� Perform basic operations on arrays, such as insertions and
removals of items

� Resize an array when it becomes too small or too large
� Describe the space/time trade-offs for users of arrays
� Perform basic operations, such as traversals, insertions, and

removals, on linked structures
� Explain the space/time trade-offs of arrays and linked struc-

tures in terms of the memory models that underlie these data
structures

During the first half of this book, you learned about the basic
elements of programming. You also learned how to organize a soft-
ware system in terms of cooperating methods, objects, and classes.
In the next few chapters, we explore several frequently used classes
called collections. Although they differ in structure and use, collec-
tions all have the same fundamental purpose—they help program-
mers organize data in programs effectively.

Collections can be viewed from two perspectives. Users or
clients of collections are concerned with what they do in various
applications. Developers or implementers of collections are con-
cerned with how they can best perform as general-purpose
resources. In this chapter, we give an overview of different types of
collections from the perspective of the users of those collections, and
also introduce two data structures—arrays and linked structures—
commonly used to implement collections.

C6840_13 11/19/08 1:21 PM Page 507

May not be copied, scanned, or duplicated, in whole or in part.

13.1 Overview of Collections
A collection, as the name implies, is a group of items that we want to treat as a
conceptual unit. Nearly every nontrivial piece of software involves the use of col-
lections. Although some of what you learn in computer science comes and goes
with changes in technology, the basic principles of organizing collections endure.
The list discussed in Chapter 5 is probably the most common and fundamental
type of collection. Other important types of collections include strings, stacks,
queues, binary search trees, heaps, graphs, dictionaries, sets, and bags. Collections
can be homogeneous, meaning that all items in the collection must be of the
same type, or heterogeneous, meaning the items can be of different types. In
many programming languages, lists are homogeneous, although, as we saw in
Chapter 5, a Python list can contain different types of objects. An important
distinguishing characteristic of collections is the manner in which they are
organized. We begin by examining the organization used in four main categories
of collections: linear collections, hierarchical collections, graph collections, and
unordered collections.

13.1.1 Linear Collections
The items in a linear collection are, like people in a line, ordered by position.
Each item except the first has a unique predecessor, and each item except the last
has a unique successor. As shown in Figure 13.1, D2’s predecessor is D1, and D2’s
successor is D3.

[FIGURE 13.1] A linear collection

Everyday examples of linear collections are grocery lists, stacks of dinner plates,
and a line of customers waiting at a bank.

13.1.2 Hierarchical Collections
Data items in hierarchical collections are ordered in a structure reminiscent of
an upside-down tree. Each data item except the one at the top has just one prede-
cessor, its parent, but potentially many successors, called its children. As shown
in Figure 13.2, D3’s predecessor (parent) is D1, and D3’s successors (children) are
D4, D5, and D6.

D2 D4D3 D5 D1

CHAPTER 13 Collections, Arrays, and Linked Structures[508]

C6840_13 11/19/08 1:21 PM Page 508

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 13.2] A hierarchical collection

A file directory system, a company’s organizational tree, and a book’s table of
contents are examples of hierarchical collections.

13.1.3 Graph Collections

A graph collection, also called a graph, is a collection in which each data item
can have many predecessors and many successors. As shown in Figure 13.3, all
elements connected to D3 are considered to be both its predecessors and its suc-
cessors, and they are also called its neighbors.

[FIGURE 13.3] A graph collection

Examples of graphs are maps of airline routes between cities and electrical
wiring diagrams for buildings.

D3

D2D1

 D5 D4

D2 D3

D4 D5 D6

D1

13.1 Overview of Collections [509]

C6840_13 11/19/08 1:21 PM Page 509

May not be copied, scanned, or duplicated, in whole or in part.

13.1.4 Unordered Collections

As the name implies, items in an unordered collection are not in any particular
order, and one cannot meaningfully speak of an item’s predecessor or successor.
Figure 13.4 shows such a structure.

[FIGURE 13.4] An unordered collection

A bag of marbles is an example of an unordered collection. Although you can
put marbles into a bag and take marbles out of a bag in any order you want,
within the bag, the marbles are in no particular order.

13.1.5 Operations on Collections

Collections are typically dynamic rather than static, meaning they can grow or
shrink with the needs of a problem. Also, their contents can change throughout
the course of a program. The manipulations that can be performed on a collec-
tion vary with the type of collection being used, but generally, the operations fall
into several broad categories that are outlined in Table 13.1.

CATEGORY OF OPERATION DESCRIPTION

Search and retrieval These operations search a collection for a given target
item or for an item at a given position. If the item is
found, either it or its position is returned. If the
item is not found, a distinguishing value, such as
None or –1, is returned.

Removal This operation deletes a given item or the item at a
given position.

continued

D3

D2

D1

 D5

D4

CHAPTER 13 Collections, Arrays, and Linked Structures[510]

C6840_13 11/19/08 1:21 PM Page 510

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 13.1] Categories of operations on collections

Insertion This operation adds an item to a collection, usually at
a particular position within the collection.

Replacement This operation combines removal and insertion into a
single operation.

Traversal This operation visits each item in a collection.
Depending on the type of collection, the order in which
the items are visited can vary. During a traversal, items
can be accessed or modified. Collections that can be
traversed with Python’s for loop are said to be iterable.

Test for equality This operation tests two items to see if they are equal.
If items can be tested for equality, then the collections
containing them can also be tested for equality. To be
equal, two collections must contain equal items at
corresponding positions. For unordered collections, of
course, the requirement of corresponding positions
can be ignored. Some collections, such as strings, also
can be tested for their position in a natural ordering
using the comparisons less than and greater than.

Determine the size This operation determines the size of a collection—
the number of items it contains. Some collections also
have a maximum capacity, or number of places
available for storing items. An egg carton is a familiar
example of a container with a maximum capacity.

Cloning This operation creates a copy of an existing
collection. The copy usually shares the same items as
the original, a feat that is impossible in the real world.
In the real world, a copy of a bag of marbles could not
contain the same marbles as the original bag, given a
marble’s inability to be in two places at once. The
rules of cyberspace are more flexible, however, and
there are many situations in which we make these
strange copies of collections. What we are copying is
the structure of the collection, not the elements it
contains. It is possible, however, and sometimes useful
to produce a deep copy of a collection in which both
the structure and the items are copied.

13.1 Overview of Collections [511]

C6840_13 11/19/08 1:21 PM Page 511

May not be copied, scanned, or duplicated, in whole or in part.

13.1.6 Abstraction and Abstract Data Types

Naturally, programmers who work with programs that include collections have a
rather different perspective on those collections than the programmers who are
responsible for implementing them in the first place.

Programmers who use collections need to know how to instantiate and use
each type of collection. From their perspective, a collection is a means for storing
and accessing data in some predetermined manner, without concern for the
details of the collection’s implementation. In other words, from a user’s perspec-
tive, a collection is an abstraction, and for this reason, in computer science, col-
lections are called abstract data types (ADTs). The user of an ADT is
concerned only with learning its interface, or the set of operations that objects of
that type recognize.

Developers of collections, on the other hand, are concerned with implement-
ing a collection’s behavior in the most efficient manner possible, with the goal of
providing the best performance to users of the collections. Numerous implemen-
tations are usually possible. However, many of these take so much space or run so
slowly that they can be dismissed as pointless. Those that remain tend to be
based on several underlying approaches to organizing and accessing computer
memory. For each category of collections (linear, hierarchical, etc.), we examine
one or more abstract data types and one or more implementations of that type.

The idea of abstraction is not unique to a discussion of collections. It is an
important principle in many endeavors both in and out of computer science. For
example, when studying the effect of gravity on a falling object, we try to create
an experimental situation in which we can ignore incidental details such as the
color and taste of the object (for example, the sort of apple that hit Newton on
the head). When studying mathematics, we do not concern ourselves with what
numbers might be used to count fishhooks or arrowheads, but try to discover
abstract and enduring principles of numbers. A house plan is an abstraction of the
physical house that allows us to focus on structural elements without being over-
whelmed by incidental details such as the color of the kitchen cabinets—details
that are important to the overall look of the completed house, but not to the rela-
tionships among the house’s main parts.

In computer science, we also use abstraction as a technique for ignoring or
hiding details that are, for the moment, nonessential, and we often build up a
software system layer by layer, with each layer treated as an abstraction by the
layers above that utilize it. Without abstraction, we would need to consider all
aspects of a software system simultaneously, which is an impossible task. Of

CHAPTER 13 Collections, Arrays, and Linked Structures[512]

C6840_13 11/19/08 1:21 PM Page 512

May not be copied, scanned, or duplicated, in whole or in part.

course, the details must be considered eventually, but in a small and manageable
context.

In Python, methods are the smallest unit of abstraction, classes are the next
in size, and modules are the largest. In this text, we will implement abstract data
types as classes or sets of related classes in modules.

13.1 Exercises
1 Give three examples of linear collections and hierarchical collections.

2 What is a graph collection? Give an example.

3 What is a traversal of a collection? Give an example.

13.2 Data Structures for Implementing
Collections: Arrays
The terms data structure and concrete data type refer to the internal represen-
tation of an abstract data type’s data. The two data structures most often used to
implement collections in most programming languages are arrays and linked
structures. These two types of structures take different approaches to storing
and accessing data in the computer’s memory. These approaches in turn lead to
different space/time trade-offs in the algorithms that manipulate the collections.
In the next two sections, we examine the data organization and concrete details of
processing that are particular to arrays and linked structures. Their use in imple-
menting various types of collections is discussed in later chapters.

13.2.1 The Array Data Structure

In programming, an array represents a sequence of items that can be accessed or
replaced at given index positions. You are probably thinking that this description
resembles that of a Python list. In fact, the underlying data structure of a Python
list is an array. Although Python programmers would typically use a list where we
use an array, the array rather than the list is the primary implementing structure

13.2 Data Structures for Implementing Collections: Arrays [513]

C6840_13 11/19/08 1:21 PM Page 513

May not be copied, scanned, or duplicated, in whole or in part.

in the collections of Python and many other programming languages, so you
need to become familiar with the array way of thinking.

Some of what we have to say about arrays also applies to Python lists, but
arrays are much more restrictive. A programmer can access and replace an array’s
items at given positions, examine an array’s length, and obtain its string represen-
tation—but that’s it. The programmer cannot add or remove positions, nor can
the programmer make the length of the array larger or smaller. Typically, the
length or capacity of an array is fixed when it is created.

Although arrays are not built into Python, we can define a new class named
Array for purposes of the discussion that follows. Ironically, our Array class uses
a Python list to hold its items. The class defines methods that allow clients to use
the subscript operator [], the len function, the str function, and the for loop
with Array objects. The Array methods needed for these operations are listed in
Table 13.2. The variable a in the left column refers to an Array object.

[TABLE 13.2] Array operations and the methods of the Array class

When Python encounters an operation in the left column of Table 13.2, it
automatically calls the corresponding method with the array object in the right
column. For example, Python automatically calls the array object’s __iter__
method when that object is traversed in a for loop. Note that the programmer
must specify the capacity or physical size of an array when it is created. The
default fill value, None, can be overridden if desired.

USER’S ARRAY OPERATION METHOD IN THE Array CLASS

a = Array(10) __init__(capacity, fillValue = None)

len(a) __len__()

str(a) __str__()

for item in a: __iter__()

a[index] __getitem__(index)

a[index] = newItem __setitem__(index, newItem)

CHAPTER 13 Collections, Arrays, and Linked Structures[514]

C6840_13 11/19/08 1:21 PM Page 514

May not be copied, scanned, or duplicated, in whole or in part.

Here is the code for the Array class, followed by a brief session that shows
its use:

“””
File:ƒarrays.py

AnƒArrayƒisƒlikeƒaƒlist,ƒbutƒtheƒclientƒcanƒuse
onlyƒ[],ƒlen,ƒiter,ƒandƒstr.

Toƒinstantiate,ƒuse

<variable>ƒ=ƒArray(<capacity>,ƒ<optionalƒfillƒvalue>)

TheƒfillƒvalueƒisƒNoneƒbyƒdefault.
“””

classƒArray(object):
ƒƒƒƒ“””Representsƒanƒarray.”””

ƒƒƒƒdefƒ__init__(self,ƒcapacity,ƒfillValueƒ=ƒNone):
ƒƒƒƒƒƒƒƒ“””Capacityƒisƒtheƒstaticƒsizeƒofƒtheƒarray.
ƒƒƒƒƒƒƒƒfillValueƒisƒplacedƒatƒeachƒposition.”””
ƒƒƒƒƒƒƒƒself._itemsƒ=ƒlist()
ƒƒƒƒƒƒƒƒforƒcountƒinƒxrange(capacity):
ƒƒƒƒƒƒƒƒƒƒƒƒself._items.append(fillValue)

ƒƒƒƒdefƒ__len__(self):
ƒƒƒƒƒƒƒƒ“””->ƒTheƒcapacityƒofƒtheƒarray.”””
ƒƒƒƒƒƒƒƒreturnƒlen(self._items)

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””->ƒTheƒstringƒrepresentationƒofƒtheƒarray.”””
ƒƒƒƒƒƒƒƒreturnƒstr(self._items)

ƒƒƒƒdefƒ__iter__(self):
ƒƒƒƒƒƒƒƒ“””Supportsƒtraversalƒwithƒaƒforƒloop.”””
ƒƒƒƒƒƒƒƒreturnƒiter(self._items)

ƒƒƒƒdefƒ__getitem__(self,ƒindex):
ƒƒƒƒƒƒƒƒ“””Subscriptƒoperatorƒforƒaccessƒatƒindex.”””
ƒƒƒƒƒƒƒƒreturnƒself._items[index]

ƒƒƒƒdefƒ__setitem__(self,ƒindex,ƒnewItem):
ƒƒƒƒƒƒƒƒ“””Subscriptƒoperatorƒforƒreplacementƒatƒindex.”””
ƒƒƒƒƒƒƒƒself._items[index]ƒ=ƒnewItem

>>>ƒaƒ=ƒArray(5)ƒƒƒƒƒƒƒƒƒ#ƒCreateƒanƒarrayƒwithƒ5ƒpositions
>>>ƒlen(a)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒShowƒtheƒnumberƒofƒpositions
5

13.2 Data Structures for Implementing Collections: Arrays [515]

continued

C6840_13 11/19/08 1:21 PM Page 515

May not be copied, scanned, or duplicated, in whole or in part.

>>>ƒprintƒaƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒShowƒtheƒcontents
[None,ƒNone,ƒNone,ƒNone,ƒNone]
>>>ƒforƒiƒinƒxrange(len(a)):ƒƒƒƒ#ƒReplaceƒcontentsƒwithƒ1..5
ƒƒƒƒƒƒƒƒa[i]ƒ=ƒiƒ+ƒ1
ƒ
>>>ƒa[0]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒAccessƒtheƒfirstƒitem
1
>>>ƒforƒitemƒinƒa:ƒƒƒƒƒƒƒ#ƒTraverseƒtheƒarrayƒtoƒprintƒall
ƒƒƒƒƒƒƒƒprintƒitemƒƒ

1
2
3
4
5

As you can see, an array is a very restricted version of a list.

13.2.2 Random Access and Contiguous Memory

The subscript, or index operation, makes it easy for the programmer to store or
retrieve an item at a given position. The array index operation is also very fast.
Array indexing is a random access operation. During random access, the com-
puter obtains the location of the ith item by performing a constant number of
steps. Thus, no matter how large the array, it takes the same amount of time to
access the first item as it does to access the last item.

The computer supports random access for arrays by allocating a block of
contiguous memory cells for the array’s items. One such block is shown in
Figure 13.5.

[FIGURE 13.5] A block of contiguous memory

Block of contiguous memory for array

10011101
10011110
10011111
10100000
10100001

Machine address

0
1
2
3
4

Array index

CHAPTER 13 Collections, Arrays, and Linked Structures[516]

C6840_13 11/19/08 1:21 PM Page 516

May not be copied, scanned, or duplicated, in whole or in part.

For simplicity, the figure assumes that each data item occupies a single memory
cell, although this need not be the case. The machine addresses are 8-bit binary
numbers.

Because the addresses of the items are in numerical sequence, the address of
an array item can be computed by adding two values: the array’s base address
and the item’s offset. The array’s base address is the machine address of the first
item. An item’s offset is equal to its index, multiplied by a constant representing
the number of memory cells required by an array item. To summarize, the index
operation has two steps:

Fetchƒtheƒbaseƒaddressƒofƒtheƒarray'sƒmemoryƒblock
Returnƒtheƒresultƒofƒaddingƒtheƒindexƒ*ƒkƒtoƒthisƒaddressƒƒƒ

In our example, the base address of the array’s memory block is 100111012 and
each item requires a single cell of memory. Then, the address of the data item at
index position 2 is (210 * 1) + 100111012, or 100111112.

The important point to note about random access is that the computer does
not have to search for a given cell in an array, where one starts with the first cell
and counts cells until the ith cell is reached. Random access in constant time is per-
haps the most desirable feature of an array. However, this feature requires that the
array be represented in a block of contiguous memory. As we will see shortly, this
requirement entails some costs when we implement other operations on arrays.

13.2.3 Static Memory and Dynamic Memory

Arrays in older languages such as FORTRAN and Pascal were static data struc-
tures. The length or capacity of the array was determined at compile time, so the
programmer needed to specify this size with a constant. Because the length of an
array could not be changed at run time, the programmer needed to predict how
much array memory would be needed by all applications of the program. If the
program always expected a known, fixed number of items in the array, there was
no problem. But in the other cases, where the number of data items varied, pro-
grammers had to ask for enough memory to cover the cases where the largest
number of data items would be stored in an array. Obviously, this requirement
resulted in programs that wasted memory for many applications. Worse still,
when the number of data items exceeded the length of the array, the best a pro-
gram could do was to return an error message.

Modern languages such as Java and C++ provide a remedy for these problems
by allowing the programmer to create dynamic arrays. Like a static array, a

13.2 Data Structures for Implementing Collections: Arrays [517]

C6840_13 11/19/08 1:21 PM Page 517

May not be copied, scanned, or duplicated, in whole or in part.

dynamic array occupies a contiguous block of memory and supports random
access. However, the length of a dynamic array need not be known until run
time. Thus, the Java or C++ programmer can specify the length of a dynamic
array during instantiation. Our Python Array class behaves in a similar manner.

Fortunately, there is a way for the programmer to readjust the length of an
array to an application’s data requirements at run time. These adjustments can
take three forms:

1 Create an array with a reasonable default size at program start-up.

2 When the array cannot hold more data, create a new, larger array and
transfer the data items from the old array.

3 When the array seems to be wasting memory (some data have been
removed by the application), decrease its length in a similar manner.

Needless to say, these adjustments happen automatically with a Python list.

13.2.4 Physical Size and Logical Size

When working with an array, programmers must often distinguish between its
length or physical size and its logical size. The physical size of an array is its
total number of array cells, or the number used to specify its capacity when the
array is created. The logical size of an array is the number of items in it that
should be currently available to the application. In cases where the array is always
full, the programmer need not worry about this distinction. However, such cases
are rare. Figure 13.6 shows three arrays with the same physical size, but different
logical sizes. The cells currently occupied by data are shaded.

[FIGURE 13.6] Arrays with different logical sizes

As you can see, it is possible to access cells in the first two arrays that contain
garbage, or data not currently meaningful to the application. Thus, the program-
mer must take care to track both the physical size and the logical size of an array
in most applications.

0
1
2
3
4

CHAPTER 13 Collections, Arrays, and Linked Structures[518]

C6840_13 11/19/08 1:21 PM Page 518

May not be copied, scanned, or duplicated, in whole or in part.

In general, the logical size and the physical size tell us several important
things about the state of the array:

1 If the logical size is 0, the array is empty. That is, the array contains no
data items.

2 Otherwise, at any given time, the index of the last item in the array is the
logical size minus 1.

3 If the logical size equals the physical size, there is no more room for data
in the array.

13.2 Exercises
1 Explain how random access works and why it is so fast.

2 What are the differences between an array and a Python list?

3 Explain the difference between the physical size and the logical size of
an array.

13.3 Operations on Arrays
We now discuss the implementation of several operations on arrays. These opera-
tions are not already provided by the array type, but must be written by the pro-
grammer who uses an array. In our examples, we assume the following data
settings:

DEFAULT_CAPACITYƒƒ=ƒ5
logicalSizeƒ=ƒ0
aƒ=ƒArray(DEFAULT_CAPACITY)

As you can see, the array has an initial logical size of 0 and a default physical
size, or capacity, of 5. For each operation that uses this array, we provide a
description of the implementation strategy and an annotated Python code
segment. Once again, these operations would be used to define methods for
collections that contain arrays.

13.3 Operations on Arrays [519]

C6840_13 11/19/08 1:21 PM Page 519

May not be copied, scanned, or duplicated, in whole or in part.

13.3.1 Increasing the Size of an Array

When a new item is about to be inserted and the array’s logical size equals its
physical size, it is time to increase the size of the array. Python’s list type per-
forms this operation during a call of the method insert or append when more
memory for the array is needed. The resizing process consists of three steps:

1 Create a new, larger array.

2 Copy the data from the old array to the new array.

3 Reset the old array variable to the new array object.

Here is the code for this operation:

ifƒlogicalSizeƒ==ƒlen(a):
ƒƒƒƒtempƒ=ƒArray(len(a)ƒ+ƒ1)ƒƒƒƒƒƒƒƒƒƒ#ƒCreateƒaƒnewƒarray
ƒƒƒƒforƒiƒinƒxrange(logicalSize):ƒƒƒƒƒ#ƒCopyƒdataƒfromƒtheƒoldƒ
ƒƒƒƒƒƒƒƒtempƒ[i]ƒ=ƒa[i]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒarrayƒtoƒtheƒnewƒarray
ƒƒƒƒaƒ=ƒtempƒƒƒ#ƒResetƒtheƒoldƒarrayƒvariableƒtoƒtheƒnewƒarrayƒ

Note that the old array’s memory is left out for the garbage collector. We also take
the natural course of increasing the array’s length by one cell to accommodate
each new item. However, consider the performance implications of this decision.
When the array is resized, the number of copy operations is linear. Thus, the
overall time performance for adding n items to an array is 1 + 2 + 3 + … + n or
n (n+1) / 2 or O(n2).

You can achieve more reasonable time performance by doubling the size of
the array each time you increase its size, as follows:

tempƒ=ƒArray(len(a)ƒ*ƒ2)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒCreateƒnewƒarray

The analysis of the time performance of this version is left as an exercise for you.
The gain in time performance is, of course, achieved at the cost of wasting some
memory. However, the overall space performance of this operation is linear
because a temporary array is required no matter what our strategy is.

CHAPTER 13 Collections, Arrays, and Linked Structures[520]

C6840_13 11/19/08 1:21 PM Page 520

May not be copied, scanned, or duplicated, in whole or in part.

13.3.2 Decreasing the Size of an Array

When the logical size of an array shrinks, cells go to waste. When an item is
about to be removed and the number of these unused cells reaches or exceeds a
certain threshold, say, three-fourths of the physical size of the array, it is time to
decrease the physical size. This operation occurs in Python’s list type whenever
the method pop results in memory wasted beyond a certain threshold. The
process of decreasing the size of an array is the inverse of increasing it. Here are
the steps:

1 Create a new, smaller array.

2 Copy the data from the old array to the new array.

3 Reset the old array variable to the new array object.

The code for this process kicks in when the logical size of the array is less
than or equal to one-fourth of its physical size and its physical size is greater than
the default capacity that we have established for the array. The algorithm reduces
the physical size of the array either to one-half of its physical size or to its default
capacity, whichever is greater. Here is the code:

ifƒlogicalSizeƒ<=ƒlen(a)ƒ/ƒ4ƒandƒlen(a)ƒ>ƒDEFAULT_CAPACITY:
ƒƒƒƒnewSizeƒ=ƒmax(DEFAULT_CAPACITY,ƒlen(a)ƒ/ƒ2)
ƒƒƒƒtempƒ=ƒArray(newSize)ƒƒƒƒƒƒƒƒƒƒ#ƒCreateƒnewƒarray
ƒƒƒƒforƒiƒinƒxrange(logicalSize):ƒƒ#ƒCopyƒdataƒfromƒoldƒarrayƒ
ƒƒƒƒƒƒƒƒtempƒ[i]ƒ=ƒaƒ[i]ƒƒƒƒƒƒƒƒƒƒƒ#ƒtoƒnewƒarray
ƒƒƒƒaƒ=ƒtempƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒResetƒoldƒarrayƒvariableƒtoƒnewƒarray

Note that this strategy allows some memory to be wasted when shrinking the
array. Whenever we decrease the size of an array, we leave its physical size at
twice its logical size. This strategy tends to decrease the likelihood of further
resizings in either direction. The time/space analysis of the contraction operation
is left as an exercise for you.

13.3.3 Inserting an Item into an Array That Grows

Inserting an item into an array differs from replacing an item in an array. In the
case of a replacement, an item already exists at the given index position and a

13.3 Operations on Arrays [521]

C6840_13 11/19/08 1:21 PM Page 521

May not be copied, scanned, or duplicated, in whole or in part.

simple assignment suffices. Moreover, the logical size of the array does not
change. In the case of an insertion, the programmer must do four things:

1 Check for available space before attempting an insertion and increase the
physical size of the array, if necessary, as described earlier.

2 Shift the items from the logical end of the array to the target index position
down by one. This process opens a hole for the new item at the target index.

3 Assign the new item to the target index position.

4 Increment the logical size by one.

Figure 13.7 shows these steps for the insertion of the item D5 at position 1
in an array of four items.

[FIGURE 13.7] Inserting an item into an array

As you can see, the order in which the items are shifted is critical. If we had
started at the target index and copied down from there, we would have lost two
items. Thus, we must start at the logical end of the array and work back up to the
target index, copying each item to the cell of its successor. Here is the Python
code for the insertion operation:

#ƒIncreaseƒphysicalƒsizeƒofƒarrayƒifƒnecessary

#ƒShiftƒitemsƒdownƒbyƒoneƒposition
forƒiƒinƒxrange(logicalSize,ƒtargetIndex,ƒ-1):ƒƒƒƒƒƒ
ƒƒƒƒa[i]ƒ=ƒa[iƒ-ƒ1]

#ƒAddƒnewƒitemƒandƒincrementƒlogicalƒsize
a[targetIndex]ƒ=ƒnewItemƒ
logicalSizeƒ+=ƒ1

The time performance for shifting items during an insertion is linear on the
average, so the insertion operation is linear.

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

Shift down
item at
n – 1

Shift down
item at
n – 2

Shift down
item at i

Replace item
at position 1

Array after
insertion is

finished

D1
D2
D3
D4

D1
D2
D3
D4
D4

D1
D2
D3
D3
D4

D1
D2
D2
D3
D4

D1
D5
D2
D3
D4

CHAPTER 13 Collections, Arrays, and Linked Structures[522]

C6840_13 11/19/08 1:21 PM Page 522

May not be copied, scanned, or duplicated, in whole or in part.

13.3.4 Removing an Item from an Array

Removing an item from an array involves the inverse process of inserting an item
into the array. Here are the steps in this process:

1 Shift the items from the target index position to the logical end of the
array up by one. This process closes the hole left by the removed item at
the target index.

2 Decrement the logical size by one.

3 Check for wasted space and decrease the physical size of the array, if
necessary.

Figure 13.8 shows these steps for the removal of an item at position 1 in an
array of five items.

[FIGURE 13.8] Removing an item from an array

As with insertions, the order in which we shift items is critical. For a removal, we
begin at the item following the target position and move toward the logical end
of the array, copying each item to the cell of its predecessor. Here is the Python
code for the removal operation:

#ƒShiftƒitemsƒupƒbyƒoneƒposition
forƒiƒinƒxrange(targetIndex,ƒlogicalSizeƒ–ƒ1):ƒƒƒƒƒƒƒ
ƒƒƒƒa[i]ƒ=ƒa[iƒ+ƒ1]

#ƒDecrementƒlogicalƒsizeƒ
logicalSizeƒ-=ƒ1

#ƒDecreaseƒsizeƒofƒarrayƒifƒnecessary

0
1
2
3
4

Shift up
item at

i + 1

D1
D2
D3
D4
D5

0
1
2
3
4

Shift up
item at

i + 2

D1
D3
D3
D4
D5

0
1
2
3
4

Shift up
item at
n – 1

D1
D3
D4
D4
D5

0
1
2
3
4

Array after
removal is
finished

D1
D3
D4
D5

13.3 Operations on Arrays [523]

C6840_13 11/19/08 1:21 PM Page 523

May not be copied, scanned, or duplicated, in whole or in part.

Once again, because the time performance for shifting items is linear on the
average, the time performance for the removal operation is linear.

13.3.5 Complexity Trade-Off: Time, Space, and Arrays
The array structure presents an interesting trade-off between running-time per-
formance and memory usage. Table 13.3 tallies the running times of each array
operation as well two additional ones: insertions and removals of items at the log-
ical end of an array.

[TABLE 13.3] The running times of array operations

As you can see, an array provides fast access to any items already present and
provides fast insertions and removals at the logical last position. Insertions and
removals at arbitrary positions can be slower by an order of magnitude. Resizing
also takes linear time, but doubling the size or cutting it in half can minimize the
number of times that this must be done.

The insertion and removal operations are potentially O(n) in the use of mem-
ory, due to occasional resizing. Once again, if the techniques discussed earlier are
used, this is only the worst-case performance. The average-case use of memory for
these operations is O(1).

The only real memory cost of using an array is that some cells in an unfilled
array go to waste. A useful concept for assessing an array’s memory usage is its
load factor. An array’s load factor equals the number of items stored in the array
divided by the array’s capacity. For example, the load factor is 1 when an array is
full, 0 when the array is empty, and 0.33 when an array of ten cells has three of
them occupied. The number of wasted cells can be kept to a minimum by resiz-
ing when the array’s load factor drops below a certain threshold, say, 0.25.

OPERATION RUNNING TIME

Access at ith position O(1) (best and worst case)

Replacement at ith position O(1) (best and worst case)

Insert at logical end O(1) (average case)

Remove from logical end O(1) (average case)

Insert at ith position O(n) (average case)

Remove from ith position O(n) (average case)

Increase the capacity O(n) (best and worst case)

Decrease the capacity O(n) (best and worst case)

CHAPTER 13 Collections, Arrays, and Linked Structures[524]

C6840_13 11/19/08 1:21 PM Page 524

May not be copied, scanned, or duplicated, in whole or in part.

13.3 Exercises
1 Explain why some items in an array might have to be shifted when a

given item is inserted or removed.

2 When the programmer shifts array items during an insertion, which item
is moved first, the one at the insertion point or the last item, and why?

3 State the run-time complexity for inserting an item when the insertion
point is the logical size of the array.

4 An array currently contains 14 items and its load factor is 0.70. What is
its physical capacity?

13.4 Two-Dimensional Arrays (Grids)
The arrays we have studied so far can represent only simple sequences of items and
are also called one-dimensional arrays. For many applications, two-dimensional
arrays or grids are more useful. A table of numbers, for instance, can be implemented
as a two-dimensional array. Figure 13.9 shows a grid with four rows and five columns.

[FIGURE 13.9] A two-dimensional array or grid with four rows and five columns

Suppose we call this grid table. To access an item in table, you use two
subscripts to specify its row and column positions, remembering that indexes
start at 0:

xƒ=ƒtable[2][3]ƒƒ#ƒSetƒxƒtoƒ23,ƒtheƒvalueƒinƒ(rowƒ2,ƒcolumnƒ3)

Row 0

Row 1

Row 2

Row 3

0

10

20

30

Col 0

1

11

21

31

Col 1

2

12

22

32

Col 2

3

13

23

33

Col 3

4

14

24

34

Col 4

13.4 Two-Dimensional Arrays (Grids) [525]

C6840_13 11/19/08 1:21 PM Page 525

May not be copied, scanned, or duplicated, in whole or in part.

In this section, we show how to create and process simple two-dimensional
arrays or grids. These grids are assumed to be rectangular and are of fixed
dimensions.

13.4.1 Processing a Grid

In addition to the double subscript, a grid must recognize two methods that
return the number of rows and the number of columns. For purposes of discus-
sion, these methods are named getHeight and getWidth, respectively. The
techniques for manipulating one-dimensional arrays are easily extended to grids.
For instance, the following code segment computes the sum of all the numbers in
our variable table. The outer loop iterates four times and moves down the rows.
Each time through the outer loop, the inner loop iterates five times and moves
across the columns in a different row.

sumƒ=ƒ0
forƒrowƒinƒxrange(table.getHeight()):ƒƒƒƒƒƒƒƒ#ƒGoƒthroughƒrowsƒƒƒƒ
ƒƒƒƒforƒcolumnƒinƒxrange(table.getWidth()):ƒƒ#ƒGoƒthroughƒcolumns
ƒƒƒƒƒƒƒƒsumƒ+=ƒtable[row][column]

Because the methods getHeight and getWidth are used instead of the numbers
4 and 5, this code will work for a grid of any dimensions.

13.4.2 Creating and Initializing a Grid

Let’s assume that there exists a Grid class for two-dimensional arrays. To create a
Grid object, we run the Grid constructor with three arguments: its height, its width,
and an initial fill value. The next session instantiates Grid with 4 rows, 5 columns,
and a fill value of 0 and then prints the resulting object:

>>>ƒtableƒ=ƒGrid(4,ƒ5,ƒ0)
>>>ƒprintƒtable
0ƒ0ƒ0ƒ0ƒ0
0ƒ0ƒ0ƒ0ƒ0
0ƒ0ƒ0ƒ0ƒ0
0ƒ0ƒ0ƒ0ƒ0

CHAPTER 13 Collections, Arrays, and Linked Structures[526]

C6840_13 11/19/08 1:21 PM Page 526

May not be copied, scanned, or duplicated, in whole or in part.

After a grid has been created, we can reset its cells to any values. The following
code segment traverses the grid to reset its cells to the values shown in Figure 13.9:

forƒrowƒinƒxrange(table.getHeight()):ƒƒƒƒƒƒƒƒ#ƒGoƒthroughƒrowsƒƒƒƒ
ƒƒƒƒforƒcolumnƒinƒxrange(table.getWidth()):ƒƒ#ƒGoƒthroughƒcolumns
ƒƒƒƒƒƒƒƒtable[row][column]ƒ=ƒint(str(row)ƒ+ƒstr(column))

13.4.3 Defining a Grid Class

A Grid class is similar to the Array class presented earlier. Users can run meth-
ods to determine the number of rows and columns and obtain a string represen-
tation. However, no iterator is provided. A grid is conveniently represented using
an array of arrays. The length of the top-level array equals the number of rows in
the grid. Each cell in the top-level array is also an array. The length of this array
is the number of columns in the grid, and this array contains the data in a given
row. The method __getitem__ is all that is needed to support the client’s use of
the double subscript. Here is the code for the Grid class:

“””
File:ƒgrid.py
“””

fromƒarraysƒimportƒArray

classƒGrid(object):
ƒƒƒƒ“””Representsƒaƒtwo-dimensionalƒarray.”””

ƒƒƒƒdefƒ__init__(self,ƒrows,ƒcolumns,ƒfillValueƒ=ƒNone):
ƒƒƒƒƒƒƒƒself._dataƒ=ƒArray(rows)
ƒƒƒƒƒƒƒƒforƒrowƒinƒxrange(rows):
ƒƒƒƒƒƒƒƒƒƒƒƒself._data[row]ƒ=ƒArray(columns,ƒfillValue)

ƒƒƒƒdefƒgetHeight(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒnumberƒofƒrows.”””
ƒƒƒƒƒƒƒƒreturnƒlen(self._data)

ƒƒƒƒdefƒgetWidth(self):
ƒƒƒƒƒƒƒƒ“Returnsƒtheƒnumberƒofƒcolumns.”””
ƒƒƒƒƒƒƒƒreturnƒlen(self._data[0])

13.4 Two-Dimensional Arrays (Grids) [527]

continued

C6840_13 11/19/08 1:21 PM Page 527

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒ__getitem__(self,ƒindex):
ƒƒƒƒƒƒƒƒ“””Supportsƒtwo-dimensionalƒindexingƒ
ƒƒƒƒƒƒƒƒwithƒ[row][column].”””
ƒƒƒƒƒƒƒƒreturnƒself._data[index]

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒaƒstringƒrepresentationƒofƒtheƒgrid.”””
ƒƒƒƒƒƒƒƒresultƒ=ƒ“”
ƒƒƒƒƒƒƒƒforƒrowƒinƒxrange(self.getHeight()):
ƒƒƒƒƒƒƒƒƒƒƒƒforƒcolƒinƒxrange(self.getWidth()):
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒstr(self._data[row][col])ƒ+ƒ“ƒ“
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒ“\n”
ƒƒƒƒƒƒƒƒreturnƒresult

13.4.4 Ragged Grids and Multidimensional Arrays

The grids discussed thus far in this section have been two-dimensional and rec-
tangular. It is also possible to create ragged grids and grids of more than two
dimensions.

In a ragged grid, there are a fixed number of rows, but the number of
columns of data in each row can vary. An array of lists or arrays provides a suit-
able structure for implementing a ragged grid.

Dimensions can also be added to the definition of a grid when necessary; the
only limit is the computer’s memory. For example, a three-dimensional array can
be visualized as a box filled with smaller boxes stacked neatly in rows and columns.
This array is given a depth, height, and width when it is created. The array type
now has a method getDepth as well as getWidth and getHeight to examine the
dimensions. Each item is accessed with three integers as indexes, and processing is
accomplished with a control statement structure that contains three loops.

13.4 Exercises
1 What are two-dimensional arrays or grids?

2 Describe an application in which a two-dimensional array might be used.

3 Write a code segment that searches a Grid object for a negative integer.
The loop should terminate at the first instance of a negative integer in
the grid, and the variables row and column should be set to the position

CHAPTER 13 Collections, Arrays, and Linked Structures[528]

C6840_13 11/19/08 1:21 PM Page 528

May not be copied, scanned, or duplicated, in whole or in part.

of that integer. Otherwise, the variables row and column should equal
the number of rows and columns in the grid.

4 Describe the contents of the grid after the following code segment is run:

matrixƒ=ƒGrid(3,ƒ3)

forƒrowƒinƒxrange(matrix.getHeight()):
ƒƒƒforƒcolumnƒinƒxrange(matrix.getWidth()):
ƒƒƒƒƒƒƒmatrix[row][column]ƒ=ƒrowƒ*ƒcolumn

5 Write a code segment that creates a ragged grid whose rows contain
positions for 3, 6, and 9 items, respectively.

6 Suggest a strategy for implementing a three-dimensional array class that
uses the Grid class as a data structure.

7 Write a code segment that initializes each cell in a three-dimensional array
with an integer that represents its three index positions. Thus, if a position
is (depth, row, column), the integer datum at position (2, 3, 3) is 233.

8 Write a code segment that displays the items in a three-dimensional
array. Each line of data should represent all of the items at a given row
and column, stretching back from the first depth position to the last one.
The traversal should start at the first row, column, and depth positions
and move through depths, columns, and rows.

13.5 Linked Structures
After arrays, linked structures are probably the most commonly used data struc-
tures in programs. Like an array, a linked structure is a concrete data type that is
used to implement many types of collections, including lists. A thorough examina-
tion of the use of linked structures in ADTs such as lists and binary trees appears
later in this book. In this section, we discuss in detail several characteristics that
programmers must keep in mind when using linked structures to implement any
type of collection.

13.5 Linked Structures [529]

C6840_13 11/19/08 1:21 PM Page 529

May not be copied, scanned, or duplicated, in whole or in part.

13.5.1 Singly Linked Structures and Doubly Linked
Structures

As the name implies, a linked structure consists of items that are linked to other
items. Although many links among items are possible, the two simplest linked
structures are the singly linked structure and the doubly linked structure.

It is useful to draw diagrams of linked structures using a box and pointer
notation. Figure 13.10 uses this notation to show examples of the two kinds of
linked structures.

[FIGURE 13.10] Two types of linked structures

A user of a singly linked structure accesses the first item by following a single
external head link. The user then accesses other items by chaining through the
single links (represented by arrows in the figure) that emanate from the items.
Thus, in a singly linked structure, it is easy to get to the successor of an item, but
not so easy to get to the predecessor of an item.

A doubly linked structure contains links running in both directions. Thus, it
is easy for the user to move to an item’s successor or to its predecessor. A second
external link, called the tail link, allows the user of a doubly linked structure to
access the last item directly.

The last item in either type of linked structure has no link to the next item.
The figure indicates the absence of a link, called an empty link, by means of a
slash instead of an arrow. Note also that the first item in a doubly linked structure
has no link to the preceding item.

Like arrays, these linked structures represent linear sequences of items.
However, the programmer who uses a linked structure cannot immediately access

D1 D2 D3

A singly
linked
structure

A doubly
linked
structure

head

tail

head D1 D2 D3

CHAPTER 13 Collections, Arrays, and Linked Structures[530]

C6840_13 11/19/08 1:21 PM Page 530

May not be copied, scanned, or duplicated, in whole or in part.

an item by specifying its index position. Instead, the programmer must start at one
end of the structure and follow the links until the desired position (or item) is
reached. This property of linked structures has important consequences for several
operations, as we discuss shortly.

The way in which memory is allocated for linked structures is also quite
unlike that of arrays and has two important consequences for insertion and
removal operations:

1 Once an insertion or removal point has been found, the insertion or
removal can take place with no shifting of data items in memory.

2 The linked structure can be resized during each insertion or removal
with no extra memory cost and no copying of data items.

We now examine the underlying memory support for linked structures that
makes these advantages possible.

13.5.2 Noncontiguous Memory and Nodes

Recall that array items must be stored in contiguous memory. This means that
the logical sequence of items in the array is tightly coupled to a physical sequence
of cells in memory. By contrast, a linked structure decouples the logical sequence
of items in the structure from any ordering in memory. That is, the cell for a
given item in a linked structure can be found anywhere in memory as long as the
computer can follow a link to its address or location. This kind of memory repre-
sentation scheme is called noncontiguous memory.

The basic unit of representation in a linked structure is a node. A singly
linked node contains the following components or fields:

1 A data item.

2 A link to the next node in the structure.

In addition to these components, a doubly linked node also contains a link to
the previous node in the structure.

Figure 13.11 shows a singly linked node and a doubly linked node whose
internal links are empty.

13.5 Linked Structures [531]

C6840_13 11/19/08 1:21 PM Page 531

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 13.11] Two types of nodes with empty links

Depending on the programming language, the programmer can set up nodes
to use noncontiguous memory in several ways:

1 In early languages such as FORTRAN, the only built-in data structure
was the array. The programmer thus implemented nodes and their non-
contiguous memory for a singly linked structure by using two parallel
arrays. One array contained the data items. The other array contained
the index positions, for corresponding items in the data array, of their
successor items in the data array. Thus, following a link meant using a
data item’s index in the first array to access a value in the second array
and then using that value as an index into another data item in the first
array. The empty link was represented by the value -1. Figure 13.12
shows a linked structure and its array representation. As you can see, this
setup effectively decouples the logical position of a data item in the
linked structure from its physical position in the array.

[FIGURE 13.12] An array representation of a linked structure

2 In more modern languages, such as Pascal and C++, the programmer has
direct access to the addresses of data in the form of pointers. In these
more modern languages, a node in a singly linked structure contains a data

head

data next

D1 D2 D3 D4

0
1
2
3
4

D1
D3
D2

D4

0
1
2
3
4

2
4
1

–1

D

Singly
linked
node

Doubly
linked
node

D

CHAPTER 13 Collections, Arrays, and Linked Structures[532]

C6840_13 11/19/08 1:21 PM Page 532

May not be copied, scanned, or duplicated, in whole or in part.

item and a pointer value. A special value null (or nil) represents the
empty link as a pointer value. The programmer does not use an array to
set up the noncontiguous memory, but simply asks the computer for a
pointer to a new node from a built-in area of noncontiguous memory
called the object heap. The programmer then sets the pointer within this
node to another node, thus establishing a link to other data in the struc-
ture. The use of explicit pointers and a built-in heap represents an advance
over the FORTRAN-style scheme because the programmer is no longer
responsible for managing the underlying array representation of noncon-
tiguous memory. (After all, the memory of any computer—RAM—is ulti-
mately just a big array.) However, Pascal and C++ still require the
programmer to manage the heap insofar as the programmer has to return
unused nodes to it with a special dispose or delete operation.

3 Python programmers set up nodes and linked structures by using
references to objects. In Python, any variable can refer to anything,
including the value None, which can mean an empty link. Thus, a Python
programmer defines a singly linked node by defining an object that con-
tains two fields: a reference to a data item and a reference to another
node. Python provides dynamic allocation of noncontiguous memory for
each new node object, as well as automatic return of this memory to the
system (garbage collection) when the object no longer can be referenced
by the application.

In the discussion that follows, we use the terms link, pointer, and reference inter-
changeably.

13.5.3 Defining a Singly Linked Node Class

Node classes are fairly simple. Flexibility and ease of use are critical, so the
instance variables of a node object are usually referenced without method calls,
and constructors allow the user to set a node’s link(s) when the node is created.
As mentioned earlier, a singly linked node contains just a data item and a refer-
ence to the next node. Here is the code for a simple, singly linked node class:

classƒNode(object):

ƒƒƒƒdefƒ__init__(self,ƒdata,ƒnextƒ=ƒNone):
ƒƒƒƒƒƒƒƒ“””InstantiatesƒaƒNodeƒwithƒdefaultƒnextƒofƒNone”””
ƒƒƒƒƒƒƒƒself.dataƒ=ƒdata
ƒƒƒƒƒƒƒƒself.nextƒ=ƒnext

13.5 Linked Structures [533]

C6840_13 11/19/08 1:21 PM Page 533

May not be copied, scanned, or duplicated, in whole or in part.

13.5.4 Using the Singly Linked Node Class

Node variables are initialized to either the None value or a new Node object. The
next code segment shows some variations on these two options:

#ƒJustƒanƒemptyƒlink
node1ƒ=ƒNone

#ƒAƒnodeƒcontainingƒdataƒandƒanƒemptyƒlink
node2ƒ=ƒNode(“A”,ƒNone)

#ƒAƒnodeƒcontainingƒdataƒandƒaƒlinkƒtoƒnode2
node3ƒ=ƒNode(“B”,ƒnode2)

Figure 13.13 shows the state of the three variables after this code is run.

[FIGURE 13.13] Three external links

Note the following:
� node1 points to no node object yet (is None).
� node2 and node3 point to objects that are linked together.
� node2 points to an object whose next pointer is None.

Now suppose we attempt to place the first node at the beginning of the
linked structure that already contains node2 and node3 by running the following
statement:

node1.nextƒ=ƒnode3

node 1 node 2node 3

AB

CHAPTER 13 Collections, Arrays, and Linked Structures[534]

C6840_13 11/19/08 1:21 PM Page 534

May not be copied, scanned, or duplicated, in whole or in part.

Python responds by raising an AttributeError. The reason for this response is
that the variable node1 contains the value None and thus does not reference a node
object containing a next field. To create the desired link, we could run either

node1ƒ=ƒNode(“C”,ƒnode3)

or

node1ƒ=ƒNode(“C”,ƒNone)
node1.nextƒ=ƒnode3

In general, we can guard against exceptions by asking whether a given node
variable is None before attempting to access its fields:

ifƒnodeVariableƒ!=ƒNone:
ƒƒƒ<accessƒaƒfieldƒinƒnodeVariable>ƒ

Like arrays, linked structures are processed with loops. Loops can be used to
create a linked structure and visit each node in it. The next tester script uses our
Node class to create a singly linked structure and print its contents:

“””
File:ƒtestnode.py

TestsƒtheƒNodeƒclass.
“””

fromƒnodeƒimportƒNode

headƒ=ƒNone

#ƒAddƒfiveƒnodesƒtoƒtheƒbeginningƒofƒtheƒlinkedƒstructure
forƒcountƒinƒxrange(1,ƒ6):
ƒƒƒƒheadƒ=ƒNode(count,ƒhead)

#ƒPrintƒtheƒcontentsƒofƒtheƒstructure
whileƒheadƒ!=ƒNone:
ƒƒƒƒprintƒhead.data
ƒƒƒƒheadƒ=ƒhead.next

13.5 Linked Structures [535]

C6840_13 11/19/08 1:21 PM Page 535

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Collections, Arrays, and Linked Structures[536]

Note the following points about this program:

1 One pointer, head, is used to generate the linked structure. This pointer
is manipulated in such a way that the most recently inserted item is
always at the beginning of the structure.

2 Thus, when the data are displayed, they appear in the reverse order of
their insertion.

3 Also, when the data are displayed, the head pointer is reset to the next
node, until the head pointer becomes None. Thus, at the end of this
process, the nodes are effectively deleted from the linked structure. They
are no longer available to the program and are recycled during the next
garbage collection.

13.5 Exercises
1 Using box and pointer notation, draw a picture of the nodes created by

the first loop in the tester program.

2 What happens when a programmer attempts to access a node’s data fields
when the node variable refers to None? How does one guard against it?

3 Write a code segment that transfers items from a full array to a singly
linked structure. The operation should preserve the ordering of the items.

13.6 Operations on Singly Linked Structures
Almost all of the operations on arrays are already index based, because the
indexes are an integral part of the array structure. The programmer must emulate
index-based operations on a linked structure by manipulating links within the
structure. In this section, we explore how these manipulations are performed in
common operations such as traversals, insertions, and removals.

13.6.1 Traversal

In Section 13.5, the second loop in the last tester program effectively removed each
node from the linked structure after printing that node’s data. However, many
applications simply need to visit each node without deleting it. This operation,

C6840_13 11/19/08 1:21 PM Page 536

May not be copied, scanned, or duplicated, in whole or in part.

13.6 Operations on Singly Linked Structures [537]

called a traversal, uses a temporary pointer variable. This variable is initialized to
the linked structure’s head pointer and then controls a loop as follows:

probeƒ=ƒhead
whileƒprobeƒ!=ƒNone:
ƒƒƒƒ<useƒorƒmodifyƒprobe.data>
ƒƒƒƒprobeƒ=ƒprobe.next

Figure 13.14 shows the state of the pointer variables probe and head during each
pass of the loop. Note that at the end of the process, the probe pointer is None,
but the head pointer still references the first node.

[FIGURE 13.14] Traversing a linked structure

In general, a traversal of a singly linked structure visits every node and termi-
nates when an empty link is reached. Thus, the value None serves as a sentinel
that stops the process.

Traversals are linear in time and require no extra memory.

Beginning of pass 1:
Visit node D1

head

probe

D1 D2 D3

Beginning of pass 2:
Visit node D2

head

probe

D1 D2 D3

Beginning of pass 3:
Visit node D3

head

probe

D1 D2 D3

End of pass 3:
probe is None,
loop terminates

head

probe

D1 D2 D3

C6840_13 11/19/08 1:21 PM Page 537

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Collections, Arrays, and Linked Structures[538]

13.6.2 Searching

We discussed the sequential search for a given item in a list in Chapter 11. The
sequential search of a linked structure resembles a traversal in that we must start
at the first node and follow the links until a sentinel is reached. However, in this
case, there are two possible sentinels:

1 The empty link, indicating that there are no more data items to examine.

2 A data item that equals the target item, indicating a successful search.

Here is the form of the search for a given item:

probeƒ=ƒhead
whileƒprobeƒ!=ƒNoneƒandƒtargetItemƒ!=ƒprobe.data:
ƒƒƒƒprobeƒ=ƒprobe.next
ifƒprobeƒ!=ƒNone:
ƒƒƒƒ<targetItemƒhasƒbeenƒfound>
else:
ƒƒƒƒ<targetItemƒisƒnotƒinƒtheƒlinkedƒstructure>

It is no surprise that, on the average, the sequential search is linear for singly
linked structures.

Unfortunately, accessing the ith item of a linked structure is also a sequential
search operation. This is because we must start at the first node and count the
number of links until the ith node is reached. We assume that 0 <= i < n, where n
is the number of nodes in the linked structure. Here is the form for accessing the
ith item:

#ƒAssumesƒ0ƒ<=ƒindexƒ<ƒn
probeƒ=ƒhead
whileƒindexƒ>ƒ0:
ƒƒƒƒprobeƒ=ƒprobe.next
ƒƒƒƒindexƒ-=ƒ1
returnƒprobe.data

Unlike arrays, linked structures do not support random access. Thus, using a
binary search, you cannot search a singly linked structure, even one whose data
are in sorted order, as efficiently you can search a sorted array. However, as we
will see later in this book, to remedy this defect, there are ways to organize the
data in other types of linked structures.

C6840_13 11/19/08 1:21 PM Page 538

May not be copied, scanned, or duplicated, in whole or in part.

13.6 Operations on Singly Linked Structures [539]

13.6.3 Replacement
The replacement operations in a singly linked structure also employ the traversal
pattern. In these cases, we search for a given item or a given position in the linked
structure and replace the item with a new item. The first operation, replacing a
given item, need not assume that the target item is in the linked structure. If the
target item is not present, no replacement occurs and the operation returns False.
If the target is present, the new item replaces it and the operation returns True.
Here is the form of the operation:

probeƒ=ƒhead
whileƒprobeƒ!=ƒNoneƒandƒtargetItemƒ!=ƒprobe.data:
ƒƒƒƒprobeƒ=ƒprobe.next;
ifƒprobeƒ!=ƒNone:
ƒƒƒƒprobe.dataƒ=ƒnewItem
ƒƒƒƒreturnƒTrue
else:
ƒƒƒƒreturnƒFalse

The operation to replace the ith item assumes that 0 <= i < n. Here is the form:

#ƒAssumesƒ0ƒ<=ƒindexƒ<ƒn
probeƒ=ƒhead
whileƒindexƒ>ƒ0:
ƒƒƒƒprobeƒ=ƒprobe.next
ƒƒƒƒindexƒ-=ƒ1
probe.dataƒ=ƒnewItem

Both replacement operations are linear on the average.

13.6.4 Inserting at the Beginning
By now, you are probably wondering whether there is a better-than-linear opera-
tion on a linked structure. In fact, there are several. In some cases, these opera-
tions can make linked structures preferable to arrays. The first such case is the
insertion of an item at the beginning of the structure. This is just what we did
repeatedly in the tester program of the previous section. Here is the form:

headƒ=ƒNode(newItem,ƒhead)

C6840_13 11/19/08 1:21 PM Page 539

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Collections, Arrays, and Linked Structures[540]

Figure 13.15 traces this operation for two cases. The head pointer is None in
the first case, so the first item is inserted into the structure. In the second case,
the second item is inserted at the beginning of the same structure.

[FIGURE 13.15] The two cases of inserting an item at the beginning of a linked structure

Note that in the second case, there is no need to copy data to shift them down,
and no extra memory is needed. This means that inserting data at the beginning
of a linked structure uses constant time and memory, unlike the same operation
with arrays.

13.6.5 Inserting at the End

Inserting an item at the end of an array (used in the append operation of a
Python list) requires constant time and memory, unless the array must be resized.
The same process for a singly linked structure must consider two cases:

1 The head pointer is None, so the head pointer is set to the new node.

2 The head pointer is not None, so the code searches for the last node and
aims its next pointer at the new node.

head

head

First case: head is None

Initial state of head

head = Node(newItem, head) D

head

head

Second case: head is not None

Initial state of head

head = Node(newItem, head)

D1

D2 D1

C6840_13 11/19/08 1:21 PM Page 540

May not be copied, scanned, or duplicated, in whole or in part.

Case 2 returns us to the traversal pattern. Here is the form:

newNodeƒ=ƒNode(newItem)
ifƒheadƒisƒNone:
ƒƒƒƒheadƒ=ƒnewNode
else:
ƒƒƒƒprobeƒ=ƒhead
ƒƒƒƒwhileƒprobe.nextƒ!=ƒNone:
ƒƒƒƒƒƒƒƒprobeƒ=ƒprobe.next
ƒƒƒprobe.nextƒ=ƒnewNode

Figure 13.16 traces the insertion of a new item at the end of a linked structure of
three items. This operation is linear in time and constant in memory.

[FIGURE 13.16] Inserting an item at the end of a linked structure

probe.next != None

(Advance probe to
probe.next.)

probe.next != None

(Advance probe to
probe.next.)

probe.next == None

(Stop the loop.)

probe.next = newNode

(Hook in new node.)

head

probe

D1 D2 D3

head

probe

D1 D2 D3

head

probe

D1 D2 D3

head

newNode

probe

D1 D2 D3

D4

13.6 Operations on Singly Linked Structures [541]

C6840_13 11/19/08 1:21 PM Page 541

May not be copied, scanned, or duplicated, in whole or in part.

13.6.6 Removing at the Beginning

In the tester program of the previous section, we repeatedly removed the item at
the beginning of the linked structure. In this type of operation, we typically
assume that there is at least one node in the structure. The operation returns the
item removed. Here is the form:

#ƒAssumesƒatƒleastƒoneƒnodeƒinƒtheƒstructure
removedItemƒ=ƒhead.data
headƒ=ƒhead.next
returnƒremovedItem

Figure 13.17 traces the removal of the first node.

[FIGURE 13.17] Removing an item at the beginning of a linked structure

As you can see, the operation uses constant time and memory, unlike the same
operation for arrays.

Initial state of head

(Unhook first node.)

Garbage collection returns
node to system heap.

head = head.next

head D1

head D1

head D1

CHAPTER 13 Collections, Arrays, and Linked Structures[542]

C6840_13 11/19/08 1:21 PM Page 542

May not be copied, scanned, or duplicated, in whole or in part.

13.6.7 Removing at the End

Removing an item at the end of an array (used in the Python list method pop)
requires constant time and memory, unless the array must be resized. The same
process for a singly linked structure assumes at least one node in the structure.
There are then two cases to consider:

1 There is just one node. The head pointer is set to None.

2 There is a node before the last node. The code searches for this second-
to-last node and sets its next pointer to None.

In either case, the code returns the data item contained in the deleted node. Here
is the form:

#ƒAssumesƒatƒleastƒoneƒnodeƒinƒstructure
removedItemƒ=ƒhead.data
ifƒhead.nextƒisƒNone:ƒƒƒ
ƒƒƒƒheadƒ=ƒNone
else:
ƒƒƒƒprobeƒ=ƒhead
ƒƒƒƒwhileƒprobe.next.nextƒ!=ƒNone:
ƒƒƒƒƒƒƒƒprobeƒ=ƒprobe.next
ƒƒƒƒremovedItemƒ=ƒprobe.next.data
ƒƒƒƒprobe.nextƒ=ƒNone
returnƒremovedItem

Figure 13.18 shows the removal of the last node from a linked structure of
three items.

13.6 Operations on Singly Linked Structures [543]

C6840_13 11/19/08 1:21 PM Page 543

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 13.18] Removing an item at the end of a linked structure

This operation is linear in time and constant in memory.

13.6.8 Inserting at Any Position

The insertion of an item at the ith position in an array requires shifting items
from position i down to position n - 1. Thus, we actually insert the item before
the item currently at position i so that the new item occupies position i and the
old item occupies position i + 1. What about the cases of an empty array or an
index that is greater than n - 1? If the array is empty, then the new item goes at
the beginning; whereas, if the index is greater than or equal to n, then the item
goes at the end.

The insertion of an item at the ith position in a linked structure must deal
with the same cases. The case of an insertion at the beginning uses the code pre-
sented earlier. In the case of an insertion at some other position i, however, the

probe.next != None

(Advance probe to
probe.next.)

probe.next.next == None

probe.next = None

(Stop the loop.)

(Unhook the last node.)

Garbage collection returns
node to system heap.

head

probe

D1 D2 D3

head

probe

D1 D2 D3

head

probe

D1 D2 D3

head

probe

D1 D2 D3

CHAPTER 13 Collections, Arrays, and Linked Structures[544]

C6840_13 11/19/08 1:21 PM Page 544

May not be copied, scanned, or duplicated, in whole or in part.

operation must first find the node at position i - 1 (if i < n) or the node at posi-
tion n - 1 (if i >= n). Then there are two cases to consider:

1 That node’s next pointer is None. This means that i >= n, so the new
item should be placed at the end of the linked structure.

2 That node’s next pointer is not None. That means that 0 < i < n, so the
new item must be placed between the node at position i - 1 and the node
at position i.

As with a search for the ith item, the insertion operation must count nodes
until the desired position is reached. However, because the target index might be
greater than or equal to the number of nodes, we must be careful to avoid going
off the end of the linked structure in the search. Thus, the loop has an additional
condition that tests the current node’s next pointer to see if it is the final node.
Here is the form:

ifƒheadƒisƒNoneƒorƒindexƒ<=ƒ0:
ƒƒƒƒheadƒ=ƒNode(newItem,ƒhead)
else:
ƒƒƒƒ#ƒSearchƒforƒnodeƒatƒpositionƒindexƒ-ƒ1ƒorƒtheƒlastƒposition
ƒƒƒƒprobeƒ=ƒhead
ƒƒƒƒwhileƒindexƒ>ƒ1ƒandƒprobe.nextƒ!=ƒNone:ƒƒƒ
ƒƒƒƒƒƒƒƒprobeƒ=ƒprobe.next;
ƒƒƒƒƒƒƒƒindexƒ-=ƒ1
ƒƒƒƒ#ƒInsertƒnewƒnodeƒafterƒnodeƒatƒpositionƒindexƒ-ƒ1ƒ
ƒƒƒƒ#ƒorƒlastƒposition
ƒƒƒƒprobe.nextƒ=ƒNode(newItem,ƒprobe.next)

Figure 13.19 shows a trace of the insertion of an item at position 2 in a
linked structure containing three items.

13.6 Operations on Singly Linked Structures [545]

C6840_13 11/19/08 1:21 PM Page 545

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 13.19] Inserting an item between two items in a linked structure

As with any singly linked structure operation that uses a traversal pattern,
this operation has a linear time performance. However, the use of memory is
constant.

The insertion of an item before a given item in a linked structure uses
elements of this pattern and is left as an exercise for you.

index > 1 and
probe.next != None

(Advance probe to
probe.next and decrement index)

index == 1

probe.next == Node (newItem,
 probe.next)

(Stop the loop.)

(Hook in the new node.)

head

probe

index

index

index

D1

2

D2 D3

head

probe

D1 D2 D3

head

probe

D1 D2 D3

D4

1

1

CHAPTER 13 Collections, Arrays, and Linked Structures[546]

C6840_13 11/19/08 1:21 PM Page 546

May not be copied, scanned, or duplicated, in whole or in part.

13.6.9 Removing at Any Position

The removal of the ith item from a linked structure has three cases:

1 i <= 0. We use the code to remove the first item.

2 0 < i < n. We search for the node at position i - 1, as in insertion, and
remove the following node.

3 i >= n. We remove the last node.

We assume that the linked structure has at least one item. The pattern is
similar to the one used for insertion in that we must guard against going off the
end of the linked structure. However, we must allow the probe pointer to go no
farther than the second node from the end of the structure. Here is the form:

#ƒAssumesƒthatƒtheƒlinkedƒstructureƒhasƒatƒleastƒoneƒitem
ifƒindexƒ<=ƒ0ƒorƒhead.nextƒisƒNone
ƒƒƒƒremovedItemƒ=ƒhead.data
ƒƒƒƒheadƒ=ƒhead.next
ƒƒƒƒreturnƒremovedItem
else:
ƒƒƒƒ#ƒSearchƒforƒnodeƒatƒpositionƒindexƒ-ƒ1ƒorƒ
ƒƒƒƒ#ƒtheƒnextƒtoƒlastƒposition
ƒƒƒƒprobeƒ=ƒhead
ƒƒƒƒwhileƒindexƒ>ƒ1ƒandƒprobe.next.nextƒ!=ƒNone:
ƒƒƒƒƒƒƒƒprobeƒ=ƒprobe.next
ƒƒƒƒƒƒƒƒindexƒ-=ƒ1
ƒƒƒƒremovedItemƒ=ƒprobe.next.data
ƒƒƒƒprobe.nextƒ=ƒprobe.next.next
ƒƒƒƒreturnƒremovedItem

Figure 13.20 shows a trace of the removal of the item at position 2 in a
linked structure containing four items.

13.6 Operations on Singly Linked Structures [547]

C6840_13 11/19/08 1:21 PM Page 547

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 13.20] Removing an item between two items in a linked structure

index > 1 and
probe.next.next != None

(Advance probe to
probe.next and
decrement index.)

index == 1

probe.next = probe.next.next

(Stop the loop.)

(Unhook the node.)

Garbage collection returns
node to system heap.

D4D1 D2 D3head

probe

index 1

D4D1 D2 D3head

probe

index 1

D4D1 D2 D3head

probe

index 1

D4D1 D2 D3head

probe

index 2

CHAPTER 13 Collections, Arrays, and Linked Structures[548]

C6840_13 11/19/08 1:21 PM Page 548

May not be copied, scanned, or duplicated, in whole or in part.

13.6.10 Complexity Trade-Off: Time, Space, and Singly
Linked Structures

Singly linked structures present a different space/time trade-off than arrays.
Table 13.4 provides a tally of the running times of the operations.

[TABLE 13.4] The running times of operations on singly linked structures

Surprisingly, this tally reveals that the only two linked structure operations that
are not linear in time are the insertion and removal of the first item. You might
be wondering why we use a linked structure instead of an array if so many of a
linked structure’s operations have linear behavior. Well, suppose you want to
implement a collection that just inserts, accesses, or removes the first item. We
will see such a collection, the stack, later in this book. Of course, one might also
choose an array implementation that inserts or removes the last item with similar
time performance. Later in the book, we also look at linked structures that sup-
port logarithmic insertions and searches.

The main advantage of the singly linked structure over the array is not time
performance but memory performance. Resizing an array, when this must occur,
is linear in time and memory. Resizing a linked structure, which occurs upon each
insertion or removal, is constant in time and memory. Moreover, no memory ever
goes to waste in a linked structure. The physical size of the structure never
exceeds the logical size. Linked structures do have an extra memory cost in that a
singly linked structure must use n cells of memory for the pointers. This cost
increases for doubly linked structures, whose nodes have two links.

Programmers who understand this analysis can pick the implementation that
best suits their needs.

OPERATION RUNNING TIME

Access at ith position O(n) (average case)

Replacement at ith position O(n) (average case)

Insert at beginning O(1) (best and worst case)

Remove from beginning O(1) (best and worst case)

Insert at ith position O(n) (average case)

Remove from ith position O(n) (average case)

13.6 Operations on Singly Linked Structures [549]

C6840_13 11/19/08 1:21 PM Page 549

May not be copied, scanned, or duplicated, in whole or in part.

13.6 Exercises
1 Assume that the position of an item to be removed from a singly linked

structure has been located. State the run-time complexity for completing
the removal operation from that point.

2 Can a binary search be performed on items that are in sorted order
within a singly linked structure? If not, why not?

3 Suggest a good reason the Python list uses an array rather than a linked
structure to hold its items.

13.7 Variations on a Link
13.7.1 A Circular Linked Structure with a Dummy

Header Node

The insertion and the removal of the first node are special cases of the insert ith
and remove ith operations on singly linked structures. These cases are special
because the head pointer must be reset. We can simplify these operations by
using a circular linked structure with a dummy header node. A circular linked
structure contains a link from the last node back to the first node in the structure.
There is always at least one node in this implementation. This node, the dummy
header node, contains no data, but serves as a marker for the beginning and the
end of the linked structure. Initially, in an empty linked structure, the head vari-
able points to the dummy header node, and the dummy header node’s next
pointer points back to the dummy header node itself, as shown in Figure 13.21.

[FIGURE 13.21] An empty circular linked structure with a dummy header node

head

CHAPTER 13 Collections, Arrays, and Linked Structures[550]

C6840_13 11/19/08 1:21 PM Page 550

May not be copied, scanned, or duplicated, in whole or in part.

The first node to contain data is located after the dummy header node. This
node’s next pointer then points back to the dummy header node in a circular
fashion, as shown in Figure 13.22.

[FIGURE 13.22] A circular linked structure after inserting the first node

The search for the ith node begins with the node after the dummy header
node. Assume that the empty linked structure is initialized as follows:

headƒ=ƒNode(None,ƒNone)
head.nextƒ=ƒhead

Here is the code for insertions at the ith position using this new representa-
tion of a linked structure:

#ƒSearchƒforƒnodeƒatƒpositionƒindexƒ-ƒ1ƒorƒtheƒlastƒposition
probeƒ=ƒhead
whileƒindexƒ>ƒ0ƒandƒprobe.nextƒ!=ƒhead:ƒƒƒ
ƒƒƒƒprobeƒ=ƒprobe.next
ƒƒƒƒindexƒ-=ƒ1
#ƒInsertƒnewƒnodeƒafterƒnodeƒatƒpositionƒindexƒ-ƒ1ƒorƒ
#ƒlastƒposition
probe.nextƒ=ƒNode(newItem,ƒprobe.next)

The advantage of this implementation is that the insertion and removal oper-
ations have only one case to consider—the case in which the ith node lies
between a prior node and the current ith node. When the ith node is the first
node, the prior node is the header node. When i >= n, the last node is the prior
node and the header node is the next node.

head D1

13.7 Variations on a Link [551]

C6840_13 11/19/08 1:21 PM Page 551

May not be copied, scanned, or duplicated, in whole or in part.

13.7.2 Doubly Linked Structures

A doubly linked structure has the advantages of a singly linked structure. In addi-
tion, it allows the user to do the following:

1 Move left, to the previous node, from a given node.

2 Move immediately to the last node.

Figure 13.23 shows a doubly linked structure that contains three nodes. Note
the presence of two pointers, conventionally known as next and previous, in
each node. Note also the presence of a second external tail pointer that allows
direct access to the last node in the structure.

[FIGURE 13.23] A doubly linked structure with three nodes

The Python implementation of a node class for doubly linked structures extends
the Node class discussed earlier by adding a field for the previous pointer. Here
is the code for the two classes:

classƒNode(object):

ƒƒƒƒdefƒ__init__(self,ƒdata,ƒnextƒ=ƒNone):
ƒƒƒƒƒƒƒƒ“””InstantiatesƒaƒNodeƒwithƒdefaultƒnextƒofƒNone”””
ƒƒƒƒƒƒƒƒself.dataƒ=ƒdata
ƒƒƒƒƒƒƒƒself.nextƒ=ƒnext

classƒTwoWayNode(Node):

ƒƒƒƒdefƒ__init__(self,ƒdata,ƒpreviousƒ=ƒNone,ƒnextƒ=ƒNone):
ƒƒƒƒƒƒƒƒ“””InstantiatesƒaƒTwoWayNode.”””
ƒƒƒƒƒƒƒƒNode.__init__(self,ƒdata,ƒnext)
ƒƒƒƒƒƒƒƒself.previousƒ=ƒprevious

D1 D2 D3head

tail

CHAPTER 13 Collections, Arrays, and Linked Structures[552]

C6840_13 11/19/08 1:21 PM Page 552

May not be copied, scanned, or duplicated, in whole or in part.

The following tester program creates a doubly linked structure by adding
items to the end. The program then displays the linked structure’s contents by
starting at the last item and working backward to the first item:

“””
File:ƒtesttwowaynode.py
TestsƒtheƒTwoWayNodeƒclass.
“””

fromƒnodeƒimportƒTwoWayNode

#ƒCreateƒaƒdoublyƒlinkedƒstructureƒwithƒoneƒnode
headƒ=ƒTwoWayNode(1)
tailƒ=ƒhead

#ƒAddƒfourƒnodesƒtoƒtheƒendƒofƒtheƒdoublyƒlinkedƒstructure
forƒdataƒinƒxrange(2,ƒ6):
ƒƒƒƒtail.nextƒ=ƒTwoWayNode(data,ƒtail)
ƒƒƒƒtailƒ=ƒtail.next

#ƒPrintƒtheƒcontentsƒofƒtheƒlinkedƒstructureƒinƒreverseƒorder
probeƒ=ƒtail
whileƒprobeƒ!=ƒNone:
ƒƒƒƒprintƒprobe.data
ƒƒƒƒprobeƒ=ƒprobe.previous

Consider the following two statements in the first loop of the program:

tail.nextƒ=ƒTwoWayNode(data,ƒtail)
tailƒ=ƒtail.next

The purpose of these statements is to insert a new item at the end of the linked
structure. We assume that there is at least one node in the linked structure and
that the tail pointer always points to the last node in the nonempty linked
structure. The following three pointers must be set:

1 The previous pointer of the new node must be aimed at the current tail
node. This is accomplished by passing tail as the second argument to
the node’s constructor.

2 The next pointer of the current tail node must be aimed at the new
node. The first assignment statement accomplishes this.

3 The tail pointer must be aimed at the new node. The second assignment
statement accomplishes this.

13.7 Variations on a Link [553]

C6840_13 11/19/08 1:21 PM Page 553

May not be copied, scanned, or duplicated, in whole or in part.

Figure 13.24 shows the insertion of a new node at the end of a doubly linked
structure.

[FIGURE 13.24] Inserting an item at the end of a doubly linked structure

As you can see, insertions in the middle of a doubly linked structure would
require the redirection of still more pointers. However, the redirected pointers
are always constant in number no matter where the target position is.

The more general insertion and removal operations for doubly linked struc-
tures also have two special cases, as they did with singly linked structures. It is
possible to simplify these operations by resorting to a circular linked structure
with a dummy header node. We leave that as an exercise for you.

With the exception of insertions and removals at the tail of the structure, the run-
time complexities of the operations on a doubly linked structure are the same as the
corresponding operations on the singly linked structure. However, a linear amount of
extra memory is required for the extra pointers of a doubly linked structure.

State of structure
before insertion

tail.next =
TwoWayNode(data,
 tail)

tail = tail.next
head

tail

D1 D2 D3 D4

head

tail

D1 D2 D3 D4

head

tail

D1 D2 D3

CHAPTER 13 Collections, Arrays, and Linked Structures[554]

C6840_13 11/19/08 1:21 PM Page 554

May not be copied, scanned, or duplicated, in whole or in part.

13.7 Exercises
1 What advantage does a circular linked structure with a dummy header

node give the programmer?

2 Describe one benefit and one cost of a doubly linked structure, as com-
pared to a singly linked structure.

Summary
� Collections are objects that hold zero or more other objects. A collec-

tion has operations for accessing its objects, inserting them, removing
them, determining its size, and traversing and visiting the collection’s
objects.

� The four main categories of collections are linear, hierarchical, graph,
and unordered.

� Linear collections order their items by position, with each but the first
having a unique predecessor and each but the last having a unique
successor.

� With one exception, the items in a hierarchical collection have a
unique predecessor and zero or more successors. A single item called
the root has no predecessor.

� The items in a graph can have zero or more successors and zero or
more predecessors.

� The items in an unordered collection are in no particular order.
� Collections are iterable—each item contained within a collection can

be visited with a for loop.
� An abstract data type is a set of objects and operations on those

objects. Collections are thus abstract data types.
� A data structure is an object used to represent the data contained in a

collection.
� The array is a data structure that supports random access, in constant

time, to an item by position. An array is given a number of positions
for data when it is created and its length remains fixed. Insertions and
removals require shifting of data elements and perhaps the creation of
a new, larger or smaller array.

Summary [555]

C6840_13 11/19/08 1:21 PM Page 555

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Collections, Arrays, and Linked Structures[556]

� A two-dimensional array locates each data value at a row and column
in a rectangular grid.

� A linked structure is a data structure that consists of zero or more nodes.
A node contains a data item and one or more links to other nodes.

� A singly linked structure’s nodes contain a data item and a link to the
next node. A node in a doubly linked structure also contains a link to
the previous node.

� Insertions or removals in linked structures require no shifting of data
elements. At most, one node is created. However, insertions,
removals, and accesses in linear linked structures require linear time.

� Using a header node in a linked structure can simplify some of the
operations, such as adding or removing items.

REVIEW QUESTIONS
1 Examples of linear collections are

a sets and trees
b lists and stacks

2 Examples of unordered collections are

a queues and lists
b sets and dictionaries

3 A hierarchical collection can represent a

a line of customers at a bank
b a file directory system

4 A graph collection can represent a

a set of numbers
b map of flight paths between cities

5 Arrays and linked structures are examples of

a abstract data types (ADTs)
b data structures

C6840_13 11/19/08 1:21 PM Page 556

May not be copied, scanned, or duplicated, in whole or in part.

6 An array’s length

a is fixed in size after it is created
b can be increased or decreased after it is created

7 Random access supports

a constant time access to data
b linear time access to data

8 Data in a singly linked structure are contained in

a cells
b nodes

9 Most operations on singly linked structures run in

a constant time
b linear time

10 It requires constant time to remove the first item from a(n)

a array
b singly linked structure

PROJECTS
In the first six projects, you modify the Array class defined in this chapter to
make it behave more like Python’s list class. For each solution, include code
that tests your modifications to the Array class.

1 Add an instance variable _logicalSize to the Array class. This variable
is initially 0, and will track the number of items currently available to
users of the array. Then add the method size() to the Array class. This
method should return the array’s logical size. The method __len__
should still return the array’s capacity or physical size.

2 Add preconditions to the methods __getitem__ and __setitem__ of the
Array class. The precondition of each method is 0 <= index < size().
Be sure to raise an exception if the precondition is not satisfied.

PROJECTS [557]

C6840_13 11/19/08 1:21 PM Page 557

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 13 Collections, Arrays, and Linked Structures[558]

3 Add the methods grow and shrink to the Array class. These methods
should use the strategies discussed in this chapter to increase or decrease
the length of the list contained in the array. Make sure that the physical
size of the array does not shrink below the user-specified capacity and
that the array’s cells use the fill value when the array’s size is increased.

4 Add the methods insert and remove to the Array class. These meth-
ods should use the strategies discussed in this chapter, including adjust-
ing the length of the array, if necessary. The insert method expects a
position and an item as arguments and inserts the item at the given posi-
tion. If the position is greater than or equal to the array’s logical size, the
method inserts the item after the last item currently available in the
array. The remove method expects a position as an argument and
removes and returns the item at that position. The remove method’s
precondition is 0 <= index < size(). The remove method should
also reset the vacated array cell to the fill value.

5 Add the method __eq__ to the Array class. Python runs this method
when an Array object appears as the left operand of the == operator. The
method returns True if its argument is also an Array, it has the same log-
ical size as the left operand, and the pair of items at each logical position in
the two arrays are equal. Otherwise, the method returns False.

6 Jill tells Jack that he should now remove the current implementation of
the __iter__ method from the Array class, if it’s really behaving like a
list. Explain why this is a good suggestion. Also explain how the __str__
method should be modified at this point.

7 A Matrix class can be used to perform the some of the operations found
in linear algebra, such as matrix arithmetic. Develop a Matrix class that
uses the built-in operators for arithmetic in a manner similar to the
Rational number class discussed in Chapter 8. The Matrix class should
extend the Grid class.

The next four projects ask you to define some functions for manipulating
linked structures. You should use the Node and TwoWayNode classes, as
defined in this chapter. Create a tester module that contains your func-
tion definitions and your code for testing them.

8 Define a function length (not len) that expects a singly linked structure as
an argument. The function returns the number of items in the structure.

9 Define a function named insert that inserts an item into a singly linked
structure at a given position. The function expects three arguments: the
item, the position, and the linked structure (the latter may be empty).

C6840_13 11/19/08 1:21 PM Page 558

May not be copied, scanned, or duplicated, in whole or in part.

The function returns the modified linked structure. If the position is
greater than or equal to the structure’s length, the function inserts the
item at its end. An example call of the function, where head is a variable
that either is an empty link or refers to the first node of a structure, is
head = insert(1, data, head).

10 Define a function named remove that removes the item at a given
position from a singly linked structure. This function expects a
position as a first argument, with the precondition
0 <= position < length of structure. Its second argument is
the linked structure, which, of course, cannot be empty. The function
returns a tuple containing the modified linked structure and the item that
was removed. An example call is (head, item) = remove(1, head).

11 Define a function makeTwoWay that expects a singly linked structure as
its argument. The function builds and returns a doubly linked structure
that contains the items in the singly linked structure. (Note: The function
should not alter the argument’s structure.)

PROJECTS [559]

C6840_13 11/19/08 1:21 PM Page 559

May not be copied, scanned, or duplicated, in whole or in part.

C6840_13 11/19/08 1:21 PM Page 560

This page intentionally left blank

[CHAPTER] Linear Collections: Stacks14
After completing this chapter, you will be able to:

� Describe the behavior of a stack from a user’s perspective
� Explain how a stack can be used to support a backtracking

algorithm
� Describe the use of a stack in evaluating postfix expressions
� Explain how the Python virtual machine uses a stack to sup-

port function and method calls
� Analyze the performance trade-offs between an array-based

implementation of a stack and a linked implementation of
a stack

This chapter introduces the stack, a collection that has wide-
spread use in computer science. The stack is the simplest collection
to describe and implement. However, it has fascinating applications,
three of which we discuss later in the chapter. We also present two
standard implementations, one based on arrays and the other on
linked structures. The chapter closes with a case study in which
stacks play a central role—the translation and evaluation of arith-
metic expressions.

C6840_14 11/19/08 1:10 PM Page 561

May not be copied, scanned, or duplicated, in whole or in part.

14.1 Overview of Stacks
Stacks are linear collections in which access is completely restricted to just one
end, called the top. The classic analogous example is the stack of clean trays
found in every cafeteria. Whenever a tray is needed, it is removed from the top of
the stack, and whenever clean ones come back from the kitchen, they are again
placed on the top. No one ever takes some particularly fine tray from the middle
of the stack, and it is even possible that trays near the bottom are never used.
Stacks are said to adhere to a last-in first-out protocol (LIFO). The last tray
brought back from the dishwasher is the first one taken by a customer.

The operations for putting items on and removing items from a stack are
called push and pop, respectively. Figure 14.1 shows a stack as it might appear at
various stages. The item at the top of the stack is shaded.

[FIGURE 14.1] Some states in the lifetime of a stack

Initially, the stack is empty, and then an item called a is pushed. Next, three more
items called b, c, and d are pushed, after which the stack is popped, and so forth.

Other everyday examples of stacks include plates and bowls in a kitchen cup-
board or a spindle of CDs. Although you continually add more papers to the top
of the piles on your desk, these piles do not quite qualify because you often need
to remove a long-lost paper from the middle. With a genuine stack, the item you
get next is always the one added most recently.

Empty

a

After
push(a)

d

c

b

a

After
push(b)
push(c)
push(d)

c

b

a

After
pop()

After
push(e)
push(f)

f

e

c

b

a

After
pop()

e

c

b

a

CHAPTER 14 Linear Collections: Stacks[562]

C6840_14 11/19/08 1:10 PM Page 562

May not be copied, scanned, or duplicated, in whole or in part.

Applications of stacks in computer science are numerous. Here are just a few,
including three we discuss in more detail later in the chapter:

� Translating infix expressions to postfix form and evaluating postfix expres-
sions (discussed later in the chapter).

� Backtracking algorithms (discussed later in the chapter and occurring in
problems such as automated theorem proving and game playing).

� Managing computer memory in support of function and method calls (dis-
cussed later in the chapter).

� Supporting the undo feature in text editors, word processors, spreadsheet
programs, drawing programs, and similar applications.

� Maintaining a history of the links visited by a Web browser.

14.2 Using a Stack
A stack type is not built into Python. In a pinch, Python programmers can use a
Python list to emulate a stack. If we view the end of a list as the top of a stack,
the list method append pushes an element onto this stack, whereas the list
method pop removes and returns the element at its top. The main drawback of
this option is that our stack can be manipulated by all of the other list operations
as well. These include the insertion, replacement, and removal of an element at
any position. These extra operations violate the spirit of a stack as an ADT. In
this section, we define a more restricted interface or set of operations for any
authentic stack implementation and show how these operations are used in a brief
example.

14.2 Using a Stack [563]

C6840_14 11/19/08 1:10 PM Page 563

May not be copied, scanned, or duplicated, in whole or in part.

14.2.1 The Stack Interface

In addition to the push and pop operations, a stack interface provides operations
for examining the element at the top of a stack, determining the number of ele-
ments in a stack, and determining whether a stack is empty. Like any other type,
a stack type also includes an operation that returns a stack’s string representation.
These operations are listed as Python methods in Table 14.1, where the variable
s refers to a stack.

[TABLE 14.1] The methods in the stack interface

Note that the methods pop and peek have an important precondition and raise
an error if the user of the stack does not satisfy that precondition. The advantage
of this interface is that users will know which methods to use and what to expect
from them, no matter which stack implementation is chosen.

Now that we have defined a stack interface, we can demonstrate how to use
it. Table 14.2 shows how the operations listed earlier affect a stack named s.

STACK METHOD WHAT IT DOES

s.push(item) Inserts item at the top of the stack.

s.pop() Removes and returns the item at the top of the stack.
Precondition: The stack must not be empty; raises an error if
that is not the case.

s.peek() Returns the item at the top of the stack. Precondition: The stack
must not be empty; raises an error if that is not the case.

s.isEmpty() Returns True if the stack is empty, or False otherwise.

s.__len__() Same as len(s). Returns the number of items currently in
the stack.

s.__str__() Same as str(s). Returns the string representation of the stack.

CHAPTER 14 Linear Collections: Stacks[564]

C6840_14 11/19/08 1:10 PM Page 564

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 14.2] The effects of stack operations

14.2.2 Instantiating a Stack

We assume that any stack class that implements this interface will also have a con-
structor that allows its user to create a new stack instance. Later in this chapter, we
consider two different implementations, named ArrayStack and LinkedStack.

STATE OF THE
STACK AFTER VALUE

OPERATION THE OPERATION RETURNED COMMENT

Initially, the stack is empty.

s.push(a) a The stack contains the single
item a.

s.push(b) a b b is the top item on the stack.

s.push(c) a b c c is the top item.

s.isEmpty() a b c False The stack is not empty.

len(s) a b c 3 The stack contains three items.

s.peek() a b c c Return the top item on the
stack without removing it.

s.pop() a b c Remove the top item from the
stack and return it. b is now the
top item.

s.pop() a b Remove and return b.

s.pop() a Remove and return a.

s.isEmpty() True The stack is empty.

s.peek() exception Peeking at an empty stack
raises an exception.

s.pop() exception Popping an empty stack raises
an exception.

s.push(d) d d is the top item.

14.2 Using a Stack [565]

C6840_14 11/19/08 1:10 PM Page 565

May not be copied, scanned, or duplicated, in whole or in part.

For now, we assume that someone has coded these so we can use them. The next
code segment shows how they might be instantiated:

s1 = ArrayStack()
s2 = LinkedStack()

Although the code of these two implementations need not be revealed to the
implementation’s users, it would be naïve to assume that the users know nothing
at all about these implementations. Different implementations of the same inter-
face likely have different performance trade-offs, and knowledge of these trade-
offs is critical to users of the implementations. Users would base their choice of
one implementation rather than another on the performance characteristics
required by their applications. These characteristics in turn are implied by the
very names of the classes (array or linked) and would likely be mentioned in the
documentation of the implementations. But for now, let’s assume that we have
enough knowledge to use either implementation of stacks in the applications
that follow.

14.2.3 Example Application: Matching Parentheses

Compilers need to determine if the bracketing symbols in expressions are bal-
anced correctly. For example, every opening [should be followed by a properly
positioned closing] and every (by a). Table 14.3 provides some examples.

[TABLE 14.3] Balanced and unbalanced brackets in expressions

EXAMPLE EXPRESSION STATUS REASON

(...)...(...) Balanced

(...)...(... Unbalanced Missing a closing) at the end.

)...(...(...) Unbalanced The closing) at the beginning has no
matching opening (and one of the
opening parentheses has no closing
parenthesis.

[...(...)...] Balanced

[...(...]...) Unbalanced The bracketed sections are not nested
properly.

CHAPTER 14 Linear Collections: Stacks[566]

C6840_14 11/19/08 1:10 PM Page 566

May not be copied, scanned, or duplicated, in whole or in part.

In these examples, three dots represent arbitrary strings that contain no bracket-
ing symbols.

As a first attempt at solving the problem of whether brackets balance, we
might simply count the number of left and right parentheses. If the expression
balances, the two counts are equal. However, the converse is not true. If the
counts are equal, the brackets do not necessarily balance. The third example pro-
vides a counterexample.

A more sophisticated approach, using a stack, does work. To check an expres-
sion, the following steps are taken:

1 We scan across the expression, pushing opening brackets onto a stack.

2 On encountering a closing bracket, if the stack is empty or if the item on
the top of the stack is not an opening bracket of the same type, we know
the brackets do not balance.

3 Pop an item off the top of the stack and, if it is the right type, continue
scanning the expression.

4 When we reach the end of the expression, the stack should be empty,
and if it is not, we know the brackets do not balance.

Here is a Python script that implements this strategy for the two types of
brackets mentioned. We assume that the module stack includes the class
LinkedStack.

“””
File:ƒbrackets.py
Checksƒexpressionsƒforƒmatchingƒbrackets
“””

fromƒstackƒimportƒLinkedStack

defƒbracketsBalance(exp):
ƒƒƒƒ“””expƒisƒaƒstringƒthatƒrepresentsƒtheƒexpression”””
ƒƒƒƒstkƒ=ƒLinkedStack()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒCreateƒaƒnewƒstack
ƒƒƒƒforƒchƒinƒexp:ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒScanƒacrossƒtheƒexpression
ƒƒƒƒƒƒƒƒifƒchƒinƒ['[',ƒ'(']:ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒPushƒanƒopeningƒbracketƒ
ƒƒƒƒƒƒƒƒƒƒƒƒstk.push(ch)
ƒƒƒƒƒƒƒƒelifƒchƒinƒ[']',ƒ')']:ƒƒƒƒƒƒƒƒ#ƒProcessƒaƒclosingƒbracket
ƒƒƒƒƒƒƒƒƒƒƒƒifƒstk.isEmpty():ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒNotƒbalanced
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒFalse
ƒƒƒƒƒƒƒƒƒƒƒƒchFromStackƒ=ƒstk.pop()

14.2 Using a Stack [567]

continued

C6840_14 11/19/08 1:10 PM Page 567

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Linear Collections: Stacks[568]

ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒBracketsƒmustƒbeƒofƒsameƒtypeƒandƒmatchƒup
ƒƒƒƒƒƒƒƒƒƒƒƒifƒchƒ==ƒ']'ƒandƒchFromStackƒ!=ƒ'['ƒorƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒchƒ==ƒ')'ƒandƒchFromStackƒ!=ƒ'(':ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒFalse
ƒƒƒƒƒreturnƒstk.isEmpty()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTheyƒallƒmatchedƒup

defƒmain():
ƒƒƒƒexpƒ=ƒraw_input(“Enterƒaƒbracketedƒexpression:ƒ“)
ƒƒƒƒifƒbracketsBalance(exp):
ƒƒƒƒƒƒƒƒprintƒ“OK”
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprintƒ“NotƒOK”

main()

14.2 Exercises
1 Using the format of Table 14.2, complete a table that involves the fol-

lowing sequence of stack operations:

The other columns are labeled State of the Stack After the Operation,
Value Returned, and Comment.

OPERATION

create stack

s.push(a)

s.push(b)

s.push(c)

s.pop()

s.pop()

s.peek()

s.push(x)

s.pop()

s.pop()

s.pop()

C6840_14 11/19/08 1:10 PM Page 568

May not be copied, scanned, or duplicated, in whole or in part.

2 Modify the bracketsBalance function so that the caller can supply the
brackets to match as arguments to this function. The second argument
should be a list of beginning brackets, and the third argument should be
a list of ending brackets. The pairs of brackets at each position in the two
lists should match, that is, position 0 in the two lists might have [and],
respectively. You should be able to modify the code for the function so
that it does not reference any literal bracket symbols, but just uses the
list arguments. (Hint: The method index returns the position of an item
in a list.)

3 Someone suggests that you might not need a stack to match parentheses
in expressions after all. Instead, you can set a counter to 0, increment it
when a left parenthesis is encountered, and decrement it whenever a
right parenthesis is seen. If the counter ever goes below zero or remains
positive at the end of the process, there was an error; if the counter is
zero at the end and never goes negative, the parentheses all match cor-
rectly. Where does this strategy break down? (Hint: There might be
braces and brackets to match as well.)

14.3 Three Applications of Stacks
We now discuss three other applications of stacks. First, we present algorithms for
evaluating arithmetic expressions. These algorithms apply to problems in compiler
design, and we will use them in the chapter’s case study. Second, we describe a gen-
eral technique for using stacks to solve backtracking problems. The programming
projects explore applications of the technique. Third, we examine the role of stacks
in computer memory management. Not only is this topic interesting in its own
right, but it also provides a foundation for understanding recursion.

14.3.1 Evaluating Arithmetic Expressions

In daily life, we are so accustomed to evaluating simple arithmetic expressions
that we give little thought to the rules involved. So you might be surprised by
the difficulty of writing an algorithm to do the same thing. It turns out that an
indirect approach to the problem works best. First, you transform an expression
from its familiar infix form to a postfix form, and then you evaluate the postfix
form. In the infix form, each operator is located between its operands, whereas in
the postfix form, an operator immediately follows its operands. Table 14.4 gives
several simple examples.

14.3 Three Applications of Stacks [569]

C6840_14 11/19/08 1:10 PM Page 569

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 14.4] Some infix and postfix expressions

There are similarities and differences between the two forms. In both,
operands appear in the same order. However, the operators do not. The infix
form sometimes requires parentheses; the postfix form never does. Infix evalua-
tion involves rules of precedence; postfix evaluation applies operators as soon as
they are encountered. For instance, consider the steps in evaluating the infix
expression 34 + 22 * 2 and the equivalent postfix expression 34 22 2 * +.

Infix evaluation: 34 + 22 * 2 � 34 + 44 � 78

Postfix evaluation: 34 22 2 * + � 34 44 + � 78

The use of parentheses and operator precedence in infix expressions is for
the convenience of the human beings who read them and write them. By elimi-
nating these parentheses, the equivalent postfix expressions present a computer
with a format that is much easier and more efficient for it to evaluate.

We now present stack-based algorithms for transforming infix expressions to
postfix and for evaluating the resulting postfix expressions. In combination, these
algorithms allow a computer to evaluate an infix expression. In practice, the con-
version step usually occurs at compile time, whereas the evaluation step occurs at
run time. In presenting the algorithms, we ignore this difference and also ignore
the effects of syntax errors, but return to the issue in the case study and the exer-
cises. We begin with the evaluation of postfix expressions, which is simpler than
converting infix expressions to postfix expressions.

14.3.2 Evaluating Postfix Expressions

Evaluating a postfix expression involves three steps:

1 Scan across the expression from left to right.

2 On encountering an operator, apply it to the two preceding operands
and replace all three by the result.

INFIX FORM POSTFIX FORM VALUE

34 34 34

34 + 22 34 22 + 56

34 + 22 * 2 34 22 2 * + 78

34 * 22 + 2 34 22 * 2 + 750

(34 + 22) * 2 34 22 + 2 * 112

CHAPTER 14 Linear Collections: Stacks[570]

C6840_14 11/19/08 1:10 PM Page 570

May not be copied, scanned, or duplicated, in whole or in part.

3 Continue scanning until you reach the expression’s end, at which point
only the expression’s value remains.

To express this procedure as a computer algorithm, you use a stack of operands. In
the algorithm, the term token refers to either an operand or an operator:

Create a new stack
While there are more tokens in the expression

Get the next token
If the token is an operand

Push the operand onto the stack
Else if the token is an operator

Pop the top-two operands from the stack
Apply the operator to the two operands just popped
Push the resulting value onto the stack

Return the value at the top of the stack

The time complexity of the algorithm is O(n), where n is the number of tokens in
the expression (see the exercises). Table 14.5 shows a trace of the algorithm as it
is applies to the expression 4 5 6 * + 3 -.

[TABLE 14.5] Tracing the evaluation of a postfix expression

POSTFIX EXPRESSION: 4 5 6 * + 3 - RESULTING VALUE: 31

PORTION OF POSTFIX
EXPRESSION SCANNED OPERAND
SO FAR STACK COMMENT

No tokens have been seen yet. The stack
is empty.

4 4 Push the operand 4.

4 5 4 5 Push the operand 5.

4 5 6 4 5 6 Push the operand 6.

4 5 6 * 4 30 Replace the top-two operands by their
product.

4 5 6 * + 34 Replace the top-two operands by their sum.

4 5 6 * + 3 34 3 Push the operand 3.

4 5 6 * + 3 - 31 Replace the top-two operands by their
difference.

Pop the final value.

14.3 Three Applications of Stacks [571]

C6840_14 11/19/08 1:10 PM Page 571

May not be copied, scanned, or duplicated, in whole or in part.

14.3.2 Exercises
1 Evaluate by hand the following postfix expressions:

a 10 5 4 + *
b 10 5 * 6 –
c 22 2 4 * /
d 33 6 + 3 4 / +

2 Perform a complexity analysis for postfix evaluation.

14.3.3 Converting Infix to Postfix

We now show how to translate expressions from infix to postfix. For the sake of
simplicity, we restrict our attention to expressions involving the operators *, /, +,
and – (an exercise at the end of the chapter enlarges the set of operators). As
usual, multiplication and division have higher precedence than addition and sub-
traction, except when parentheses override the default order of evaluation.

In broad terms, the algorithm scans, from left to right, a sequence containing
an infix expression and simultaneously builds a sequence containing the equiva-
lent postfix expression. Operands are copied from the infix sequence to the post-
fix sequence as soon as they are encountered. However, operators must be held
back on a stack until operators of greater precedence have been copied to the
postfix string ahead of them. Here is a more detailed statement of the process:

1 Start with an empty postfix expression and an empty stack, which will
hold operators and left parentheses.

2 Scan across the infix expression from left to right.

3 On encountering an operand, append it to the postfix expression.

4 On encountering a left parenthesis, push it onto the stack.

5 On encountering an operator, pop off the stack all operators that have
equal or higher precedence, append them to the postfix expression, and
then push the scanned operator onto the stack.

6 On encountering a right parenthesis, shift operators from the stack to
the postfix expression until meeting the matching left parenthesis, which
is discarded.

7 On encountering the end of the infix expression, transfer the remaining
operators from the stack to the postfix expression.

CHAPTER 14 Linear Collections: Stacks[572]

C6840_14 11/19/08 1:10 PM Page 572

May not be copied, scanned, or duplicated, in whole or in part.

Examples in Tables 14-6 and 14-7 illustrate the procedure.

[TABLE 14.6] Tracing the conversion of an infix expression to a postfix expression

INFIX EXPRESSION: EQUIVALENT POSTFIX EXPRESSION:
4 + 5 * 6 - 3 4 5 6 * + 3 -

PORTION OF INFIX
EXPRESSION OPERATOR POSTFIX
SCANNED SO FAR STACK EXPRESSION COMMENT

No characters have been
seen yet. The stack and PE
are empty.

4 4 Append 4 to the PE.

4 + + 4 Push + onto the stack.

4 + 5 + 4 5 Append 5 to the PE.

4 + 5 * + * 4 5 Push * onto the stack.

4 + 5 * 6 + * 4 5 6 Append 6 to the PE.

4 + 5 * 6 - - 4 5 6 * + Pop * and +, append them
to the PE, and push -.

4 + 5 * 6 - 3 - 4 5 6 * + 3 Append 3 to the PE.

4 5 6 * + 3 - Pop the remaining operators
off the stack and append
them to the PE.

14.3 Three Applications of Stacks [573]

C6840_14 11/19/08 1:10 PM Page 573

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 14.7] Tracing the conversion of an infix expression to a postfix expression

We leave it to the reader to determine the time complexity of this process. You’ll
see another example of this in the case study in this chapter, and then, in the end-
of-chapter projects, you’ll have a chance to incorporate the process into a pro-
gramming project that extends the case study.

INFIX EXPRESSION: EQUIVALENT POSTFIX EXPRESSION:
(4 + 5) * (6 - 3) 4 5 + 6 3 - *

PORTION OF INFIX
EXPRESSION OPERATOR POSTFIX
SCANNED SO FAR STACK EXPRESSION COMMENT

No characters have been
seen yet. The stack and
PE are empty.

((Push (onto the stack.

(4 (4 Append 4 to the PE.

(4 + (+ 4 Push + onto the stack.

(4 + 5 (+ 4 5 Append 5 to the PE.

(4 + 5) (+ 4 5 + Pop the stack until (is
encountered and append
operators to the PE.

(4 + 5) * * 4 5 + Push * onto the stack.

(4 + 5) * (* (4 5 + Push (onto the stack.

(4 + 5) * (6 * (4 5 + 6 Append 6 to the PE.

(4 + 5) * (6 - * (- 4 5 + 6 Push - onto the stack.

(4 + 5) * (6 - 3 * (- 4 5 + 6 3 Append 3 to the PE.

(4 + 5) * (6 - 3) * 4 5 + 6 3 - Pop stack until (is
encountered and append
items to the PE.

4 5 + 6 3 - * Pop the remaining oper-
ators off the stack and
append them to the PE.

CHAPTER 14 Linear Collections: Stacks[574]

C6840_14 11/19/08 1:10 PM Page 574

May not be copied, scanned, or duplicated, in whole or in part.

14.3.3 Exercises
1 Translate by hand the following infix expressions to postfix form:

a 33 – 15 * 6
b 11 * (6 + 2)
c 17 + 3 – 5
d 22 – 6 + 33 / 4

2 Perform a complexity analysis for a conversion of infix to postfix.

14.3.4 Backtracking

A backtracking algorithm begins in a predefined starting state and then moves
from state to state in search of a desired ending state. At any point along the way,
when there is a choice between several alternative states, the algorithm picks one,
possibly at random, and continues. If the algorithm reaches a state that represents
an undesirable outcome, it backs up to the last point at which there was an unex-
plored alternative and tries it. In this way, the algorithm either exhaustively
searches all states, or it reaches the desired ending state.

There are two principal techniques for implementing backtracking algo-
rithms: one uses stacks and the other uses recursion. Here, we explore the use of
stacks; in Chapter 17, we consider recursion.

The role of a stack in the process is to remember the alternative states that
occur at each juncture. To be more precise, the role is the following:

Create an empty stack
Push the starting state onto the stack
While the stack is not empty

Pop the stack and examine the state
If the state represents an ending state

Return SUCCESSFUL CONCLUSION
Else if the state has not been visited previously

Mark the state as visited
Push onto the stack all unvisited adjacent states

Return UNSUCCESSFUL CONCLUSION

This general backtracking algorithm finds applications in many game-playing
and puzzle-solving programs. Consider, for example, the problem of finding a
path out of a maze. In one instance of this problem, a hiker must find a path to

14.3 Three Applications of Stacks [575]

C6840_14 11/19/08 1:10 PM Page 575

May not be copied, scanned, or duplicated, in whole or in part.

the top of a mountain. Assume that the hiker leaves a parking lot, marked P, and
explores the maze until she reaches the top of a mountain, marked T. Figure 14.2
shows what one possible maze looks like.

[FIGURE 14.2] A maze problem

Let’s describe a program to solve this problem. At start-up, the program’s data
model inputs the maze as a grid of characters from a text file. The character * marks
a barrier, and P and T mark the parking lot and mountaintop, respectively. A blank
space marks a step along a path. After the maze is loaded from the file, the program
should display it in the terminal window. The program should then ask the user to
press the Enter or Return key to solve the maze. The model attempts to find a path
through the maze and returns “solved” or “unsolved” to the view, depending on the
outcome. In the model, the maze is represented as a grid of characters (P, T, *, or
space). During the search, each visited cell is marked with a dot. At the end of

**
******* ******** ****
******* ************** ************* ******** ****
******* ************** *** * *** ****
P ************** ** ****** * *** **** ****
******* *** ** * ******* **** ****
******* *** ******* ** * ******************* ****
******* *** ******* ** ******************* ****
******* *** ******* ************************* ****
******* *** ** ********* ****
*** *** ** **** **** ******************** ****
*** ********** **** **** ****** ****
*** ********** **** ************************* ****
*** ********** **** ************************* ****
*** **** ************ ************ ****
******** ********** ************ ************ ****
******** ********** ************ ******* ****
******** ***** ************ **** ******* ****
******************* **** ******* ****
************************************* ******* ****
************************************* ************
************************************* T
**

CHAPTER 14 Linear Collections: Stacks[576]

C6840_14 11/19/08 1:10 PM Page 576

May not be copied, scanned, or duplicated, in whole or in part.

the program, the grid is redisplayed with the dots included. Here is the backtrack-
ing algorithm that is at the core of the solution:

Instantiate a stack
Locate the character “P” in the grid
Push its location onto the stack
While the stack is not empty

Pop a location, (row, column), off the stack
If the grid contains “T” at this location, then

A path has been found
Return SUCCESS

Else if this location does not contain a dot
Place a dot in the grid at this location
Examine the adjacent cells to this one and
for each one that contains a space,

push its location onto the stack
Return FAILURE

It would be interesting to calculate the time complexity of the foregoing
algorithm. However, two crucial pieces of information are missing:

1 The complexity of deciding if a state has been visited.

2 The complexity of listing states adjacent to a given state.

If, for the sake of argument, we assume that both of these processes are O(1), then
the algorithm as a whole is O(n), where n represents the total number of states.

This discussion has been a little abstract, but at the end of the chapter, there
is a programming project involving the application of stack-based backtracking to
a maze problem.

14.3.5 Memory Management

During a program’s execution, both its code and data occupy computer memory.
The computer’s run-time system must keep track of various details that are invisi-
ble to the program’s author. These include the following:

� Associating variables with data objects stored in memory so they can be
located when these variables are referenced.

� Remembering the address of the instruction in which a method or function
is called, so control can return to the next instruction when that function
or method finishes execution.

� Allocating memory for a function’s or a method’s arguments and temporary
variables, which exist only during the execution of that function or method.

14.3 Three Applications of Stacks [577]

C6840_14 11/19/08 1:10 PM Page 577

May not be copied, scanned, or duplicated, in whole or in part.

Although the exact manner in which a computer manages memory depends on
the programming language and operating system involved, we can present the fol-
lowing simplified, yet reasonably realistic, overview. The emphasis must be on the
word “simplified,” because a detailed discussion is beyond the scope of this book.

As you probably already know, a Python compiler translates a Python pro-
gram into bytecodes. A complex program called the Python Virtual Machine
(PVM) then executes these. The memory, or run-time environment, controlled
by the PVM is divided into six regions, as shown on the left side of Figure 14.3.

[FIGURE 14.3] The architecture of a run-time environment

In what follows, we use the term subroutine for either a Python function or a
Python method. Working up from the bottom, these regions contain the following:

� The Python Virtual Machine, which executes a Python program. Internal
to the PVM are two variables, which we call locationCounter and
basePtr. The locationCounter points at the instruction the PVM will exe-
cute next. The basePtr points at the top activation record’s base. More is
said about these variables soon.

� Bytecodes for all the subroutines of our program.

All memory

Object heap

Unused
memory

Call stack

Module and
class variables

Program
(bytecodes for
all methods)

Python Virtual
Machine

Call stack

Method n
Activation record

Method 2
Activation record

Method 1
Activation record

.

.

.

Temporary
variables

Return Address

Prev basePtr

Return value

Parameters

Activation record

locationCounter

basePtr

CHAPTER 14 Linear Collections: Stacks[578]

C6840_14 11/19/08 1:10 PM Page 578

May not be copied, scanned, or duplicated, in whole or in part.

� The program’s module and class variables.
� The call stack. Every time a subroutine is called, an activation record is

created and pushed onto the call stack. When a subroutine finishes execu-
tion and returns control to the subroutine that called it, the activation
record is popped off the stack. The total number of activation records on
the stack equals the number of subroutine calls currently in various stages
of execution. More will be said about activation records in a moment.

� Unused memory. This region’s size grows and shrinks in response to the
demands of the call stack and the object heap.

� The object heap. In Python, all objects exist in a region of memory called
the heap. When an object is instantiated, the PVM must find space for the
object on the heap, and when the object is no longer needed, the PVM’s
garbage collector recovers the space for future use. When low on space,
the heap extends further into the region marked Unused memory.

The activation records shown in the figure contain two types of information. The
regions labeled Temporary variables and Parameters hold data needed by the exe-
cuting subroutine. The remaining regions hold data that allow the PVM to pass
control backward from the currently executing subroutine to the subroutine that
called it.

When a subroutine is called, the PVM does the following:

1 Creates the subroutine’s activation record and pushes it onto the call
stack (the activation record’s bottom-three regions are fixed in size, and
the top two vary depending on the number of parameters and local vari-
ables used by the subroutine)

2 Saves the basePtr’s current value in the region labeled Prev basePtr and
sets the basePtr to the new activation record’s base.

3 Saves the locationCounter’s current value in the region labeled Return
Address and sets the locationCounter to the first instruction of the called
subroutine.

4 Copies the calling parameters into the region labeled Parameters.

5 Starts executing the called subroutine at the location indicated by the
locationCounter.

While a subroutine is executing, adding an offset to the basePtr references tem-
porary variables and parameters in the activation record. Thus, regardless of an
activation record’s location in memory, the local variables and parameters can be
accessed correctly, provided the basePtr has been initialized properly.

14.3 Three Applications of Stacks [579]

C6840_14 11/19/08 1:10 PM Page 579

May not be copied, scanned, or duplicated, in whole or in part.

Just before returning, a subroutine stores its return value in the location
labeled Return Value. Because the return value always resides at the bottom of
the activation record, the calling subroutine knows exactly where to find it.

When a subroutine has finished executing, the PVM does the following:

1 Reestablishes the settings needed by the calling subroutine by restoring
the values of the locationCounter and the basePtr from values stored in
the activation record.

2 Pops the activation record from the call stack.

3 Resumes execution of the calling subroutine at the location indicated by
the locationCounter.

14.4 Implementations of Stacks
Because of their simple behavior and linear structure, stacks are implemented eas-
ily using arrays or linked structures. Our two implementations of stacks illustrate
the typical trade-offs involved in using these two recurring approaches.

14.4.1 Test Driver

Our two stack implementations are the classes ArrayStack and LinkedStack.
Before we develop these, let’s write a short main function that shows how they
can be tested immediately. The code in this function exercises all of the methods
in either implementation and gives us an initial sense that they are working as
expected. Here is the code for main:

defƒmain():
ƒƒƒƒ#ƒTestƒeitherƒimplementationƒwithƒsameƒcode
ƒƒƒƒsƒ=ƒArrayStack()
ƒƒƒƒ#sƒ=ƒLinkedStack()
ƒƒƒƒprintƒ“Length:”,ƒlen(s)
ƒƒƒƒprintƒ“Empty:”,ƒs.isEmpty()
ƒƒƒƒprintƒ“Pushƒ1-10”
ƒƒƒƒforƒiƒinƒxrange(10):
ƒƒƒƒƒƒƒƒs.push(iƒ+ƒ1)
ƒƒƒƒprintƒ“Peeking:”,ƒs.peek()ƒ
ƒƒƒƒprintƒ“Itemsƒ(bottomƒtoƒtop):”,ƒƒs

continued

CHAPTER 14 Linear Collections: Stacks[580]

C6840_14 11/19/08 1:10 PM Page 580

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒprintƒ“Length:”,ƒlen(s)
ƒƒƒƒprintƒ“Empty:”,ƒs.isEmpty()
ƒƒƒƒprintƒ“Pushƒ11”
ƒƒƒƒs.push(11)
ƒƒƒƒprintƒ“Poppingƒitemsƒ(topƒtoƒbottom):”,
ƒƒƒƒwhileƒnotƒs.isEmpty():ƒprintƒs.pop(),
ƒƒƒƒprintƒ“\nLength:”,ƒlen(s)
ƒƒƒƒprintƒ“Empty:”,ƒs.isEmpty()

Here is a transcript of the output of this function:

Length:ƒ0
Empty:ƒTrue
Pushƒ1-10
Peeking:ƒ10
Itemsƒ(bottomƒtoƒtop):ƒ1ƒ2ƒ3ƒ4ƒ5ƒ6ƒ7ƒ8ƒ9ƒ10ƒ
Length:ƒ10
Empty:ƒFalse
Pushƒ11
Poppingƒitemsƒ(topƒtoƒbottom):ƒ11ƒ10ƒ9ƒ8ƒ7ƒ6ƒ5ƒ4ƒ3ƒ2ƒ1ƒ
Length:ƒ0
Empty:ƒTrue

Note that the items in the stack print from bottom to top in the stack’s string
representation, whereas when they are popped, they print from top to bottom.
Further testing would be done to check the preconditions on the pop and peek
methods, but we leave that as an exercise for you.

14.4.2 Array Implementation

Our first implementation is built around an array called items and two integers
called top and size. Initially, the array has a default capacity of 10 positions, top
equals -1, and size equals 0. To push an item onto the stack, you increment top
and size and store the item at the location items[top]. Thus, size always
equals the number of items currently in the stack, whereas top refers to the posi-
tion of the topmost item in a nonempty stack. To pop the stack, you return
items[top] and decrement top and size. Figure 14.4 shows how items, top,
and size appear when four items are on the stack.

14.4 Implementations of Stacks [581]

C6840_14 11/19/08 1:10 PM Page 581

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 14.4] An array representation of a stack with four items

The array, as shown, has a current capacity of n items (initially 10). How do we
avoid the problem of stack overflow? As discussed in Chapter 13, we create a new
array when the existing array is about to overflow or when it becomes underuti-
lized. Following the analysis in Chapter 13, we double the array’s capacity after
push fills it and halve it when pop leaves it three-quarters empty.

The array-based stack implementation makes use of the Array class devel-
oped in Chapter 13. Here is the code, with some parts left to be completed by
you in the exercises:

“””
File:ƒstack.py

Stackƒimplementations
“””

fromƒarraysƒimportƒArray

classƒArrayStack(object):
ƒƒƒƒ“””ƒArray-basedƒstackƒimplementation.”””

ƒƒƒƒDEFAULT_CAPACITYƒ=ƒ10ƒƒ#ƒClassƒvariableƒforƒallƒarrayƒstacks

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._itemsƒ=ƒArray(ArrayStack.DEFAULT_CAPACITY)
ƒƒƒƒƒƒƒƒself._topƒ=ƒ-1
ƒƒƒƒƒƒƒƒself._sizeƒ=ƒ0

continued

top 3

items a b c d . . .

0 1 2 3 4 5 6 n–1n–2

size 4

CHAPTER 14 Linear Collections: Stacks[582]

C6840_14 11/19/08 1:10 PM Page 582

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒpush(self,ƒnewItem):
ƒƒƒƒƒƒƒƒ“””InsertsƒnewItemƒatƒtopƒofƒtheƒstack.”””
ƒƒƒƒƒƒƒƒ#ƒResizeƒarrayƒifƒnecessary
ƒƒƒƒƒƒƒƒifƒlen(self)ƒ==ƒlen(self._items):
ƒƒƒƒƒƒƒƒƒƒƒƒtempƒ=ƒArray(2ƒ*ƒlen(self))
ƒƒƒƒƒƒƒƒƒƒƒƒforƒiƒinƒxrange(len(self)):
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtemp[i]ƒ=ƒself._items[i]
ƒƒƒƒƒƒƒƒƒƒƒƒself._itemsƒ=ƒtemp
ƒƒƒƒƒƒƒƒ#ƒnewItemƒgoesƒatƒlogicalƒendƒofƒarray
ƒƒƒƒƒƒƒƒself._topƒ+=ƒ1
ƒƒƒƒƒƒƒƒself._sizeƒ+=ƒ1
ƒƒƒƒƒƒƒƒself._items[self._top]ƒ=ƒnewItem

ƒƒƒƒdefƒpop(self):
ƒƒƒƒƒƒƒƒ“””Removesƒandƒreturnsƒtheƒitemƒatƒtopƒofƒtheƒstack.
ƒƒƒƒƒƒƒƒPrecondition:ƒtheƒstackƒisƒnotƒempty.”””
ƒƒƒƒƒƒƒƒoldItemƒ=ƒself._items[self._top]
ƒƒƒƒƒƒƒƒself._topƒ-=ƒ1
ƒƒƒƒƒƒƒƒself._sizeƒ-=ƒ1
ƒƒƒƒƒƒƒƒ#ƒResizingƒtheƒarrayƒisƒanƒexercise
ƒƒƒƒƒƒƒƒreturnƒoldItem

ƒƒƒƒdefƒpeek(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒitemƒatƒtopƒofƒtheƒstack.
ƒƒƒƒƒƒƒƒPrecondition:ƒtheƒstackƒisƒnotƒempty.”””
ƒƒƒƒƒƒƒƒreturnƒself._items[self._top]

ƒƒƒƒdefƒ__len__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒnumberƒofƒitemsƒinƒtheƒstack.”””
ƒƒƒƒƒƒƒƒreturnƒself._size

ƒƒƒƒdefƒisEmpty(self):
ƒƒƒƒƒƒƒƒreturnƒlen(self)ƒ==ƒ0

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Itemsƒstrungƒfromƒbottomƒtoƒtop.”””
ƒƒƒƒƒƒƒƒresultƒ=ƒ“”
ƒƒƒƒƒƒƒƒforƒiƒinƒxrange(len(self)):
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒstr(self._items[i])ƒ+ƒ“ƒ“
ƒƒƒƒƒƒƒƒreturnƒresult

Note the preconditions on the methods push and pop. A safe implementation
would enforce these preconditions by raising errors when they are violated. We
leave that as an exercise for you.

14.4 Implementations of Stacks [583]

C6840_14 11/19/08 1:10 PM Page 583

May not be copied, scanned, or duplicated, in whole or in part.

14.4.3 Linked Implementation

The linked implementation of a stack uses a singly linked sequence of nodes with
a variable top pointing at the list’s head, as well as a variable size to track the
number of items on the stack. Pushing and popping are accomplished by adding
and removing nodes at the head of the list. Figure 14.5 illustrates a linked stack
containing three items.

[FIGURE 14.5] A linked representation of a stack with three items

The linked implementation requires two classes: LinkedStack and Node. The
Node class, as defined in Chapter 13, contains two fields:

data an item on the stack

next a pointer to the next node

Because new items are added to and removed from just one end of the linked
structure, the methods pop and push are easy to implement, as shown in the next
two figures. Figure 14.6 shows the sequence of steps required to push an item
onto a linked stack. To perform these steps, you pass the top pointer to the Node
constructor and assign the new node to top.

top a b c

CHAPTER 14 Linear Collections: Stacks[584]

C6840_14 11/19/08 1:10 PM Page 584

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 14.6] Pushing an item onto a linked stack

top

newNode

a b c

d

top

newNode

a b c

d

top

newNode

a b c

d

Step 1: Get a new node

Step 2: Set newNode.next to top

Step 3: Set top to new node

14.4 Implementations of Stacks [585]

C6840_14 11/19/08 1:10 PM Page 585

May not be copied, scanned, or duplicated, in whole or in part.

Figure 14.7 shows the single step necessary to pop an item from a linked stack.

[FIGURE 14.7] Popping an item from a linked stack

Although the linked structure supports a simple push and pop, the imple-
mentation of the str method is complicated by the fact that the items must be
visited from the end of the linked structure to its beginning. Unfortunately, to
traverse a singly linked structure, you must begin at its head and follow the next
links to its tail.

Happily, recursion can come to our rescue. We define a recursive helper
function that expects a node as an argument and returns a string. On the func-
tion’s initial call, the argument node is the head of the linked structure (the vari-
able top). If this node is None, then we’ve reached the end of the structure and
can return the empty string. Otherwise, we call the function recursively with the
next field of the node, to advance toward the end of the structure. When this
call returns, we concatenate its result and the string representation of the data
contained in the node argument, followed by a space character. The entire string
is then returned.

Here is the code for LinkedStack:

fromƒnodeƒimportƒNode

classƒLinkedStack(object):
ƒƒƒƒ“””ƒLink-basedƒstackƒimplementation.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._topƒ=ƒNone
ƒƒƒƒƒƒƒƒself._sizeƒ=ƒ0

ƒƒƒƒdefƒpush(self,ƒnewItem):
ƒƒƒƒƒƒƒƒ“””InsertsƒnewItemƒatƒtopƒofƒtheƒstack.”””
ƒƒƒƒƒƒƒƒself._topƒ=ƒNode(newItem,ƒself._top)
ƒƒƒƒƒƒƒƒself._sizeƒ+=ƒ1

continued

top a b c

Set top to top.next

CHAPTER 14 Linear Collections: Stacks[586]

C6840_14 11/19/08 1:10 PM Page 586

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒpop(self):
ƒƒƒƒƒƒƒƒ“””Removesƒandƒreturnsƒtheƒitemƒatƒtopƒofƒtheƒstack.
ƒƒƒƒƒƒƒƒPrecondition:ƒtheƒstackƒisƒnotƒempty.”””
ƒƒƒƒƒƒƒƒoldItemƒ=ƒself._top.data
ƒƒƒƒƒƒƒƒself._topƒ=ƒself._top.next
ƒƒƒƒƒƒƒƒself._sizeƒ-=ƒ1
ƒƒƒƒƒƒƒƒreturnƒoldItem

ƒƒƒƒdefƒpeek(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒitemƒatƒtopƒofƒtheƒstack.
ƒƒƒƒƒƒƒƒPrecondition:ƒtheƒstackƒisƒnotƒempty.”””
ƒƒƒƒƒƒƒƒreturnƒself._top.data

ƒƒƒƒdefƒ__len__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒnumberƒofƒitemsƒinƒtheƒstack.”””
ƒƒƒƒƒƒƒƒreturnƒself._size

ƒƒƒƒdefƒisEmpty(self):
ƒƒƒƒƒƒƒƒreturnƒlen(self)ƒ==ƒ0

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Itemsƒstrungƒfromƒbottomƒtoƒtop.”””

ƒƒƒƒƒƒƒƒ#ƒHelperƒbuildsƒstringƒfromƒendƒtoƒbeginning
ƒƒƒƒƒƒƒƒdefƒstrHelper(probe):
ƒƒƒƒƒƒƒƒƒƒƒƒifƒprobeƒisƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“”
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒstrHelper(probe.next)ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(probe.data)ƒ+ƒ“ƒ“

ƒƒƒƒƒƒƒƒreturnƒstrHelper(self._top)

14.4.4 Time and Space Analysis of the Two Implementations

With the exception of the __str__ method, all of the stack methods are simple
and have a maximum running time of O(1). In the array implementation, the
analysis becomes more complex. At the moment of doubling, the push method’s
running time jumps to O(n), but the rest of the time it remains at O(1). Similar
remarks can be made about the pop method. On average, both are still O(1), as
shown in Chapter 13. However, the programmer must decide if a fluctuating
response time is acceptable and choose an implementation accordingly.

14.4 Implementations of Stacks [587]

C6840_14 11/19/08 1:10 PM Page 587

May not be copied, scanned, or duplicated, in whole or in part.

The __str__ method runs in linear time in both implementations. However,
the recursive function used in the linked implementation causes a linear growth
of memory, due to its use of the system call stack. If the string ordered the ele-
ments from top to bottom instead of bottom to top, both implementations could
use loops to traverse the elements.

A collection of n objects requires at least enough space to hold the n object
references. Let us now see how our two stack implementations compare to this
ideal. A linked stack of n items requires n nodes, each containing two references,
one to an item and the other to the next node. In addition, there must be a
variable that points to the top node and a variable for the size, yielding a total
space requirement of 2n + 2.

For an array implementation, a stack’s total space requirement is fixed when
the stack is instantiated. The space consists of an array with capacity (initially, 10)
references and integer variables that indicate the stack’s top and size. Assuming
that an integer and a reference occupy the same amount of space, then the total
space requirement is capacity + 2. As discussed in Chapter 13, an array implemen-
tation is more space-efficient than a linked implementation whenever the load
factor is greater than 1⁄ 2. The load factor for an array implementation normally
varies between 1⁄ 4 and 1, although obviously it can sink to 0.

14.4 Exercises
1 Discuss the difference between using an array and using a Python list to

implement the class ArrayStack. What are the trade-offs?

2 Add code to the methods peek and pop in ArrayStack so that they raise
an exception if their preconditions are violated.

3 Modify the method pop in ArrayStack so that it reduces the capacity of
the array if it is underutilized.

4 There is some redundant code in the two stack classes discussed in this
section. Which code is it, and how could it be eliminated by the use of
inheritance?

CHAPTER 14 Linear Collections: Stacks[588]

C6840_14 11/19/08 1:10 PM Page 588

May not be copied, scanned, or duplicated, in whole or in part.

14.5 Case Study: Evaluating Postfix Expressions
For the case study, we present a program that evaluates postfix expressions. The
program allows the user to enter an arbitrary postfix expression and then displays
the expression’s value or an error message if the expression is invalid. The stack-
based algorithm for evaluating postfix expressions is at the heart of the program.

14.5.1 Request

Write an interactive program for evaluating postfix expressions.

14.5.2 Analysis

There are many possibilities for the user interface. Considering the educational
setting, we would like the user to experiment with numerous expressions while
retaining a transcript of the results. Errors in an expression should not stop the
program, but should generate messages that give insight into where the evalua-
tion process breaks down. With these requirements in mind, we propose the
interface in Figure 14.8.

[FIGURE 14.8] The user interface for the postfix expression evaluator

Enter a postfix expression: 6 2 5 + *
6 2 5 + *
42
Enter a postfix expression: 10 2 300 *+ 20/
10 2 300 * + 20 /
30
Enter a postfix expression: 3 + 4
3 + 4
Error:
Too few operands on the stack
Portion of expression processed: 3 +
Operands on the stack : 3
Enter a postfix expression: 5 6 %
5 6 %
Error:
Unknown token type
Portion of expression processed: 5 6 %
Operands on the stack : 5 6
Enter a postfix expression:
>>>

14.5 Case Study: Evaluating Postfix Expressions [589]

C6840_14 11/19/08 1:10 PM Page 589

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Linear Collections: Stacks[590]

The user enters an expression at a prompt and the program displays the
results. The expression, as entered, is confined to one line of text, with arbitrary
spacing between tokens, provided that the adjacent operands have some white
space between them. After the user presses Enter or Return, the expression is redis-
played with exactly one space between each token and is followed on the next line
by its value or an error message. A prompt for another expression is then displayed.
The user quits by pressing a simple Enter or Return at the prompt.

The program should detect and report all input errors, be they intentional or
unintentional. Some common errors are the following:

� The expression contains too many operands; in other words, there is more
than one operand left on the stack when the end of the expression is
encountered.

� The expression contains too few operands; in other words, an operator is
encountered when there are fewer than two operands on the stack.

� The expression contains unrecognizable tokens. The program expects the
expression to be composed of integers, four arithmetic operators (+, -, *, /),
and white space (a space or a tab). Anything else is unrecognizable.

� The expression includes division by 0.

Here are examples that illustrate each type of error with an appropriate error
message:

Expression:ƒ
Error:ƒ Expressionƒcontainsƒnoƒtokens
Portionƒofƒexpressionƒprocessed:ƒ none
Theƒstackƒisƒempty

Expression:ƒ 1ƒ2ƒ3ƒ+ƒ
Error:ƒ Tooƒmanyƒoperandsƒonƒtheƒstack
Portionƒofƒexpressionƒprocessed:ƒ 1ƒ2ƒ3ƒ+ƒ
Operandsƒonƒtheƒstack:ƒ 1ƒ5

Expression:ƒ 1ƒ+ƒ2ƒ3ƒ4ƒ*ƒ
Error:ƒ Tooƒfewƒoperandsƒonƒtheƒstack
Portionƒofƒexpressionƒprocessed:ƒ 1ƒ+ƒ
Operandsƒonƒtheƒstack:ƒ 1

Expression:ƒ 1ƒ2ƒ%ƒ3ƒ+ƒ
Error:ƒ Unknownƒtokenƒtype
Portionƒofƒexpressionƒprocessed:ƒ 1ƒ2ƒ%ƒ
Operandsƒonƒtheƒstack:ƒ 1ƒ2

Expression:ƒ 1ƒ2ƒ0ƒ/ƒ+ƒ
Error:ƒ divideƒbyƒzero
Portionƒofƒexpressionƒprocessed:ƒ 1ƒ2ƒ0ƒ/ƒ
Operandsƒonƒtheƒstack:ƒ 1

C6840_14 11/19/08 1:10 PM Page 590

May not be copied, scanned, or duplicated, in whole or in part.

14.5 Case Study: Evaluating Postfix Expressions [591]

As always, we assume the existence of a view and a data model. In what fol-
lows, the prefix “PF” is short for the word “postfix.”

The view class is named PFView. When the user presses Enter or Return, the
view runs three methods defined in the model:

1 The view asks the model to format the expression string with exactly one
space between each token, and then it displays the formatted string.

2 The view asks the model to evaluate the expression, and then it displays
the value returned.

3 The view catches any exceptions thrown by the model, asks the model
for the conditions that were pertinent when the error was detected, and
displays appropriate error messages.

The model class is named PFEvaluatorModel. It must be able to format and
evaluate an expression string, raise exceptions in response to syntax errors in the
string, and report on its internal state. To meet these responsibilities, the model
can divide its work between the following two major processes:

1 Scan a string and extract the tokens.

2 Evaluate a sequence of tokens.

The output of the first process becomes the input to the second. These processes
are complex, and they recur in other problems. For both reasons, they are worth
encapsulating in separate classes, which we call Scanner and PFEvaluator.

Considering the manner in which it will be used, the scanner takes a string as
input and returns a sequence of tokens as output. Rather than return these tokens
all at once, the scanner responds to the methods hasNext and next.

The evaluator takes a scanner as input, iterates across the scanner’s tokens,
and either returns an expression’s value or raises an exception. In the process, the
evaluator uses the stack-based algorithm described earlier in the chapter. At any
time, the evaluator can provide information about its internal state.

If the scanner is to return tokens, then a token class is needed. An instance of
the Token class has a value and a type. The possible types are represented by
arbitrarily chosen integer constants with the names PLUS, MINUS, MUL, DIV, and
INT. The values of the first four integer constants are the corresponding charac-
ters +, -, *, and /. The value of an INT is found by converting a substring of
numeric characters, such as “534”, to its internal integer representation. A token
can provide a string representation of itself by converting its value to a string.

C6840_14 11/19/08 1:10 PM Page 591

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Linear Collections: Stacks[592]

Figure 14.9 is a class diagram that shows the relationships between the pro-
posed classes. Notice that both the model and the evaluator use the scanner. We
have already discussed why the evaluator needs the scanner. The model uses the
scanner to format the expression string. Although this task could be accomplished
by manipulating the expression string directly, it is easier to use the scanner, and
the performance penalty is negligible.

[FIGURE 14.9] A class diagram for the expression evaluator

14.5.3 Design

We now look more closely at the inner workings of each class. Figure 14.10 is an
interaction diagram that summarizes the methods run among the classes:

Stack Token String

PFEvaluator
View

PF
Evaluator

Scanner

Displays

Uses Iterates across

ScansCreates

Iterates across

ProcessesStores
operands on

PFEvaluator
Model

C6840_14 11/19/08 1:10 PM Page 592

May not be copied, scanned, or duplicated, in whole or in part.

14.5 Case Study: Evaluating Postfix Expressions [593]

[FIGURE 14.10] An interaction diagram for the expression evaluator

Next, we list each class’s instance variables and methods:

14.5.3.1 Instance Variables and Methods for Class PFEvaluatorView

The attribute is a model. The methods are the following:

PFEvaluatorView()

Creates and saves a reference to the model.

run()

While True:

Retrieve the expression string from the keyboard.
If the string is empty, return.
Send it to the model for formatting.
Send it to the model for evaluation.
Either print the value or catch exceptions raised by the evaluator, ask the
model for the associated details, and display error messages.

Stack Token String

PFEvaluator
View

PF
Evaluator

Scanner

format(aString)
evaluate(aString)
evaluationStatus()

evaluate(aString)
evaluationStatus()

hasNext()
next()

for..inNew

hasNext()
next()

getType()
getValue()

The usual

PFEvaluator
Model

C6840_14 11/19/08 1:10 PM Page 593

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Linear Collections: Stacks[594]

14.5.3.2 Instance Variables and Methods for Class PFEvaluatorModel

The model communicates with the scanner and the evaluator, so it needs refer-
ences to both. The evaluator must be an instance variable because it is referenced
in more than one method. However, the scanner can be local to the format
method. The public methods are the following:

format(expressionStr)

Instantiate a scanner on the expression string.
Build a response string by iterating across the scanner and appending a
string representation of each token to the response string.
Return the response string.

evaluate(expressionStr)

Ask the evaluator to evaluate the expression string.
Return the value.

evaluationStatus()

Ask the evaluator for its status.
Return the status.

14.5.3.3 Instance Variables and Methods for Class PFEvaluator

The evaluator’s attributes include a stack, a scanner, and a string variable called
expressionSoFar, which holds the portion of the expression string processed so
far. The stack is an ArrayStack. The public methods are the following:

PFEvaluator(scanner)

Initialize expressionSoFar.
Instantiate an ArrayStack.
Save a reference to the scanner.

evaluate()

Iterate across the scanner and evaluate the expression.
Raise exceptions in the following situations:
1 The scanner is None or empty.
2 There are too many operands.
3 There are too few operands.
4 There are unrecognizable tokens.
5 A divide by 0 exception is raised by the PVM.

C6840_14 11/19/08 1:10 PM Page 594

May not be copied, scanned, or duplicated, in whole or in part.

14.5 Case Study: Evaluating Postfix Expressions [595]

evaluationStatus()

Return a multipart string that contains the portion of the expression
processed and the contents of the stack.

14.5.3.4 Instance Variables and Methods for Class Scanner

Let us suppose that a third party has provided the scanner. Consequently, we do
not need to consider its inner workings, and its public methods are just next()
and hasNext(). For those who are interested, the complete source code is avail-
able from your instructor.

Scanner(sourceStr)

Save a reference to the string that will be scanned and tokenized.

hasNext()

Return True if the string contains another token and False otherwise.

next()

Return the next token. Raise an exception if hasNext() returns False.

14.5.3.5 Instance and Class Variables and Methods for Class Token

A token’s attributes are type and value. Both are integers. The type is one of
the following Token class variables:

UNKNOWNƒƒ=ƒ0ƒƒƒƒƒƒƒƒ#ƒunknown
INTƒƒƒƒƒƒ=ƒ4ƒƒƒƒƒƒƒƒ#ƒinteger
MINUSƒƒƒƒ=ƒ5ƒƒƒƒƒƒƒƒ#ƒminusƒƒƒƒoperator
PLUSƒƒƒƒƒ=ƒ6ƒƒƒƒƒƒƒƒ#ƒplusƒƒƒƒƒoperator
MULƒƒƒƒƒƒ=ƒ7ƒƒƒƒƒƒƒƒ#ƒmultiplyƒoperator
DIVƒƒƒƒƒƒ=ƒ8ƒƒƒƒƒƒƒƒ#ƒdivideƒƒƒoperator

The actual values of the symbolic constants are arbitrary. A token’s value is the
following:

� A number for integer operands.
� A character code for operators, for instance, '*' corresponds to the multi-

plication operator.

C6840_14 11/19/08 1:10 PM Page 595

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Linear Collections: Stacks[596]

The methods are the following:

Token(value)

Construct a new integer token with the specified value.

Token(ch)

If ch is an operator (+, -, *, /), then construct a new operator token;
otherwise, construct a token of unknown type.

getType()

Return a token’s type.

getValue()

Return a token’s value.

isOperator()

Return True if the token is an operator, and False otherwise.

__str__()

Return the token’s numeric value as a string if the token is an integer;
otherwise, return the token’s character representation.

14.5.4 Implementation

The code for the view class is routine, except for the minor complication of using
a try-except statement. The internal workings of the scanner are not presented
here, but can be found in the code file available from your instructor. That leaves
the token and the evaluator classes, which we now present:

“””
File:ƒtoken.py
Tokensƒforƒprocessingƒexpressions.
“””

classƒToken(object):

ƒƒƒƒUNKNOWNƒƒ=ƒ0ƒƒƒƒƒƒƒƒ#ƒunknown
ƒƒƒƒ
ƒƒƒƒINTƒƒƒƒƒƒ=ƒ4ƒƒƒƒƒƒƒƒ#ƒinteger

continued
ƒƒƒƒƒƒƒƒƒƒƒƒ

C6840_14 11/19/08 1:10 PM Page 596

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒMINUSƒƒƒƒ=ƒ5ƒƒƒƒƒƒƒƒ#ƒminusƒƒƒƒoperator
ƒƒƒƒPLUSƒƒƒƒƒ=ƒ6ƒƒƒƒƒƒƒƒ#ƒplusƒƒƒƒƒoperator
ƒƒƒƒMULƒƒƒƒƒƒ=ƒ7ƒƒƒƒƒƒƒƒ#ƒmultiplyƒoperator
ƒƒƒƒDIVƒƒƒƒƒƒ=ƒ8ƒƒƒƒƒƒƒƒ#ƒdivideƒƒƒoperator

ƒƒƒƒFIRST_OPƒ=ƒ5ƒƒƒƒƒƒƒƒ#ƒfirstƒoperatorƒcode

ƒƒƒƒdefƒ__init__(self,ƒvalue):
ƒƒƒƒƒƒƒƒifƒtype(value)ƒ==ƒint:
ƒƒƒƒƒƒƒƒƒƒƒƒself._typeƒ=ƒToken.INT
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._typeƒ=ƒself._makeType(value)
ƒƒƒƒƒƒƒƒself._valueƒ=ƒvalue

ƒƒƒƒdefƒisOperator(self):
ƒƒƒƒƒƒƒƒreturnƒself._typeƒ>=ƒToken.FIRST_OP

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒreturnƒstr(self._value)
ƒƒƒƒ
ƒƒƒƒdefƒgetType(self):
ƒƒƒƒƒƒƒreturnƒself._type
ƒƒƒƒ
ƒƒƒƒdefƒgetValue(self):
ƒƒƒƒƒƒƒreturnƒself._value

ƒƒƒƒdefƒ_makeType(self,ƒch):
ƒƒƒƒƒƒƒƒifƒƒƒchƒ==ƒ'*':ƒreturnƒToken.MUL
ƒƒƒƒƒƒƒƒelifƒchƒ==ƒ'/':ƒreturnƒToken.DIV
ƒƒƒƒƒƒƒƒelifƒchƒ==ƒ'+':ƒreturnƒToken.PLUS
ƒƒƒƒƒƒƒƒelifƒchƒ==ƒ'-':ƒreturnƒToken.MINUS
ƒƒƒƒƒƒƒƒelse:ƒƒƒƒƒƒƒƒƒƒƒreturnƒToken.UNKNOWN;

“””
File:ƒmodel.py
DefinesƒPFEvaluatorModelƒandƒPFEvaluator
“””

fromƒtokenƒimportƒToken
fromƒscannerƒimportƒScanner
fromƒstackƒimportƒArrayStack

classƒPFEvaluatorModel(object):

ƒƒƒƒdefƒevaluate(self,ƒsourceStr):
ƒƒƒƒƒƒƒƒself._evaluatorƒ=ƒPFEvaluator(Scanner(sourceStr))
ƒƒƒƒƒƒƒƒvalueƒ=ƒself._evaluator.evaluate()
ƒƒƒƒƒƒƒƒreturnƒvalue

14.5 Case Study: Evaluating Postfix Expressions [597]

continued
ƒƒƒ

C6840_14 11/19/08 1:10 PM Page 597

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Linear Collections: Stacks[598]

ƒƒƒƒdefƒformat(self,ƒsourceStr):
ƒƒƒƒƒƒƒƒnormalizedStrƒ=ƒ“”
ƒƒƒƒƒƒƒƒscannerƒ=ƒScanner(sourceStr);
ƒƒƒƒƒƒƒƒwhileƒscanner.hasNext():
ƒƒƒƒƒƒƒƒƒƒƒƒnormalizedStrƒ+=ƒstr(scanner.next())ƒ+ƒ“ƒ“
ƒƒƒƒƒƒƒƒreturnƒnormalizedStr;ƒƒƒ

ƒƒƒƒdefƒevaluationStatus(self):
ƒƒƒƒƒƒƒƒreturnƒstr(self._evaluator)

classƒPFEvaluator(object):
ƒƒƒ
ƒƒƒƒdefƒ__init__(self,ƒscanner):
ƒƒƒƒƒƒƒƒself._expressionSoFarƒ=ƒ“”
ƒƒƒƒƒƒƒƒself._operandStackƒ=ƒArrayStack()
ƒƒƒƒƒƒƒƒself._scannerƒ=ƒscanner

ƒƒƒƒdefƒevaluate(self):
ƒƒƒƒƒƒƒƒwhileƒself._scanner.hasNext():
ƒƒƒƒƒƒƒƒƒƒƒƒcurrentTokenƒ=ƒself._scanner.next()
ƒƒƒƒƒƒƒƒƒƒƒƒself._expressionSoFarƒ+=ƒstr(currentToken)ƒ+ƒ“ƒ“
ƒƒƒƒƒƒƒƒƒƒƒƒifƒcurrentToken.getType()ƒ==ƒToken.INT:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._operandStack.push(currentToken)
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcurrentToken.isOperator():ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒlen(self._operandStack)ƒ<ƒ2:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒraiseƒAttributeError,ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Tooƒfewƒoperandsƒonƒtheƒstack”
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒt2ƒ=ƒself._operandStack.pop()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒt1ƒ=ƒself._operandStack.pop()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒresultƒ=ƒToken(self._computeValue(currentToken,
ƒƒt1.getValue(),
ƒƒt2.getValue()))
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._operandStack.push(result)

ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒraiseƒAttributeError,ƒ“Unknownƒtokenƒtype”
ƒƒƒƒƒƒƒƒifƒlen(self._operandStack)ƒ>ƒ1:
ƒƒƒƒƒƒƒƒƒƒƒƒraiseƒAttributeError,ƒ“Tooƒmanyƒoperandsƒonƒtheƒstack”
ƒƒƒƒƒƒƒƒresultƒ=ƒself._operandStack.pop()
ƒƒƒƒƒƒƒƒreturnƒresult.getValue();ƒƒƒ

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒresultƒ=ƒ“\n”
ƒƒƒƒƒƒƒƒifƒself._expressionSoFarƒ==ƒ“”:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒ“Portionƒofƒexpressionƒprocessed:ƒnone\n”

continued

C6840_14 11/19/08 1:10 PM Page 598

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒƒƒƒƒelse:ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒ“Portionƒofƒexpressionƒprocessed:ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._expressionSoFarƒ+ƒ“\n”
ƒƒƒƒƒƒƒƒifƒself._operandStack.isEmpty():
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒ“Theƒstackƒisƒempty”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒ“Operandsƒonƒtheƒstackƒƒƒƒƒƒƒƒƒƒ:ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(self._operandStack)
ƒƒƒƒƒƒƒƒreturnƒresult

ƒƒƒƒdefƒ_computeValue(self,ƒop,ƒvalue1,ƒvalue2):
ƒƒƒƒƒƒƒƒresultƒ=ƒ0;
ƒƒƒƒƒƒƒƒtheTypeƒ=ƒop.getType()
ƒƒƒƒƒƒƒƒifƒtheTypeƒ==ƒToken.PLUS:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ=ƒvalue1ƒ+ƒvalue2;
ƒƒƒƒƒƒƒƒelifƒtheTypeƒ==ƒToken.MINUS:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ=ƒvalue1ƒ-ƒvalue2;
ƒƒƒƒƒƒƒƒelifƒtheTypeƒ==ƒToken.MUL:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ=ƒvalue1ƒ*ƒvalue2;
ƒƒƒƒƒƒƒƒelifƒtheTypeƒ==ƒToken.DIV:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ=ƒvalue1ƒ/ƒvalue2;
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒraiseƒAttributeError,ƒ“Unknownƒoperator”ƒ
ƒƒƒƒƒƒƒƒreturnƒresult

Summary
� A stack is a linear collection that allows access to one end only, called

the top. Elements are pushed onto the top or popped from it.
� Other operations on stacks include peeking at the top element, deter-

mining the number of elements, determining whether the stack is
empty, and returning a string representation.

� Stacks are used in applications that manage data items in a last-in,
first-out manner. These applications include matching bracket
symbols in expressions, evaluating postfix expressions, backtracking
algorithms, and managing memory for subroutine calls on a virtual
machine.

� Arrays and singly linked structures support simple implementations
of stacks.

Summary [599]

C6840_14 11/19/08 1:10 PM Page 599

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Linear Collections: Stacks[600]

REVIEW QUESTIONS
1 Examples of stacks are

a customers waiting in a checkout line
b a deck of playing cards
c a file-directory system
d a line of cars at a tollbooth
e laundry in a hamper

2 The operations that modify a stack are called

a add and remove
b push and pop

3 Stacks are also known as

a first-in, first-out data structures
b last-in, first-out data structures

4 The postfix equivalent of the expression 3 + 4 * 7 is

a 3 4 + 7 *
b 3 4 7 * +

5 The infix equivalent of the postfix expression 22 45 11 * – is

a 22 – 45 * 11
b 45 * 11 – 22

6 The value of the postfix expression 5 6 + 2 * is

a 40
b 22

7 Memory for function or method parameters is allocated on

a the object heap
b the call stack

8 The running time of the two stack-mutator operations is

a linear
b constant

C6840_14 11/19/08 1:10 PM Page 600

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [601]

9 The linked implementation of a stack uses

a nodes with a link to the next node
b nodes with links to the next and previous nodes

10 The array implementation of a stack places the top element at

a the first position in the array
b the position after the last element that was inserted

PROJECTS
1 Complete and test the linked and array implementations of the stack

ADT discussed in this chapter. Verify that exceptions are raised when
preconditions are violated and that the array-based implementation adds
or removes storage as needed.

2 Rework the two stack implementations to eliminate redundant instance
variables and methods. This project involves defining a new class and
using inheritance.

3 Write a program that uses a stack to test input strings to determine
whether they are palindromes. A palindrome is a sequence of words that
reads the same as the sequence in reverse: for example, noon.

4 Complete the classes needed to run the expression evaluator discussed in
the case study.

5 Add the ^ operator to the language of expressions processed by the
expression evaluator of the case study. This operator has the same
semantics as Python’s exponentiation operator **. Thus, the expression 2
4 3 * ^ evaluates to 4096.

6 Write a program that converts infix expressions to postfix expressions.
This program should use the Token and Scanner classes developed in
the case study. The program should consist of a main function that per-
forms the inputs and outputs, and a class named IFToPFConverter. The
main function receives an input string and creates a scanner with it. The
scanner is then passed as an argument to the constructor of the converter
object. The converter object’s convert method is then run to convert
the infix expression using the algorithm described in this chapter. This

C6840_14 11/19/08 1:10 PM Page 601

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 14 Linear Collections: Stacks[602]

method returns a list of tokens that represent the postfix string. The
main function then displays this string. You should also define a new
method in the Token class, getPrecedence(), which returns an integer
that represents the precedence level of an operator. (Note: You should
assume for this project that the user always enters a syntactically correct
infix expression.)

7 Add the ^ operator to the expression language processed by the infix to
postfix converter developed in Project 6. This operator has a higher
precedence than either * or /. Also, this operator is right associative,
which means that consecutive applications of this operator are evaluated
from right to left rather than from left to right. Thus, the value of the
expression 2 ^ 2 ^ 3 is equivalent to 2 ^ (2 ^ 3) or 256, not (2 ^ 2) ^ 3
or 64. The algorithm for infix to postfix conversion must be modified to
place the operands as well as the operators in the appropriate positions in
the postfix string.

8 Modify the program of Project 6 so that it checks the infix string for syn-
tax errors as it converts to postfix. The error-detection and recovery
strategy should be similar to the one used in the case study. Add a
method named conversionStatus to the IFToPFConverter class.
When the converter detects a syntax error, it should raise an exception,
which the main function catches in a try-except statement. The main
function can then call conversionStatus to obtain the information to
print when an error occurs. This information should include the portion
of the expression scanned until the error is detected. The error messages
should also be as specific as possible.

9 Integrate the infix to postfix converter from one of the earlier projects
into the expression evaluator of the case study. Thus, the input to the
program is a purported infix expression, and its output is either its value
or an error message. The program’s main components are the converter
and the evaluator. If the converter detects a syntax error, the evaluator is
not run. Thus, the evaluator can assume that its input is a syntactically
correct postfix expression (which may still contain semantic errors, such
as the attempt to divide by 0).

10 Write a program that solves the maze problem discussed earlier in this
chapter. You should use the Grid class developed in Chapter 13 in this
problem. The program should input a description of the maze from a
text file at start-up. The program then displays this maze, attempts to
find a solution, displays the result, and displays the maze once more.

C6840_14 11/19/08 1:10 PM Page 602

May not be copied, scanned, or duplicated, in whole or in part.

[CHAPTER] Linear Collections: Queues15
After completing this chapter, you will be able to:

� Describe the behavior of a queue from a user’s perspective
� Explain how a queue can be used to support a simulation
� Describe the use of a queue in scheduling processes for com-

putational resources
� Explain the difference between a queue and a priority queue
� Describe a case where a queue would be used rather than a

priority queue
� Analyze the performance trade-offs between an array-based

implementation of a queue and a linked implementation of
a queue

In this chapter, we explore the queue, another linear collection
that has widespread use in computer science. There are several
implementation strategies for queues, some based on arrays and oth-
ers based on linked structures. To illustrate the application of a
queue, we develop a case study that simulates a supermarket check-
out line. We close the chapter with an examination of a special kind
of queue, known as a priority queue, and show how it is used in a
second case study.

C6840_15 11/19/08 11:44 AM Page 603

May not be copied, scanned, or duplicated, in whole or in part.

15.1 Overview of Queues
Like stacks, queues are linear collections. However, with queues, insertions are
restricted to one end, called the rear, and removals to the other end, called the
front. A queue thus supports a first-in first-out (FIFO) protocol. Queues are
omnipresent in everyday life and occur in any situation where people or things
are lined up for processing on a first-come, first-served basis. Checkout lines in
stores, highway tollbooth lines, and airport baggage check-in lines are familiar
examples of queues.

Queues have two fundamental operations: enqueue, which adds an item to the
rear of a queue and dequeue, which removes an item from the front. Figure 15.1
shows a queue as it might appear at various stages in its lifetime. In the figure, the
queue’s front is on the left, and its rear is on the right.

[FIGURE 15.1] The states in the lifetime of a queue

Initially, the queue is empty. Then an item called a is enqueued. Next, three
more items called b, c, and d are enqueued, after which an item is dequeued, and
so forth.

Related to queues is an ADT called a priority queue. In a queue, the item
dequeued, or served next, is always the item that has been waiting the longest.
But in some circumstances, this restriction is too rigid, and it’s preferable to
combine the idea of waiting with a notion of priority. In a priority queue, higher-
priority items are dequeued before those of lower priority, and items of equal

After
enqueue(a)

After
enqueue(b)
enqueue(c)
enqueue(d)

After
dequeue()

After
enqueue(e)
enqueue(f)

After
dequeue()

a

a

b

b

c

b

c

c

d

c

d

d

e

d

e f

f

CHAPTER 15 Linear Collections: Queues[604]

C6840_15 11/19/08 11:44 AM Page 604

May not be copied, scanned, or duplicated, in whole or in part.

priority are dequeued in FIFO order. Consider, for example, the manner in which
passengers board an aircraft. The first-class passengers line up and board first,
and the lower-priority coach-class passengers line up and board second. However,
this is not a true priority queue because after the first-class queue has emptied
and the coach-class queue starts boarding, late-arriving first-class passengers usu-
ally go to the end of the second queue. In a true priority queue, they would
immediately jump ahead of all the coach-class passengers.

Most queues in computer science involve scheduling access to shared
resources. The following list describes some examples:

� CPU access—Processes are queued for access to a shared CPU.
� Disk access—Processes are queued for access to a shared secondary

storage device.
� Printer access—Print jobs are queued for access to a shared laser printer.

Process scheduling can involve either simple queues or priority queues. For
example, processes requiring keyboard input and screen output are often given
higher-priority access to the CPU than those that are computationally intensive.
The result is that human users, who tend to judge a computer’s speed by its
response time, are given the impression that the computer is fast.

Processes that are waiting for a shared resource can also be prioritized by
their expected duration, with short processes given higher priority than longer
ones, again with the intent of improving the apparent response time of a system.
Imagine 20 print jobs queued up for access to a printer. If 19 jobs are 1 page long
and 1 job is 200 pages long, more users will be happy if the short jobs are given
higher priority and printed first.

15.2 The Queue Interface and Its Use
If they are in a hurry, Python programmers can use a Python list to emulate a
queue. Although it does not matter which ends of the list we view as the front
and rear of the queue, the simplest strategy is to use the list method append to
add an element to the rear of this queue, and to use the list method pop(0) to
remove and return the element at the front of its queue. As we saw in the case of
stacks, the main drawback of this option is that our queue can be manipulated by
all of the other list operations as well. These include the insertion, replacement,
and removal of an element at any position. These extra operations violate the

15.2 The Queue Interface and Its Use [605]

C6840_15 11/19/08 11:44 AM Page 605

May not be copied, scanned, or duplicated, in whole or in part.

spirit of a queue as an ADT. In this section, we define a more restricted interface,
or set of operations, for any queue implementation and show how these opera-
tions are used.

Aside from the enqueue and dequeue operations, it will be useful to have
operations similar to the operations we defined for the stack classes in Chapter 14.
These operations are listed as Python methods in Table 15.1.

[TABLE 15.1] The methods in the queue interface

Note that the methods dequeue and peek have an important precondition and
raise an error if the user of the queue does not satisfy that precondition.

Now that we have defined a queue interface, we can demonstrate how to use
it. Table 15.2 shows how the operations listed earlier affect a queue named q.

QUEUE METHOD WHAT IT DOES

q.enqueue(item) Inserts item at the rear of the queue.

q.dequeue() Removes and returns the item at the front of the queue.
Precondition: The queue must not be empty; an error is
raised if that is not the case.

q.peek() Returns the item at the front of the queue. Precondition:
The queue must not be empty; an error is raised if that
is not the case.

q.isEmpty() Returns True if the queue is empty, or False otherwise.

q.__len__() Same as len(q). Returns the number of items currently
in the queue.

q.__str__() Same as str(q). Returns the string representation of
the queue.

CHAPTER 15 Linear Collections: Queues[606]

C6840_15 11/19/08 11:44 AM Page 606

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 15.2] The effects of queue operations

We assume that any queue class that implements this interface will also have a
constructor that allows its user to create a new queue instance. Later in this chap-
ter, we consider two different implementations, named ArrayQueue and

STATE OF THE
QUEUE AFTER VALUE

OPERATION THE OPERATION RETURNED COMMENT

Initially, the queue is empty.

q.enqueue(a) a The queue contains the
single item a.

q.enqueue(b) a b a is at the front of the queue
and b is at the rear.

q.enqueue(c) a b c c is added at the rear.

q.isEmpty() a b c False The queue is not empty.

len(q) a b c 3 The queue contains
three items.

q.peek() a b c a Return the front item on the
queue without removing it.

q.dequeue() b c a Remove the front item from
the queue and return it. b is
now the front item.

q.dequeue() c b Remove and return b.

q.dequeue() c Remove and return c.

q.isEmpty() True The queue is empty.

q.peek() exception Peeking at an empty queue
throws an exception.

q.dequeue() exception Trying to dequeue an empty
queue throws an exception.

q.enqueue(d) d d is the front item.

15.2 The Queue Interface and Its Use [607]

C6840_15 11/19/08 11:44 AM Page 607

May not be copied, scanned, or duplicated, in whole or in part.

LinkedQueue. For now, we assume that someone has coded these so we can use
them. The next code segment shows how they might be instantiated:

q1 = ArrayQueue()
q2 = LinkedQueue()

15.2 Exercises
1 Using the format of Table 15.2, complete a table that involves the fol-

lowing sequence of queue operations:

Label your answer columns using the following wording: State of the
Queue After the Operation; Value Returned; and Comment.

2 Define a function named stackToQueue. This function expects a stack
as an argument. The function builds and returns an instance of
LinkedQueue that contains the elements in the stack. The function
assumes that the stack has the interface described in Chapter 14. The
function’s postconditions are that the stack is left in the same state as it
was before the function was called, and that the queue’s front element is
the one at the top of the stack.

OPERATION

create queue

q.enqueue(a)

q.enqueue(b)

q.enqueue(c)

q.dequeue()

q.dequeue()

q.peek()

q.enqueue(x)

q.dequeue()

q.dequeue()

q.dequeue()

CHAPTER 15 Linear Collections: Queues[608]

C6840_15 11/19/08 11:44 AM Page 608

May not be copied, scanned, or duplicated, in whole or in part.

15.3 Two Applications of Queues
We now look briefly at two applications of queues: one involving computer simu-
lations and the other involving round-robin CPU scheduling.

15.3.1 Simulations

Computer simulations are used to study the behavior of real-world systems, espe-
cially when it is impractical or dangerous to experiment with these systems directly.
For example, a computer simulation could mimic traffic flow on a busy highway.
Urban planners could then experiment with factors that affect traffic flow, such as
the number and types of vehicles on the highway, the speed limits for different
types of vehicles, the number of lanes in the highway, and the frequency of toll-
booths. Outputs from such a simulation might include the total number of vehicles
able to move between designated points in a designated period and the average
duration of a trip. By running the simulation with many combinations of inputs,
the planners could determine how best to upgrade sections of the highway, subject
to the ever-present constraints of time, space, and money.

As a second example, consider the problem faced by the manager of a super-
market who is trying to determine the number of checkout cashiers to schedule at
various times of the day. Some important factors in this situation are the following:

� The frequency with which new customers arrive.
� The number of checkout cashiers available.
� The number of items in a customer’s shopping cart.
� The period of time considered.

These factors could be inputs to a simulation program, which would then
determine the total number of customers processed, the average time each cus-
tomer waits for service, and the number of customers left standing in line at the
end of the simulated time period. By varying the inputs, particularly the fre-
quency of customer arrivals and the number of available checkout cashiers, a sim-
ulation program could help the manager make effective staffing decisions for
busy and slow times of the day. By adding an input that quantifies the efficiency
of different checkout equipment, the manager can even decide whether it is more
cost-effective to add more cashiers or buy better, more efficient equipment.

A common characteristic of both examples, and of simulation problems in
general, is the moment-by-moment variability of essential factors. Consider
the frequency of customer arrivals at checkout stations. If customers arrived at

15.3 Two Applications of Queues [609]

C6840_15 11/19/08 11:44 AM Page 609

May not be copied, scanned, or duplicated, in whole or in part.

precise intervals, each with exactly the same number of items, it would be easy to
determine how many cashiers to have on duty. However, such regularity does not
reflect the reality of a supermarket. Sometimes several customers show up at
practically the same instant, and at other times no new customers arrive for a sev-
eral minutes. In addition, the number of items varies from customer to customer,
and, therefore, so does the amount of service required by each customer. All this
variability makes it difficult to devise formulas to answer simple questions about
the system, such as how a customer’s waiting time varies with the number of
cashiers on duty. A simulation program, on the other hand, avoids the need for
formulas by imitating the actual situation and collecting pertinent statistics.

Simulation programs use a simple technique to mimic variability. For
instance, suppose new customers are expected to arrive on average once every
4 minutes. Then, during each minute of simulated time, a program can generate
a random number between 0 and 1. If the number is less than 1/4, the program
adds a new customer to a checkout line; otherwise, it does not. More sophisti-
cated schemes based on probability distribution functions produce even more
realistic results. Obviously, each time the program runs, the results change
slightly, but this only adds to the realism of the simulation.

Now let us discuss the common role played by queues in these examples.
Both examples involve service providers and service consumers. In the first exam-
ple, service providers include tollbooths and traffic lanes, and service consumers
are the vehicles waiting at the tollbooths and driving in the traffic lanes. In the
second example, cashiers provide a service that is consumed by waiting cus-
tomers. To emulate these conditions in a program, we associate each service
provider with a queue of service consumers.

Simulations operate by manipulating these queues. At each tick of an imagi-
nary clock, a simulation adds varying numbers of consumers to the queues and
gives consumers at the head of each queue another unit of service. Once a con-
sumer has received the needed quantity of service, it leaves the queue and the
next consumer steps forward. During the simulation, the program accumulates
statistics such as how many ticks each consumer waited in a queue and the per-
centage of time each provider is busy. The duration of a tick is chosen to match
the problem being simulated. It could represent a millisecond, a minute, or a
decade. In the program itself, a tick probably corresponds to one pass through
the program’s major processing loop.

Object-oriented methods can be used to implement simulation programs. For
instance, in a supermarket simulation, each customer is an instance of a Customer
class. A customer object keeps track of when the customer starts standing in line,
when service is first received, and how much service is required. Likewise, a
cashier is an instance of a Cashier class, and each cashier object contains a queue

CHAPTER 15 Linear Collections: Queues[610]

C6840_15 11/19/08 11:44 AM Page 610

May not be copied, scanned, or duplicated, in whole or in part.

of customer objects. A simulator class coordinates the activities of the customers
and cashiers. At each clock tick, the simulation object does the following:

� Generates new customer objects as appropriate.
� Assigns customers to cashiers.
� Tells each cashier to provide one unit of service to the customer at the

head of the queue.

In this chapter’s first case study, we develop a program based on the preceding
ideas. In the exercises, we ask you to extend the program.

15.3.2 Round-Robin CPU Scheduling

Most modern computers allow multiple processes to share a single CPU. There
are various techniques for scheduling these processes. The most common, called
round-robin scheduling, adds new processes to the end of a ready queue, which
consists of processes waiting to use the CPU. Each process on the ready queue is
dequeued in turn and given a slice of CPU time. When the time slice runs out,
the process is returned to the rear of the queue, as shown in Figure 15.2.

[FIGURE 15.2] Scheduling processes for a CPU

Generally, not all processes need the CPU with equal urgency. For instance,
user satisfaction with a computer is greatly influenced by the computer’s response
time to keyboard and mouse inputs. Thus, it makes sense to give precedence to
processes that handle these inputs. Round-robin scheduling adapts to this require-
ment by using a priority queue and assigning each process an appropriate priority.
As a follow-up to this discussion, the second case study in this chapter shows how
a priority queue can be used to schedule patients in an emergency room.

Front of ready queue

enqueue

New processes

Rear of ready queue

Process timed out

dequeue

P

P

P

P

P CPU

15.3 Two Applications of Queues [611]

C6840_15 11/19/08 11:44 AM Page 611

May not be copied, scanned, or duplicated, in whole or in part.

15.3 Exercises
1 Suppose customers in a 24-hour supermarket are ready to be checked

out at the precise rate of one every two minutes. Suppose also that it
takes exactly five minutes for one cashier to process one customer. How
many cashiers need to be on duty to meet the demand? Will customers
need to wait in line? How much idle time will each cashier experience
per hour?

2 Now suppose that the rates—one customer every two minutes and five
minutes per customer—represent averages. Describe in a qualitative
manner how this will affect customer wait time. Will this change affect
the average amount of idle time per cashier? For both situations,
describe what happens if the number of cashiers is decreased or
increased.

15.4 Implementations of Queues
Our approach to the implementation of queues is similar to the one we used for
stacks. The structure of a queue lends itself to either an array implementation or
a linked implementation. Because the linked implementation is somewhat more
straightforward, we consider it first.

15.4.1 A Linked Implementation

The linked implementations of stacks and queues have much in common. Both
classes, LinkedStack and LinkedQueue, use a singly linked Node class to imple-
ment nodes. The operation dequeue is similar to pop in that it removes the first
node in the sequence. However, enqueue and push differ. The operation push
adds a node at the beginning of the sequence, whereas enqueue adds a node at
the end. To provide fast access to both ends of a queue’s linked structure, there
are external pointers to both ends. Figure 15.3 shows a linked queue containing
four items.

CHAPTER 15 Linear Collections: Queues[612]

C6840_15 11/19/08 11:44 AM Page 612

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 15.3] A linked queue with four items

The instance variables front and rear of the LinkedQueue class are given an
initial value of None. A variable named size tracks the number of elements cur-
rently in the queue.

During an enqueue operation, we create a new node, set the next pointer of
the last node to the new node, and finally set the variable rear to the new node,
as shown in Figure 15.4.

[FIGURE 15.4] Adding an item to the rear of a linked queue

front

Step 1: Get a new node

rear newNode

D1 D2 D3 D4 D5

front

Step 2: Set rear.next to the new node

rear newNode

D1 D2 D3 D4 D5

front

Step 3: Set rear to the new node

rear
newNode

D1 D2 D3 D4 D5

front

rear

D1 D2 D3 D4

15.4 Implementations of Queues [613]

C6840_15 11/19/08 11:44 AM Page 613

May not be copied, scanned, or duplicated, in whole or in part.

Here is the code for the enqueue method:

defƒenqueue(self,ƒnewItem):
ƒƒƒƒ“””AddsƒnewItemƒtoƒtheƒrearƒofƒtheƒqueue.”””
ƒƒƒƒnewNodeƒ=ƒNodeƒ(newItem,ƒNone)
ƒƒƒƒifƒself.isEmpty():
ƒƒƒƒƒƒƒƒself._frontƒ=ƒnewNode
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒself._rear.nextƒ=ƒnewNode
ƒƒƒƒself._rearƒ=ƒnewNodeƒƒ
ƒƒƒƒself._sizeƒ+=ƒ1

As mentioned earlier, dequeue is similar to pop. However, if the queue
becomes empty after a dequeue operation, the front and rear pointers must
both be set to None. Here is the code:

defƒƒdequeue(self):
ƒƒƒƒ“””Removesƒandƒreturnsƒtheƒitemƒatƒfrontƒofƒtheƒqueue.
ƒƒƒƒPrecondition:ƒtheƒqueueƒisƒnotƒempty.”””
ƒƒƒƒoldItemƒ=ƒself._front.data
ƒƒƒƒself._frontƒ=ƒself._front.next
ƒƒƒƒifƒself._frontƒisƒNone:
ƒƒƒƒƒƒƒƒself._rearƒ=ƒNone
ƒƒƒƒself._sizeƒ-=ƒ1
ƒƒƒƒreturnƒoldItem

Completion of the LinkedQueue class, including the enforcement of the precon-
ditions on the methods dequeue and peek, is left as an exercise for you.

15.4.2 An Array Implementation

The array implementations of stacks and queues have less in common than the
linked implementations. The array implementation of a stack needs to access
items at only the logical end of the array. However, the array implementation of a
queue must access items at the logical beginning and the logical end. Doing this
in a computationally effective manner is complex, so we approach the problem in
a sequence of three attempts.

CHAPTER 15 Linear Collections: Queues[614]

C6840_15 11/19/08 11:44 AM Page 614

May not be copied, scanned, or duplicated, in whole or in part.

15.4.2.1 A First Attempt

Our first attempt at implementing a queue fixes the front of the queue at index
position 0 and maintains an index variable, called rear, that points to the last
item at position n – 1, where n is the number of items in the queue. A picture of
such a queue, with four data items in an array of six cells, is shown in Figure 15.5.

[FIGURE 15.5] An array implementation of a queue with four items

For this implementation, the enqueue operation is efficient. However, the
dequeue operation entails shifting all but the first item in the array to the left,
which is an O(n) process.

15.4.2.2 A Second Attempt

We can avoid dequeue’s linear behavior by not shifting items left each time the
operation is applied. The modified implementation maintains a second index,
called front, that points to the item at the front of the queue. The front pointer
starts at 0 and advances through the array as items are dequeued. Figure 15.6
shows such a queue after five enqueue and two dequeue operations.

[FIGURE 15.6] An array implementation of a queue with a front pointer

Notice that, in this scheme, cells to the left of the queue’s front pointer are unused
until we shift all elements left, which we do whenever the rear pointer is about to run
off the end. Now the maximum running time of dequeue is O(1), but it comes at the
cost of boosting the maximum running time of enqueue from O(1) to O(n).

D D D

42

0

Front of queue Rear of queue

1 2 3 4 5

D D D D

3

0

Front of queue Rear of queue

1 2 3 4 5

15.4 Implementations of Queues [615]

C6840_15 11/19/08 11:44 AM Page 615

May not be copied, scanned, or duplicated, in whole or in part.

15.4.2.3 A Third Attempt

By using a circular array implementation, you can simultaneously achieve good
running times for both enqueue and dequeue. The implementation resembles
the previous one in two respects: the rear pointer starts at –1 and the front
pointer starts at 0.

The front pointer chases the rear pointer through the array. During
enqueue, the rear pointer moves farther ahead of the front pointer, and during
dequeue, the front pointer catches up by one position. However, when either
pointer is about to run off the end of the array, that pointer is reset to 0. This has
the effect of wrapping the queue around to the beginning of the array without
the cost of moving any items.

As an example, let us assume that an array implementation uses six cells, that six
items have been enqueued, and that two items have then been dequeued. According
to this scheme, the next enqueue resets the rear pointer to 0. Figure 15.7 shows
the state of the array before and after the rear pointer is reset to zero by the last
enqueue operation.

[FIGURE 15.7] Wrapping data around a circular array implementation of a queue

The rear pointer now appears to chase the front pointer until the front
pointer reaches the end of the array, at which point it, too, is reset to 0. As you
can readily see, the maximum running times of both enqueue and dequeue are
now O(1).

The alert reader will naturally wonder what happens when the queue
becomes full and how the implementation can detect this condition. By maintain-
ing a count of the items in the queue, you can determine if the queue is full or
empty. When this count equals the size of the array, you know it’s time to resize.

D D D D

52

0

Front
of queue

Before
enqueue

Rear
of queue

1 2 3 4 5

DD D D D

02

0

Front
of queue

After
enqueue

Rear
of queue

1 2 3 4 5

CHAPTER 15 Linear Collections: Queues[616]

C6840_15 11/19/08 11:44 AM Page 616

May not be copied, scanned, or duplicated, in whole or in part.

After resizing, we would like the queue to occupy the initial segment of the
array, with the front pointer set to 0. To achieve this, you consider two cases at
the beginning of the resizing process:

1 The front pointer is less than the rear pointer. In this case, you loop
from front to rear in the original array and copy to positions 0
through size - 1 in the new array.

2 The rear pointer is less than the front pointer. In this case, you loop
from front to size - 1 in the original array and copy to positions 0
through size - front in the new array. You then loop from 0 through
rear in the original array and copy to positions size - front + 1
through size - 1 in the new array.

The resizing code for an array-based queue is more complicated than the code
for an array-based stack, but the process is still linear. Completion of the circular
array implementation of the class ArrayQueue is left as an exercise for you.

15.4.3 Time and Space Analysis for the Two Implementations

The time and space analysis for the two queue classes parallels that for the corre-
sponding stack classes, so we do not dwell on the details. Consider first the linked
implementation of queues. The running time of the __str__ method is O(n).
The maximum running time of all of the other methods is O(1). In particular,
because there are external links to the head and tail nodes in the queue’s linked
structure, these nodes can be accessed in constant time. The total space require-
ment is 2n + 3, where n is the size of the queue. There is a reference to a datum
and a pointer to the next node in each of the n nodes, and there are three cells
for the queue’s logical size and head and tail pointers.

For the circular array implementation of queues, if the array is static, then the
maximum running time of all methods other than __str__ is O(1). In particular,
no items in the array are shifted during enqueue or dequeue. If the array is
dynamic, enqueue and dequeue jump to O(n) anytime the array is resized, but
retain an average running time of O(1). Space utilization for the array implementa-
tion again depends on the load factor, as discussed in Chapter 13. For load factors
above 1⁄ 2, an array implementation makes more efficient use of memory than a
linked implementation, and for load factors below 1⁄ 2, memory use is less efficient.

15.4 Implementations of Queues [617]

C6840_15 11/19/08 11:44 AM Page 617

May not be copied, scanned, or duplicated, in whole or in part.

15.4 Exercises
1 Write a code segment that uses an if statement during an enqueue to

adjust the rear index of the circular array implementation of ArrayQueue.
You may assume that the queue implementation uses the variables
self._rear and self._items to refer to the rear index and array,
respectively.

2 Write a code segment that uses the % operator during an enqueue to
adjust the rear index of the circular array implementation of
ArrayQueue, so as to avoid the use of an if statement. You may assume
that the queue implementation uses the variables self._rear and
self._items to refer to the rear index and array, respectively.

3 Explain how inheritance can help to eliminate some redundant methods
in the two queue implementations.

15.5 Case Study: Simulating a Supermarket
Checkout Line
In this case study, we develop a program to simulate supermarket checkout sta-
tions. To keep the program simple, we omit some important factors found in a
realistic supermarket situation and ask the reader to add them back as part of the
exercises.

15.5.1 Request

Write a program that allows the user to predict the behavior of a supermarket
checkout line under various conditions.

15.5.2 Analysis

For the sake of simplicity, we impose the following restrictions:
� There is just one checkout line, staffed by one cashier.
� Each customer has the same number of items to check out and requires the

same processing time.

CHAPTER 15 Linear Collections: Queues[618]

C6840_15 11/19/08 11:44 AM Page 618

May not be copied, scanned, or duplicated, in whole or in part.

� The probability that a new customer will arrive at the checkout does not
vary over time.

The inputs to our simulation program are the following:
� The total time, in abstract minutes, that the simulation is supposed to run.
� The number of minutes required to serve an individual customer.
� The probability that a new customer will arrive at the checkout line during

the next minute. This probability should be a floating-point number
greater than 0 and less than or equal to 1.

The program’s outputs are the total number of customers processed, the
number of customers left in the line when the time runs out, and the average
waiting time for a customer. Table 15.3 summarizes the inputs and outputs.

[TABLE 15.3] The inputs and outputs of the supermarket checkout simulator

15.5.3 The Interface

We propose the interface in Figure 15.8 for the system.

[FIGURE 15.8] The user interface for the supermarket checkout simulator

Welcome to the Market Simulator!
Enter the total running time: 60
Enter the average time per customer: 3
Enter the probability of a new arrival: 0.25
TOTALS FOR THE CASHIER
Number of customers served: 16
Number of customers left in queue: 1
Average time customers spend
waiting to be served: 2.38

INPUTS RANGE OF VALUES FOR INPUTS OUTPUTS

Total minutes 0 < total <= 1000 Total customers
processed

Average minutes 0 < average <= total Customers left in line
per customer

Probability of a new 0 < probability <=1 Average waiting time
customer arrival in
the next minute

15.5 Case Study: Simulating a Supermarket Checkout Line [619]

C6840_15 11/19/08 11:44 AM Page 619

May not be copied, scanned, or duplicated, in whole or in part.

15.5.4 Classes and Responsibilities

As far as classes and their overall responsibilities are concerned, we divide the sys-
tem into a main function and several model classes. The main function is respon-
sible for interacting with the user, validating the three input values, and
communicating with the model. The design and implementation of this function
require no comment, and the function’s code is not presented. The classes in the
model are listed in Table 15.4.

[TABLE 15.4] The classes in the model

The relationships among these classes are shown in Figure 15.9.

CLASS RESPONSIBILITIES

MarketModel A market model object does the following:
1 Runs the simulation.
2 Creates a cashier object.
3 Sends new customer objects to the cashier.
4 Maintains an abstract clock.
5 During each tick of the clock, tells the cashier to provide

another unit of service to a customer.

Cashier A cashier object does the following:
1 Contains a queue of customer objects.
2 Adds new customers to this queue when directed to do so.
3 Removes customers from the queue in turn.
4 Gives the current customer a unit of service when directed

to do so and releases the customer when the service has
been completed.

Customer A customer object:
1 Knows the customer’s arrival time and how much service

the customer needs.
2 Knows when the cashier has provided enough service.
The class as a whole generates new customers when directed
to do so according to the probability of a new customer
arriving.

LinkedQueue Used by a cashier to represent a line of customers.

CHAPTER 15 Linear Collections: Queues[620]

C6840_15 11/19/08 11:44 AM Page 620

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 15.9] A class diagram of the supermarket checkout simulator

The overall design of the system is reflected in the collaboration diagram
shown in Figure 15.10:

[FIGURE 15.10] A collaboration diagram for the supermarket checkout simulator

We now design and implement each class in turn.

CustomerCashier

Main()

serve()
arrivalTime()
amountOfServiceNeeded()

addCustomer(aCustomer)
serveCustomer()
toString()

runSimulation()

generateCustomer(prob, arriveTime, aveTime)

Queue methods

MarketModel

LinkedQueue

CustomerCashier Serves

Creates Generates

Uses Contains

MarketModel

LinkedQueue

15.5 Case Study: Simulating a Supermarket Checkout Line [621]

C6840_15 11/19/08 11:44 AM Page 621

May not be copied, scanned, or duplicated, in whole or in part.

Because we have restricted the checkout situation, the design of the class
MarketModel is fairly simple. The constructor does the following:

1 Saves the inputs—probability of new arrival, length of simulation, and
average time per customer.

2 Creates the single cashier.

The only other method needed is runSimulation. This method runs the
abstract clock that drives the checkout process. On each tick of the clock, the
method does three things:

1 Asks the Customer class to generate a new customer, which it may or
may not do, depending on the probability of a new arrival and the output
of a random number generator.

2 If a new customer is generated, sends the new customer to the cashier.

3 Tells the cashier to provide a unit of service to the current customer.

When the simulation ends, the runSimulation method returns the cashier’s
results to the view. Here is the pseudocode for the method:

for each minute of the simulation
ask the Customer class to generate a new customer
if a customer is generated

cashier.addCustomer(customer)
cashier.serveCustomers(current time)

return cashier’s results

Note that the pseudocode algorithm asks the Customer class for an instance of
itself. Because it is only probable that a customer will arrive at any given minute,
occasionally a customer will not be generated. Rather than code the logic for
making this choice at this level, we bury it in a class method in the Customer
class. From the model, the Customer class method generateCustomer receives
the probability of a new customer arriving, the current time, and the average time
needed per customer. The method uses this information to determine whether to
create a customer and, if it does, how to initialize the customer. The method
returns either the new Customer object or the value None. The syntax of running
a class method is just like that of an instance method, except that the name to the
left of the dot is the class’s name.

CHAPTER 15 Linear Collections: Queues[622]

C6840_15 11/19/08 11:44 AM Page 622

May not be copied, scanned, or duplicated, in whole or in part.

15.5 Case Study: Simulating a Supermarket Checkout Line [623]

Here is a complete listing of the class MarketModel:

“””
File:ƒmodel.py
“””

fromƒcashierƒimportƒCashier
fromƒcustomerƒimportƒCustomer

classƒMarketModel(object):

ƒƒƒƒdefƒ__init__(self,ƒlengthOfSimulation,ƒaverageTimePerCus,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprobabilityOfNewArrival):
ƒƒƒƒƒƒƒƒself._probabilityOfNewArrivalƒ=ƒprobabilityOfNewArrival
ƒƒƒƒƒƒƒƒself._lengthOfSimulationƒ=ƒlengthOfSimulation
ƒƒƒƒƒƒƒƒself._averageTimePerCusƒ=ƒaverageTimePerCus
ƒƒƒƒƒƒƒƒself._cashierƒ=ƒCashier()
ƒƒƒ
ƒƒƒƒdefƒrunSimulation(self):
ƒƒƒƒƒƒƒƒ“””Runƒtheƒclockƒforƒnƒticks.”””
ƒƒƒƒƒƒƒƒforƒcurrentTimeƒinƒxrange(self._lengthOfSimulation):
ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒAttemptƒtoƒgenerateƒaƒnewƒcustomer
ƒƒƒƒƒƒƒƒƒƒƒƒcustomerƒ=ƒCustomer.generateCustomer(
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._probabilityOfNewArrival,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcurrentTime,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._averageTimePerCus)

ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒSendƒcustomerƒtoƒcashierƒifƒsuccessfullyƒgenerated
ƒƒƒƒƒƒƒƒƒƒƒƒifƒcustomerƒ!=ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._cashier.addCustomer(customer)

ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTellƒcashierƒtoƒprovideƒanotherƒunitƒofƒservice
ƒƒƒƒƒƒƒƒƒƒƒƒself._cashier.serveCustomers(currentTime)

A cashier is responsible for serving a queue of customers. During this
process, the cashier tallies the customers served and the minutes they spend wait-
ing in line. At the end of the simulation, the class’s __str__ method returns
these totals as well as the number of customers remaining in the queue. The class
has the following instance variables:

totalCustomerWaitTime
customersServed
queue
currentCustomer

C6840_15 11/19/08 11:44 AM Page 623

May not be copied, scanned, or duplicated, in whole or in part.

The last variable holds the customer currently being processed.
To allow the market model to send a new customer to a cashier, the class

implements the method addCustomer. This method expects a customer as a
parameter and adds the customer to the cashier’s queue.

The method serveCustomers handles the cashier’s activity during one clock
tick. The method expects the current time as a parameter and responds in one of
several different ways, as listed in Table 15.5.

[TABLE 15.5] Responses of a cashier during a clock tick

CONDITION WHAT IT MEANS ACTION TO PERFORM

The current customer There are no customers None; just return.
is None and the queue to serve.
is empty.

The current customer There is a customer • Dequeue a customer and
is None and the queue waiting at the front make him the current
is not empty. of the queue. customer.

• Ask him when he was
instantiated, determine
how long he has been
waiting, and add that
time to the total waiting
time for all customers.

• Increment the number of
customers served.

• Give the customer one
unit of service and dis-
miss him if he is finished.

The current customer Serve the current Give the customer one unit
is not None. customer. of service and dismiss her

if she is finished.

CHAPTER 15 Linear Collections: Queues[624]

C6840_15 11/19/08 11:44 AM Page 624

May not be copied, scanned, or duplicated, in whole or in part.

15.5 Case Study: Simulating a Supermarket Checkout Line [625]

Here is pseudocode for the method serveCustomers:

if currentCustomer is None
if queue is empty

return
else

currentCustomer = queue.dequeue()
totalCustomerWaitTime = totalCustomerWaitTime + currentTime –

currentCustomer.arrivalTime()
increment customersServed
currentCustomer.serve()
if currentCustomer.amountOfServiceNeeded() == 0

currentCustomer = None

Here is the code for the Cashier class:

“””
File:ƒcashier.py
“””

fromƒqueueƒimportƒLinkedQueue

classƒCashier(object):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._totalCustomerWaitTimeƒ=ƒ0
ƒƒƒƒƒƒƒƒself._customersServedƒ=ƒ0
ƒƒƒƒƒƒƒƒself._currentCustomerƒ=ƒNone
ƒƒƒƒƒƒƒƒself._queueƒ=ƒLinkedQueue()

ƒƒƒƒdefƒaddCustomer(self,ƒc):
ƒƒƒƒƒƒƒƒself._queue.enqueue(c)
ƒƒƒ
ƒƒƒƒdefƒserveCustomers(self,ƒcurrentTime):
ƒƒƒƒƒƒƒƒifƒself._currentCustomerƒisƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒNoƒcustomersƒyet
ƒƒƒƒƒƒƒƒƒƒƒƒifƒself._queue.isEmpty():
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturn
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒDequeueƒfirstƒwaitingƒcustomerƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒandƒtallyƒresults
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._currentCustomerƒ=ƒself._queue.dequeue()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._totalCustomerWaitTimeƒ+=ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcurrentTimeƒ-ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._currentCustomer.arrivalTime()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._customersServedƒ+=ƒ1

ƒƒƒƒƒƒƒƒ#ƒGiveƒaƒunitƒofƒservice
ƒƒƒƒƒƒƒƒself._currentCustomer.serve()

continued

C6840_15 11/19/08 11:44 AM Page 625

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Linear Collections: Queues[626]

ƒƒƒƒƒƒƒƒ#ƒIfƒcurrentƒcustomerƒisƒfinished,ƒsendƒitƒawayƒƒƒ
ƒƒƒƒƒƒƒƒifƒself._currentCustomer.amountOfServiceNeeded()ƒ==ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒƒself._currentCustomerƒ=ƒNone
ƒƒƒ
ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒresultƒ=ƒ“TOTALSƒFORƒTHEƒCASHIER\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Numberƒofƒcustomersƒserved:ƒƒƒƒƒƒƒƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(self._customersServed)ƒ+ƒ“\n”
ƒƒƒƒƒƒƒƒifƒself._customersServedƒ!=ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒƒaveWaitTimeƒ=ƒfloat(self._totalCustomerWaitTime)ƒ/\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._customersServed
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒ“Numberƒofƒcustomersƒleftƒinƒqueue:ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(len(self._queue))ƒ+ƒ“\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Averageƒtimeƒcustomersƒspend\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“waitingƒtoƒbeƒserved:ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“%5.2f”ƒ%ƒaveWaitTime
ƒƒƒƒƒƒƒƒreturnƒresult

The Customer class maintains a customer’s arrival time and the amount of
service needed. The constructor initializes these with data provided by the mar-
ket model. The instance methods include the following:

� arrivalTime()—Returns the time at which the customer arrived at a
cashier’s queue.

� amountOfServiceNeeded()—Returns the number of service units left.
� serve()—Decrements the number of service units by one.

The remaining method, generateCustomer, is a class method. It expects as
arguments the probability of a new customer arriving, the current time, and the
number of service units per customer. The method returns a new instance of
Customer with the given time and service units, provided the probability is
greater than or equal to a random number between 0 and 1. Otherwise, the
method returns None, indicating that no customer was generated. The syntax for
defining a class method in Python is the following:

@classƒmethod
defƒ<methodƒname>(cls,ƒ<otherƒparameters>):
ƒƒƒƒ<statements>

C6840_15 11/19/08 11:44 AM Page 626

May not be copied, scanned, or duplicated, in whole or in part.

15.6 Priority Queues [627]

Here is the code for the Customer class:

“””
File:ƒcustomer.py
“””

importƒrandom

classƒCustomer(object):

ƒƒƒƒ@classmethod
ƒƒƒƒdefƒgenerateCustomer(cls,ƒprobabilityOfNewArrival,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒarrivalTime,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒaverageTimePerCustomer):
ƒƒƒƒƒƒƒƒ“””ReturnsƒaƒCustomerƒobjectƒifƒtheƒprobabilityƒ
ƒƒƒƒƒƒƒƒofƒarrivalƒisƒgreaterƒthanƒorƒequalƒtoƒaƒrandomƒnumber.
ƒƒƒƒƒƒƒƒOtherwise,ƒreturnsƒNone,ƒindicatingƒnoƒnewƒcustomer.
ƒƒƒƒƒƒƒƒ“””
ƒƒƒƒƒƒƒƒifƒrandom.random()ƒ<=ƒprobabilityOfNewArrival:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒCustomer(arrivalTime,ƒaverageTimePerCustomer)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒNone

ƒƒƒƒdefƒ__init__(self,ƒarrivalTime,ƒserviceNeeded):
ƒƒƒƒƒƒƒƒself._arrivalTimeƒ=ƒarrivalTime
ƒƒƒƒƒƒƒƒself._amountOfServiceNeededƒ=ƒserviceNeeded

ƒƒƒƒdefƒarrivalTime(self):
ƒƒƒƒƒƒƒƒreturnƒself._arrivalTime
ƒƒƒ
ƒƒƒƒdefƒamountOfServiceNeeded(self):
ƒƒƒƒƒƒƒƒreturnƒself._amountOfServiceNeeded
ƒƒƒ
ƒƒƒƒdefƒserve(self):
ƒƒƒƒƒƒƒƒ“””Acceptsƒaƒunitƒofƒserviceƒfromƒtheƒcashier.”””
ƒƒƒƒƒƒƒƒself._amountOfServiceNeededƒ-=ƒ1

15.6 Priority Queues
As mentioned earlier, a priority queue is a specialized type of queue. When items
are added to a priority queue, they are assigned an order of rank. When they are
removed, items of higher priority are removed before those of lower priority.
Items of equal priority are removed in the usual FIFO order. An item A has a
higher priority than an item B if A < B. Thus, integers, strings, or any other

C6840_15 11/19/08 11:44 AM Page 627

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Linear Collections: Queues[628]

objects that recognize the comparison operators can be ordered in priority
queues. If an object does not recognize these operators, it can be wrapped, or
bundled, with a priority number in another object that does recognize these
operators. The queue will then recognize this object as comparable with others of
its type.

Because a priority queue closely resembles a queue, they have the same inter-
face or set of operations (see Table 15.1). Figure 15.11 shows the states in the
lifetime of a priority queue. Note that the items are integers, so the smaller inte-
gers are the items with the higher priority.

[FIGURE 15.11] The states in the lifetime of a priority queue

As mentioned earlier, when an object is not intrinsically comparable, it can
be wrapped with a priority in another object that is comparable. The wrapper
class used to build a comparable item from one that is not already comparable is
named Comparable. This class includes a constructor that expects an item and its
priority as arguments. The priority must be an integer, a string, or another object

Initially, the queue is empty.

The queue contains the single
item 3.

1 is at the front of the queue
and 3 is at the rear of the queue,
because 1 has a higher priority.

2 is added, but has a higher
priority than 3, so 2 moves
ahead of 3.

Remove the front item from the
queue and return it. 2 is now
the front item.

The new 3 is inserted to the right
of the existing 3, in FIFO order.

5 has the lowest priority, so it
goes to the rear.

Operation

q.enqueue(3)

q.enqueue(1)

q.enqueue(2)

q.dequeue()

q.enqueue(3)

q.enqueue(5)

3

1 3

1 2 3

2 3 1

2 3 3

2 3 3 5

State of the
Queue

After the
Operation

Value
Returned

Comment

C6840_15 11/19/08 11:44 AM Page 628

May not be copied, scanned, or duplicated, in whole or in part.

that recognizes the comparison operators or the __cmp__ method. Recall that
Python looks for an object’s __cmp__ method when the comparison operators are
used. After a wrapper object has been created, the methods getItem, __str__,
and __cmp__ can be used to extract the item, return its string representation, and
support comparisons based on the priority, respectively. Here is the code for the
Comparable class:

classƒComparable(object):
ƒƒƒƒ"""Wrapperƒclassƒforƒitemsƒthatƒareƒnotƒcomparable.”””

ƒƒƒƒdefƒ__init__(self,ƒitem,ƒpriority):
ƒƒƒƒƒƒƒƒself._itemƒ=ƒitem
ƒƒƒƒƒƒƒƒself._priorityƒ=ƒpriority

ƒƒƒƒdefƒ__cmp__(self,ƒother):
ƒƒƒƒƒƒƒƒifƒtype(other)ƒ!=ƒtype(self):
ƒƒƒƒƒƒƒƒƒƒƒƒraiseƒTypeError,ƒ“TypeƒmustƒbeƒComparable”
ƒƒƒƒƒƒƒƒreturnƒcmp(self._priority,ƒother._priority)

ƒƒƒƒdefƒgetItem(self):
ƒƒƒƒƒƒƒƒreturnƒself._item

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒreturnƒstr(self._item)

Note that the __str__method is also included in the Comparable class so that
the queue’s __str__ method will have the expected behavior with these items.

During insertions, a priority queue does not even know whether it is compar-
ing items in wrappers or just items. When a wrapped item is accessed with the
method peek or dequeue or in the context of a for loop, it must be unwrapped
with the method getItem before processing. For example, let’s assume that the
items labeled a, b, and c are not comparable but should have the priorities 1, 2,
and 3, respectively, in a queue. Then, the code to add them to a priority queue
named queue and retrieve them from it is as follows:

queue.enqueue(Comparable(a,ƒ1))
queue.enqueue(Comparable(b,ƒ2))
queue.enqueue(Comparable(c,ƒ3))
whileƒnotƒqueue.isEmpty():
ƒƒƒƒitemƒ=ƒqueue.dequeue().getItem()
ƒƒƒƒ<doƒsomethingƒwithƒitem>

15.6 Priority Queues [629]

C6840_15 11/19/08 11:44 AM Page 629

May not be copied, scanned, or duplicated, in whole or in part.

In this book, we discuss two implementations of a priority queue. One uses
a data structure called a heap, which we examine in Chapter 18. The other
extends the LinkedQueue class presented earlier. We call this one the sorted list
implementation.

A sorted list is a list of comparable elements that are maintained in a natural
order. A priority queue’s list should be arranged so that the minimum element is
always accessed at or removed from just one end of the list. The elements are
inserted in their proper places in the ordering.

A singly linked structure represents this type of list well if the minimum ele-
ment is always removed from the head of the structure. If this structure is inher-
ited from the singly linked structure used in the LinkedQueue class, we can
continue to remove an element by running that class’s dequeue method. Only
the enqueue method needs to change. Its definition is overridden in the new
subclass, called LinkedPriorityQueue.

The new implementation of enqueue conducts a search for the new item’s
position in the list. It considers the following cases:

1 If the queue is empty or the new item is greater than or equal to the item
at the rear, then enqueue it as before (it will be placed at the rear).

2 Otherwise, begin at the head and move forward through the nodes until
the new item is less than the item in the current node. At that point, a
new node containing the item must be inserted between the current
node and the previous node, if there is one. To accomplish this insertion,
the search uses two pointers, named probe and trailer. When the
search stops, probe points to the node after the position of the new item.
If that node is not the first one, trailer points to the node before the
position of the new item. The new node’s next pointer is then set to the
probe pointer. The previous node’s next pointer is then set to the new
node, if probe does not point to the first node. Otherwise, the queue’s
front pointer is set to the new node.

To illustrate the process described in case 2, Figure 15.12 depicts the state of
a priority queue containing the three integers 1, 3, and 4 during the enqueue of
the value 2. Note the adjustments of the probe and trailer pointers during this
process.

CHAPTER 15 Linear Collections: Queues[630]

C6840_15 11/19/08 11:44 AM Page 630

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 15.12] Inserting an item into a priority queue

Although the code for enqueue is complicated, we don’t have to write any
other methods in the new class. Moreover, the use of LinkedQueue’s enqueue
earlier in Case 1 simplifies the new method somewhat.

Initialize probe and
start the search to
insert 2 into the queue.

front

trailer

probe

1 3 4

First pass: 2 is greater than
1, so set trailer to probe
and then advance probe to
the next node. front

trailer

probe

1 3 4

Second pass: 2 is less
than 3, so stop the search
and insert the new node.

front

trailer

probe

1 3

2

4

15.6 Priority Queues [631]

C6840_15 11/19/08 11:44 AM Page 631

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Linear Collections: Queues[632]

Here is the code for the class LinkedPriorityQueue:

classƒLinkedPriorityQueue(LinkedQueue):
ƒƒƒƒ“””Sortedƒlistƒimplementationƒusingƒaƒlinkedƒstructure.”””

ƒƒƒƒdefƒ__init(self):
ƒƒƒƒƒƒƒƒLinkedQueue.__init__(self)

ƒƒƒƒdefƒenqueue(self,ƒnewItem):
ƒƒƒƒƒƒƒƒ“””InsertsƒnewItemƒafterƒitemsƒofƒgreaterƒorƒequal
ƒƒƒƒƒƒƒƒpriorityƒorƒaheadƒofƒitemsƒofƒlesserƒpriority.
ƒƒƒƒƒƒƒƒAƒhasƒgreaterƒpriorityƒthanƒBƒifƒAƒ<ƒB.”””

ƒƒƒƒƒƒƒƒifƒself.isEmpty()ƒorƒnewItemƒ>=ƒself._rear.data:
ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒNewƒitemƒgoesƒatƒrear
ƒƒƒƒƒƒƒƒƒƒƒƒLinkedQueue.enqueue(self,ƒnewItem)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒSearchƒforƒaƒpositionƒwhereƒit'sƒless
ƒƒƒƒƒƒƒƒƒƒƒƒprobeƒ=ƒself._front
ƒƒƒƒƒƒƒƒƒƒƒƒwhileƒnewItemƒ>=ƒprobe.data:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtrailerƒ=ƒprobe
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprobeƒ=ƒprobe.next
ƒƒƒƒƒƒƒƒƒƒƒƒnewNodeƒ=ƒNode(newItem,ƒprobe)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒprobeƒ==ƒself._front:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒNewƒitemƒgoesƒatƒfront
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._frontƒ=ƒnewNode
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒNewƒitemƒgoesƒbetweenƒtwoƒnodes
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtrailer.nextƒ=ƒnewNode
ƒƒƒƒƒƒƒƒƒƒƒƒself._sizeƒ+=ƒ1

The time and space analysis for LinkedPriorityQueue is the same as that
of LinkedQueue, with the exception of the enqueue method. This method now
must search for the proper place to insert an item. Rearranging the links once
this place is found is a constant time operation, but the search itself is linear, so
enqueue is now O(n).

15.6 Exercise
1 Suggest a strategy for an array-based implementation of a priority queue.

Will its space/time complexity be any different from the linked imple-
mentation? What are the trade-offs?

C6840_15 11/19/08 11:44 AM Page 632

May not be copied, scanned, or duplicated, in whole or in part.

15.7 Case Study: An Emergency Room Scheduler
As anyone who has been to a busy hospital emergency room knows, people must
wait for service. Although everyone might appear to be waiting in the same place,
they are actually in separate groups and scheduled according to the seriousness of
their condition. In this case study, we develop a program that performs this
scheduling with a priority queue.

15.7.1 Request

Write a program that allows a supervisor to schedule treatments for patients
coming into a hospital’s emergency room. Assume that, because some patients are
in more critical condition than others, patients are not treated on a strictly first-
come, first-served basis, but are assigned a priority when admitted. Patients with
a high priority receive attention before those with a lower priority.

15.7.2 Analysis

Patients come into the emergency room in one of three conditions. In order of
priority, the conditions are as follows:

1 Critical

2 Serious

3 Fair

When the user selects the Schedule option, the program allows the user to
enter a patient’s name and condition, and the patient is placed in line for treat-
ment according to the severity of his or her condition. When the user selects the
Treat Next Patient option, the program removes and displays the patient first in
line with the most serious condition. When the user selects the Treat All
Patients option, the program removes and displays all patients in order from
patient to serve first to patient to serve last.

Each command button produces an appropriate message in the output area.
Table 15.6 lists the interface’s responses to the commands.

15.7 Case Study: An Emergency Room Scheduler [633]

C6840_15 11/19/08 11:44 AM Page 633

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 15.6] Commands of the emergency room program

An interaction with the terminal-based interface is shown in Figure 15.13.

[FIGURE 15.13] The user interface for the emergency room program

Main menu
 1 Schedule a patient
 2 Treat the next patient
 3 Treat all patients
 4 Exit the program

Enter a number [1-4]: 1

Enter the patient's name: Sara
Patient's condition:
 1 Critical
 2 Serious
 3 Fair

Enter a number [1-3]: 1
Sara is added to the critical list

Main menu
 1 Schedule a patient
 2 Treat the next patient
 3 Treat all patients
 4 Exit the program

Enter a number [1-4]: 3
Sara / critical is being treated
Ken / serious is being treated
Martin / fair is being treated
No patients available to treat

USER COMMAND PROGRAM RESPONSE

Schedule Prompts the user for the patient’s name and condition,
and then prints <patient name> is added to the
<condition> list.

Treat Next Patient <patient name> is being treated.

Treat All Patients <patient name> is being treated
…
<patient name> is being treated.

CHAPTER 15 Linear Collections: Queues[634]

C6840_15 11/19/08 11:44 AM Page 634

May not be copied, scanned, or duplicated, in whole or in part.

15.7 Case Study: An Emergency Room Scheduler [635]

15.7.3 Classes

The application consists of a view class, called ERView, and a set of model classes.
The view class interacts with the user and runs methods with the model. The
class ERModel maintains a priority queue of patients. The class Patient repre-
sents patients and the class Condition represents the three possible conditions.
The relationships among the classes are shown in Figure 15.14.

[FIGURE 15.14] The classes in the ER scheduling system

15.7.4 Design and Implementation

The Patient and Condition classes maintain a patient’s name and condition.
Patients can be compared (according to their conditions) and viewed as strings.
Here is the code for these two classes:

classƒCondition(object):

ƒƒƒƒdefƒ__init__(self,ƒrank):
ƒƒƒƒƒƒƒƒself._rankƒ=ƒrank

ƒƒƒƒdefƒ__cmp__(self,ƒother):
ƒƒƒƒƒƒƒƒ“””Usedƒforƒcomparisons.”””
ƒƒƒƒƒƒƒƒreturnƒcmp(self._rank,ƒother._rank)

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒifƒƒƒself._rankƒ==ƒ1:ƒreturnƒ“critical”
ƒƒƒƒƒƒƒƒelifƒself._rankƒ==ƒ2:ƒreturnƒ“serious”
ƒƒƒƒƒƒƒƒelse:ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“fair”

classƒPatient(object):

continued

ERView ERModel

Condition Patient
*

LinkedPriorityQueue

C6840_15 11/19/08 11:44 AM Page 635

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Linear Collections: Queues[636]

ƒƒƒƒdefƒ__init__(self,ƒname,ƒcondition):
ƒƒƒƒƒƒƒƒself._nameƒ=ƒname
ƒƒƒƒƒƒƒƒself._conditionƒ=ƒcondition

ƒƒƒƒdefƒ__cmp__(self,ƒother):
ƒƒƒƒƒƒƒƒ“””Usedƒforƒcomparisons.”””
ƒƒƒƒƒƒƒƒreturnƒcmp(self._condition,ƒother._condition)

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒreturnƒself._nameƒ+ƒ“ƒ/ƒ“ƒ+ƒstr(self._condition)

The class ERView uses a typical menu-driven loop. We structure the code
using several helper methods. Here is a complete listing:

“””
File:ƒerapp.py
Theƒviewƒforƒanƒemergencyƒroomƒscheduler.
“””

fromƒmodelƒimportƒERModel,ƒPatient,ƒCondition

classƒERView(object):
ƒƒƒƒ“””TheƒviewƒclassƒforƒtheƒERƒapplication.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._modelƒ=ƒERModel()

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒ“””Menu-drivenƒcommandƒloopƒforƒtheƒapp.”””
ƒƒƒƒƒƒƒƒmenuƒ=ƒ“Mainƒmenu\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ1ƒƒScheduleƒaƒpatient\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ2ƒƒTreatƒtheƒnextƒpatient\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ3ƒƒTreatƒallƒpatients\n”ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ4ƒƒExitƒtheƒprogram\n”
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._getCommand(4,ƒmenu)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒƒƒcommandƒ==ƒ1:ƒself._schedule()
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcommandƒ==ƒ2:ƒself._treatNext()
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcommandƒ==ƒ3:ƒself._treatAll()
ƒƒƒƒƒƒƒƒƒƒƒƒelse:ƒbreak

ƒƒƒƒdefƒ_treatNext(self):
ƒƒƒƒƒƒƒƒ“””Treatsƒoneƒpatientƒifƒthereƒisƒone.”””
ƒƒƒƒƒƒƒƒpatientƒ=ƒself._model.treatNext()

continued

C6840_15 11/19/08 11:44 AM Page 636

May not be copied, scanned, or duplicated, in whole or in part.

15.7 Case Study: An Emergency Room Scheduler [637]

ƒƒƒƒƒƒƒƒifƒpatientƒisƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Noƒpatientsƒavailableƒtoƒtreat”
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒFalse
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒpatient,ƒ“isƒbeingƒtreated”
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrue

ƒƒƒƒdefƒ_treatAll(self):
ƒƒƒƒƒƒƒƒwhileƒself._treatNext():
ƒƒƒƒƒƒƒƒƒƒƒƒpass
ƒƒƒ
ƒƒƒƒdefƒ_schedule(self):
ƒƒƒƒƒƒƒƒ“””Obtainsƒpatientƒinfoƒandƒschedulesƒpatient.”””
ƒƒƒƒƒƒƒƒnameƒ=ƒraw_input(“\nEnterƒtheƒpatient'sƒname:ƒ“)
ƒƒƒƒƒƒƒƒconditionƒ=ƒself._getCondition()
ƒƒƒƒƒƒƒƒself._model.schedule(Patient(name,ƒcondition))
ƒƒƒƒƒƒƒƒprintƒname,ƒ“isƒaddedƒtoƒthe”,ƒcondition,ƒ“list\n”

ƒƒƒƒdefƒ_getCondition(self):
ƒƒƒƒƒƒƒƒ“””Obtainsƒconditionƒinfo.”””
ƒƒƒƒƒƒƒƒmenuƒ=ƒ“Patient'sƒcondition:\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ1ƒƒCritical\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ2ƒƒSerious\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ3ƒƒFair\n”
ƒƒƒƒƒƒƒƒnumberƒ=ƒself._getCommand(3,ƒmenu)
ƒƒƒƒƒƒƒƒreturnƒCondition(number)

ƒƒƒƒdefƒ_getCommand(self,ƒhigh,ƒmenu):
ƒƒƒƒƒƒƒƒ“””Obtainsƒandƒreturnsƒaƒcommandƒnumber.”””
ƒƒƒƒƒƒƒƒpromptƒ=ƒ“Enterƒaƒnumberƒ[1-”ƒ+ƒstr(high)ƒ+ƒ“]:ƒ“
ƒƒƒƒƒƒƒƒcommandRangeƒ=ƒmap(str,ƒrange(1,ƒhighƒ+ƒ1))
ƒƒƒƒƒƒƒƒerrorƒ=ƒ“Error,ƒnumberƒmustƒbeƒ1ƒtoƒ“ƒ+ƒstr(high)
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒprintƒmenu
ƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒraw_input(prompt)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒcommandƒinƒcommandRange:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒint(command)
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒerror

#ƒMainƒfunctionƒtoƒstartƒupƒtheƒapplication

defƒmain():
ƒƒƒƒviewƒ=ƒERView()
ƒƒƒƒview.run()

main()ƒƒƒ

The class ERModel uses a priority queue to schedule the patients. Its imple-
mentation is left as a programming project for you.

C6840_15 11/19/08 11:44 AM Page 637

May not be copied, scanned, or duplicated, in whole or in part.

Summary
� A queue is a linear collection that adds elements to one end, called the

rear, and removes them from the other end, called the front. Thus,
they are accessed in first-in, first-out (FIFO) order.

� Other operations on queues include peeking at the top element,
determining the number of elements, determining whether the queue
is empty, and returning a string representation.

� Queues are used in applications that manage data items in a first-in,
first-out order. These applications include scheduling items for pro-
cessing or access to resources.

� Arrays and singly linked structures support simple implementations
of queues.

� Priority queues schedule their elements using a rating scheme as well
as a first-in, first-out order. If two elements have equal priority, then
they are scheduled in FIFO order. Otherwise, elements are ranked
from smallest to largest, according to some attribute, such as a num-
ber or an alphabetical content. In general, elements with the smallest
priority values are removed first, no matter when they are added to
the priority queue.

REVIEW QUESTIONS
1 Examples of queues are (choose all that apply)

a customers waiting in a checkout line
b a deck of playing cards
c a file directory system
d a line of cars at a tollbooth
e laundry in a hamper

2 The operations that modify a queue are called

a add and remove
b enqueue and dequeue

CHAPTER 15 Linear Collections: Queues[638]

C6840_15 11/19/08 11:44 AM Page 638

May not be copied, scanned, or duplicated, in whole or in part.

3 Queues are also known as

a first-in, first-out data structures
b last-in, first-out data structures

4 The front of a queue containing the items a b c is on the left. After two
dequeue operations, the queue contains

a a

b c

5 The front of a queue containing the items a b c is on the left. After the
operation enqueue(d), the queue contains

a a b c d

b d a b c

6 Memory for objects such as nodes in a linked structure is allocated on

a the object heap
b the call stack

7 The running time of the two queue mutator operations is

a linear
b constant

8 The linked implementation of a queue uses

a nodes with a link to the next node
b nodes with links to the next and previous nodes
c nodes with a link to the next node and an external pointer to the first

node and an external pointer to the last node

9 In the circular array implementation of a queue

a the front index chases the rear index around the array
b the front index is always less than or equal to the rear index

10 The items in a priority queue are ranked from

a smallest (highest priority) to largest (lowest priority)
b largest (highest priority) to smallest (lowest priority)

REVIEW QUESTIONS [639]

C6840_15 11/19/08 11:44 AM Page 639

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 15 Linear Collections: Queues[640]

PROJECTS
1 Complete the linked implementation of the queue ADT discussed in this

chapter. Verify that exceptions are raised when preconditions are violated.

2 Complete and test the circular array implementation of the queue ADT
discussed in this chapter. Verify that exceptions are raised when precon-
ditions are violated and that the implementation adds or removes storage
as needed.

3 Rework the two queue implementations to eliminate redundant instance
variables and methods. This project involves defining a new class and
making use of inheritance.

4 When you send a file to be printed on a shared printer, it is put onto a
print queue with other jobs. Anytime before your job prints, you can
access the queue to remove it. Thus, some queues support a remove
operation. Add this method to the queue implementations. The method
should expect an integer index as an argument. It should then remove
and return the item in the queue at that position (counting from position 0
at the front to position n – 1 at the rear).

5 Modify the supermarket checkout simulator so that it simulates a store
with many checkout lines. Add the number of cashiers as a new user
input. At instantiation, the model should create a list of these cashiers.
When a customer is generated, it should be sent to a cashier randomly
chosen from the list of cashiers. On each tick of the abstract clock, each
cashier should be told to serve its next customer. At the end of the simu-
lation, the results for each cashier should be displayed.

6 In real life, customers do not choose a random cashier when they
check out. They typically base their choice on at least the following
two factors:

a The length of a line of customers waiting to check out.
b The physical proximity of a cashier.

Modify the simulation of Project 5 so that it takes account of the
first factor.

7 Modify the simulation of Project 5 so it takes account of both factors
listed in Project 6. You should assume that a customer initially arrives at

C6840_15 11/19/08 11:44 AM Page 640

May not be copied, scanned, or duplicated, in whole or in part.

the checkout line of a random cashier and then chooses a cashier who is
no more than three lines away from this spot. This simulation should
have at least four cashiers.

8 The simulator’s interface asks the user to enter the average number of
minutes required to process a customer. However, as written, the simula-
tion assigns the same processing time to each customer. In real life, pro-
cessing times vary around the average. Modify the Customer class’s
constructor so that it randomly generates service times between 1 and
(average * 2 + 1).

9 Complete the emergency room scheduler application as described in the
case study.

10 Modify the maze-solving application of Chapter 14 so that it uses a
queue instead of a stack. Run each version of the application on the same
maze and count the number of choice points required by each version.
Can you conclude anything from the differences in these results? Are
there best cases and worst cases of maze problems for stacks and queues?

PROJECTS [641]

C6840_15 11/19/08 11:44 AM Page 641

May not be copied, scanned, or duplicated, in whole or in part.

C6840_15 11/19/08 11:44 AM Page 642

This page intentionally left blank

[CHAPTER] Linear Collections: Lists16
After completing this chapter, you will be able to:

� Explain the difference between index-based operations on lists
and position-based operations on lists

� Analyze the performance trade-offs between an array-
based implementation and a linked implementation of
index-based lists

� Analyze the performance trade-offs between an array-
based implementation and a linked implementation of
positional lists

� Create and use an iterator for a linear collection
� Develop an implementation of a sorted list
This chapter covers lists, the last of the three major linear

collections discussed in the book, the other two being stacks and
queues. Lists support a much wider range of operations than stacks
and queues and, consequently, are both more widely used and more
difficult to implement. Although Python includes a built-in list type,
there are several possible implementations, of which Python’s is only
one. To make sense of a list’s profusion of fundamental operations,
we classify them into three groups: index-based operations, content-
based operations, and position-based operations. In this chapter, we
discuss the two most common list implementations: arrays and
linked structures. The chapter’s case study shows how to develop a
special type of list called a sorted list.

C6840_16 11/19/08 11:44 AM Page 643

May not be copied, scanned, or duplicated, in whole or in part.

16.1 Overview of Lists
A list supports manipulation of items at any point within a linear collection.
Some common examples of lists include the following:

� A recipe, which is a list of instructions.
� A string, which is a list of characters.
� A document, which is a list of words.
� A file, which is a list of data blocks on a disk.

In all these examples, order is critically important, and shuffling the items
renders the collections meaningless. However, the items in a list are not necessar-
ily sorted. Words in a dictionary and names in a phone book are examples of
sorted lists, but the words in this paragraph equally form a list and are unsorted.
Although the items in a list are always logically contiguous, they need not be
physically contiguous in memory. Array implementations of lists use physical
positions to represent logical order, but linked implementations do not.

The first item in a list is at its head, whereas the last item in a list is at its
tail. Items in a list retain position relative to each other over time, and additions
and deletions affect predecessor/successor relationships only at the point of modi-
fication. Computer scientists count positions from 0 through the length of the list
minus 1. Each numeric position is also called an index. When a list is visualized,
the indices decrease to the left and increase to the right. Figure 16.1 shows how a
list changes in response to a succession of operations. The operations, which rep-
resent just a small subset of those possible for lists, are described in Table 16.1.

[TABLE 16.1] The operations used in Figure 16.1

OPERATION WHAT IT DOES

append(item) Adds item to the tail of the list.

insert(index, item) Inserts item at position index, shifting other
items to the right by one position, if necessary.

replace(index, item) Replaces the item at position index with item.

remove(index) Removes the item at position index, shifting
other items to the left by one position, if
necessary.

CHAPTER 16 Linear Collections: Lists[644]

C6840_16 11/19/08 11:44 AM Page 644

May not be copied, scanned, or duplicated, in whole or in part.

16.2 Using Lists [645]

[FIGURE 16.1] The states in the lifetime of a list

16.2 Using Lists
There is universal agreement on the names of the fundamental operations for
stacks and queues—push and pop for stacks and enqueue and dequeue for
queues—but for lists, there are no such standards. For instance, the operation of
putting a new item in a list is sometimes called “add” and sometimes “insert.”
Nevertheless, if we look at most textbooks on data structures and at the list
class provided in Python, we can discern several broad categories of operations,
which we call index-based operations, content-based operations, and position-
based operations. Before discussing the uses of lists, we present these categories.

After
append (a)

Empty

a

After
append (b)

After
insert (1, c)

After
insert (3, e)

After
insert (0, f)

After
remove (2)

After
replace (2, g)

a b

0 1

a c b

0 1 2

f a c b

0 1 2 3 4

a c b e

0 1 2 3

f a g e

0 1 2 3

f a b e

0 1 2 3

e

C6840_16 11/19/08 11:44 AM Page 645

May not be copied, scanned, or duplicated, in whole or in part.

16.2.1 Index-Based Operations

Index-based operations manipulate items at designated indices within a list. In
the case of array-based implementations, these operations also provide the con-
venience of random access. Suppose a list contains n items. Because a list is
ordered linearly, we can refer unambiguously to an item in a list via its relative
position from the head of the list using an index that runs from 0 to n -1. Thus,
the head is at index 0 and the tail is at index n -1. Table 16.2 lists some funda-
mental index-based operations for any list named L.

[TABLE 16.2] Some fundamental index-based operations for any list named L.

When viewed from this perspective, lists are sometimes called vectors or
sequences, and in their use of indices, they are reminiscent of arrays. However,
an array is a concrete data type with a specific and unvarying implementation
based on a single block of physical memory, whereas a list is an abstract data type
that can be represented in a variety of ways, among which are array implementa-
tions. In addition, a list has a much larger repertoire of basic operations than an
array, even though all list operations can be mimicked by suitable sequences of
array operations.

16.2.2 Content-Based Operations

Content-based operations are based not on an index, but on the content of a
list. These operations usually expect an item as an argument and do something
with it and the list. Some of these operations search for an item equal to a given
item before taking further action. Table 16.3 lists two basic content-based opera-
tions for a list named L.

OPERATION WHAT IT DOES

L.insert(i, item) Opens up a slot in the list at index i and inserts
item in this slot.

L.remove(i) Removes and returns the item at index i.

L[i] Returns the item at index i.

L[i] = item Replaces the item at index i with item.

CHAPTER 16 Linear Collections: Lists[646]

C6840_16 11/19/08 11:44 AM Page 646

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 16.3] Two basic content-based operations for a list named L

16.2.3 Position-Based Operations

Position-based operations are performed relative to a currently established
position or cursor within a list. The operations allow the user to navigate the list
by moving this cursor. In some programming languages, a separate object called
an iterator provides these operations. Python supports a simple version of an
iterator, which we discuss later in this chapter.

A positional list’s cursor is always in one of three places:

1 Just before the first item

2 Between two adjacent items

3 Just after the last item

Initially, when a positional list is first instantiated, its cursor is undefined.
After one or more items have been inserted into the list, the user can establish
the position of the cursor by moving it to the beginning or to the end of the list.
From these positions, the user can navigate to another position in some way.
Table 16.4 lists the navigational operations for a list named L.

OPERATION WHAT IT DOES

L.append(item) Adds item after a list’s tail.

L.index(item) Returns the index of the first instance of item
in a list or -1 if the item does not exist.

16.2 Using Lists [647]

C6840_16 11/19/08 11:44 AM Page 647

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 16.4] Navigational operations for a list named L

The remaining position-based operations are used to modify the list. Table 16.5
lists operations that work at the currently established position in the list named L.

[TABLE 16.5] Operations that work at the currently established position in the list named L

In Table 16.6, we present a sequence of operations on a positional list and
indicate the state of the list after each operation. Remember that a positional list’s
cursor, once it is established, is located before the first item, after the last item, or
between two items. In the table, the cursor is indicated by a comma and by an

OPERATION WHAT IT DOES

L.insert(item) If the cursor is defined, inserts item after it; otherwise,
inserts item at the end of the list.

L.remove() Precondition: There have been no intervening insert or
remove operations since the most recent next or
previous operation. Removes the item returned by the
most recent next or previous.

L.replace(item) Precondition: There have been no intervening insert or
remove operations since the most recent next or
previous operation. Replaces the item returned by the
most recent next or previous.

OPERATION WHAT IT DOES

L.hasNext() Returns True if there are any items following the cursor.
Returns False if the cursor is undefined or is after the
last item.

L.next() Precondition: hasNext returns True. Returns the next
item and advances the cursor to the right by one position.

L.hasPrevious() Returns True if there are any items before the cursor.
Returns False if the cursor is undefined or is positioned
before the first item.

L.previous() Precondition: hasPrevious returns True. Returns the
previous item and moves the cursor to the left by one
position.

L.first() Moves the cursor before the first item, if there is one.

L.last() Moves the cursor after the last item, if there is one.

CHAPTER 16 Linear Collections: Lists[648]

C6840_16 11/19/08 11:44 AM Page 648

May not be copied, scanned, or duplicated, in whole or in part.

integer variable called the current position. Suppose the list contains n items,
then the following applies:

� Current position = i if it is located before the item at index i, where i = 0,
1, 2, ... , n – 1.

� Current position = n if it is located after the last item.

Notice in Table 16.6 that there is no current position until there is at least
one item in the list and the method first or last has been run. Until that
point, the methods hasNext and hasPrevious return False and the methods
next, previous, remove, and replace should not be run.

From the specification for the operations, we know that remove and
replace operate on the last item returned by a successful next or previous
operation, provided there have been no intervening insert or remove opera-
tions. In the table, we highlight this last item returned in boldface. If no item is
highlighted, then remove and replace are invalid. The highlighted item, when
present, can be on either side of the cursor—on the left after a next operation or
on the right after a previous operation.

When a position list becomes empty, its cursor is once again undefined.

[TABLE 16.6] The effects of operations on a positional list

CURRENT STATE OF
POSITION THE LIST
AFTER THE AFTER THE VALUE

OPERATION OPERATION OPERATION RETURNED COMMENT

Instantiation Undefined Empty A new
positional
list

insert(a) Undefined a When the cursor is
undefined, each item
inserted goes at the
end of the list.

insert(b) Undefined a b

hasNext() Undefined , a b True When the cursor is
undefined, there is no
next or previous item.

first() 0 , a b Establish the cursor
before the first item, if
there is one.

16.2 Using Lists [649]

continued

C6840_16 11/19/08 11:44 AM Page 649

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 16.6] The effects of operations on a positional list

CURRENT STATE OF
POSITION THE LIST
AFTER THE AFTER THE VALUE

OPERATION OPERATION OPERATION RETURNED COMMENT

hasNext() 0 , a b True There is an item to
the right of the cursor,
so there is a next item.

next() 1 a , b a Return a and advance
the cursor.

replace(c) 1 c , b True Replace a, the item
most recently returned
by next, with c.

next() 2 c b , b Return b and advance
the cursor.

next() 2 c b , Exception The cursor is at the
end of the list, so it is
impossible to move to
the next item.

hasNext() 2 c b , False The cursor is at the
end of the list;
therefore, there is no
next item.

hasPrevious() 2 c b , True There is an item to
the left of the cursor,
so there is a previous
item.

previous() 1 c , b b Return b and move
the cursor backward.

insert(e) 1 e , a b Inserts e to the right
of the cursor position.

remove() 1 e , a b Exception An insert has
occurred since the
most recent next or
previous.

CHAPTER 16 Linear Collections: Lists[650]

continued

C6840_16 11/19/08 11:44 AM Page 650

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 16.6] The effects of operations on a positional list

The next code segment also illustrates the use of a positional list. We assume
that someone has defined the class LinkedPositionalList that supports the
operations mentioned earlier. The output follows the code segment.

aƒ=ƒLinkedPositionalList()
printƒ“Length:”,ƒlen(a)
printƒ“Empty:”,ƒa.isEmpty()

printƒ“Appendƒ1-9”
forƒiƒinƒxrange(9):
ƒƒƒƒa.insert(iƒ+ƒ1)

printƒ“Itemsƒ(firstƒtoƒlast):”,ƒa

printƒ“Forwardƒtraversal:”,
a.first()
whileƒa.hasNext():ƒ
ƒƒƒƒprintƒa.next(),

printƒ“\nBackwardƒtraversal:”,
a.last()
whileƒa.hasPrevious():ƒ
ƒƒƒƒprintƒa.previous(),

printƒ“\nInsertingƒ10ƒbeforeƒ3:”,ƒ
a.first
forƒcountƒinƒxrange(2):ƒ
ƒƒƒƒa.next()
a.insert(10)
printƒa

CURRENT STATE OF
POSITION THE LIST
AFTER THE AFTER THE VALUE

OPERATION OPERATION OPERATION RETURNED COMMENT

previous() 0 , e a b e Return e and move
the cursor backward.

remove() 0 , a b Removes e, the last
item returned by next
or previous. Note
the cursor position.

16.2 Using Lists [651]

continued

C6840_16 11/19/08 11:44 AM Page 651

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Linear Collections: Lists[652]

printƒ“Removingƒ2:”,ƒ
a.first()
forƒcountƒinƒxrange(2):ƒ
ƒƒƒƒa.next()
a.remove()
printƒa

#ƒRemovingƒall:
a.first()
whileƒa.hasNext():
ƒƒƒƒa.next()
ƒƒƒƒa.remove()

Length:ƒ0
Empty:ƒTrue
Appendƒ1-9
Itemsƒ(firstƒtoƒlast):ƒ1ƒ2ƒ3ƒ4ƒ5ƒ6ƒ7ƒ8ƒ9ƒ
Forwardƒtraversal:ƒ1ƒ2ƒ3ƒ4ƒ5ƒ6ƒ7ƒ8ƒ9ƒ
Backwardƒtraversal:ƒ9ƒ8ƒ7ƒ6ƒ5ƒ4ƒ3ƒ2ƒ1ƒ
Insertingƒ10ƒbeforeƒ3:ƒ1ƒ2ƒ10ƒ3ƒ4ƒ5ƒ6ƒ7ƒ8ƒ9ƒ
Removingƒ2:ƒ1ƒ10ƒ3ƒ4ƒ5ƒ6ƒ7ƒ8ƒ9

Note that a traversal of a position-based list begins by moving the cursor to the
first position or to the last position. Remember that there are additional restric-
tions on some operations. For example, replace and remove require establishing
a current position with an immediately preceding next or previous operation.
These two operations, in turn, assume that hasNext and hasPrevious return
True, respectively. We discuss these operations in detail later in the chapter.

16.2.4 Interfaces for Lists

Although there are a breathtaking number of list operations, our classification
scheme helps to reduce the potential confusion. Table 16.7 gives a recap.

C6840_16 11/19/08 11:44 AM Page 652

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 16.7] Summary of basic list operations.

Based on the foregoing discussion of list operations, we now propose to split
these operations into interfaces for two types of lists. The first interface includes
the index-based and content-based operations that are similar to those of
Python’s list class. Later in this chapter, we develop two implementations called
ArrayIndexedList and LinkedIndexedList. The second interface contains
operations for position-based lists. The two implementations to be discussed are
called ArrayPositionalList and LinkedPositionalList. Although the two
interfaces are just sets of operations, we can give them names, such as
IndexedList and PositionalList, to identify them. The UML diagram in
Figure 16.2 shows how the implementing classes are related to these interfaces.
To both interfaces we also add the basic methods common to all collections,
namely, isEmpty, __len__, and __str__.

INDEX-BASED CONTENT-BASED POSITION-BASED
OPERATION OPERATION OPERATION

L.insert(i, item) L.append(item) L.hasNext()

L[i] L.index(item) L.next()

L[i] = item L.hasPrevious()

L.remove(i) L.previous()

L.first()

L.last()

L.insert(item)

L.replace(item)

L.remove()

16.2 Using Lists [653]

C6840_16 11/19/08 11:44 AM Page 653

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 16.2] The interfaces and implementing classes for two types of lists

16.2 Exercises
1 What are the restrictions on index-based operations with a list?

2 How does the position-based operation insert differ from an index-
based operation insert?

16.3 Applications of Lists
Lists are probably the most widely used collections in computer science. In this
section, we examine two important applications, heap-storage management and
disk file management.

16.3.1 Heap-Storage Management

When you studied recursion in Chapter 6 and stacks in Chapter 14, you learned
about one aspect of Python memory management, the call stack. Now we complete

<<interface>>
PositionalList

ArrayPositionalList LinkedPositionalList

<<interface>>
IndexedList

ArrayIndexedList LinkedIndexedList

CHAPTER 16 Linear Collections: Lists[654]

C6840_16 11/19/08 11:44 AM Page 654

May not be copied, scanned, or duplicated, in whole or in part.

that discussion by showing how free space in the object heap, also introduced in
Chapter 14, can be managed using a linked list. Recall that the object heap is an
area of memory from which the Python virtual machine allocates segments of
various sizes for all new data objects. When an object no longer can be refer-
enced from a program, the PVM can return that object’s memory segment to the
heap for use by other objects. Heap-management schemes can have a significant
impact on an application’s overall performance, especially if the application cre-
ates and abandons many objects during the course of its execution. PVM imple-
menters therefore are willing to expend a great deal of effort to organize the heap
in the most efficient manner possible. Their elaborate solutions are beyond this
book’s scope, so we present a simplified scheme here.

In our scheme, contiguous blocks of free space on the heap are linked
together in a free list. When an application instantiates a new object, the PVM
searches the free list for the first block large enough to hold the object. When
the object is no longer needed, the garbage collector returns the object’s space to
the free list.

This scheme has two defects. First, over time, large blocks on the free list
become fragmented into many smaller blocks. Second, searching the free list for
blocks of sufficient size can take O(n) running time, where n is the number of
blocks in the list. To counteract fragmentation, the garbage collector periodically
reorganizes the free list by recombining adjacent blocks. To reduce search time,
multiple free lists can be used. For instance, if an object reference requires 4 bytes,
then list 1 could consist of blocks of size 4; list 2, blocks of size 8; list 3, blocks of
size 16; list 4, blocks of size 32; and so on. The last list would contain all blocks
larger than some designated size.

In this scheme, space is always allocated in units of 4 bytes, and space for a
new object is taken from the head of the first nonempty list containing blocks of
sufficient size. Because access and removal from the head is O(1), allocating space
for a new object now takes O(1) time unless the object requires more space than
is available in the first block of the last list. At that point, the last list must be
searched, giving the operation a maximum running time of O(n), where n is the
size of the last list.

For the sake of simplicity in this discussion, we have completely ignored two
difficult problems. The first problem has to do with deciding when to run the
garbage collector. Running the garbage collector takes time away from the appli-
cation, but not running it means the free lists are never replenished. The second
problem concerns how the garbage collector identifies objects that are no longer
referenced and, consequently, no longer needed. (A solution to these problems is
outside the scope of this book.)

16.3 Applications of Lists [655]

C6840_16 11/19/08 11:44 AM Page 655

May not be copied, scanned, or duplicated, in whole or in part.

16.3.2 Organization of Files on a Disk

A computer’s file system has three major components—a directory of files, the
files themselves, and free space. To understand how these work together to create
a file system, we first consider a disk’s physical format. Figure 16.3 shows a stan-
dard arrangement. The disk’s surface is divided into concentric tracks, and each
track is further subdivided into sectors. The numbers of these tracks vary
depending on the disk’s capacity and physical size. However, all tracks contain the
same number of sectors and all sectors contain the same number of bytes. For the
sake of this discussion, let us suppose that a sector contains 8 kilobytes of data
plus a few additional bytes reserved for a pointer. A sector is the smallest unit of
information transferred to and from the disk, regardless of its actual size, and a
pair of numbers (t, s) specifies a sector’s location on the disk, where t is the track
number and s the sector number. Figure 16-3 shows a disk with n tracks. The k
sectors in track 0 are labeled from 0 to k - 1.

[FIGURE 16.3] Tracks and sectors on the surface of a disk

A file system’s directory is organized as a hierarchical collection. We don’t
need to go into the details of that structure here. For our purposes, let’s just
assume that the directory occupies the first few tracks on the disk and contains an

...

...

...

k–1 0

1

2

34

Track 0

Track 1

Track n –1

CHAPTER 16 Linear Collections: Lists[656]

C6840_16 11/19/08 11:44 AM Page 656

May not be copied, scanned, or duplicated, in whole or in part.

entry for each file. This entry holds the file’s name, creation date, size, and so
forth. In addition, it holds the address of the sector containing the first bytes in
the file. Depending on its size, a file might be completely contained within a sin-
gle sector or it might span several sectors. Usually, the last sector is only partially
full, and no attempt is made to recover the unused space. The sectors that make
up a file do not need to be physically adjacent because each sector except the last
one ends with a pointer to the sector containing the next portion of the file.
Finally, sectors that are not in use are linked together in a free list. When new
files are created, they are allocated space from this list, and when old files are
deleted, their space is returned to the list.

Because all sectors are the same size and because space is allocated in sectors,
a file system does not experience the same fragmentation problem encountered in
Python’s object heap. Nonetheless, there is still a difficulty. To transfer data to or
from the disk, read/write heads must first be positioned to the correct track, the
disk must rotate until the desired sector is under the heads, and then the transfer
of data takes place. Of these three steps, the transfer of data takes the least time.
Fortunately, data can be transferred to or from several adjacent sectors during a
single rotation without the need to reposition the heads. Thus, a disk system’s
performance is optimized when multisector files are not scattered across the disk.
Over time, however, as files of varying sizes are created and destroyed, this sort of
scattering becomes frequent, and the file system’s performance degrades. As a
countermeasure, file systems include a utility, run either automatically or at the
explicit request of the user, which reorganizes the file system so that the sectors
in each file are contiguous and have the same physical and logical order.

16.3.3 Implementation of Other ADTs

Lists are frequently used to implement other collections, such as stacks and
queues. There are two ways to do this:

1 Extend the list class, making the new class a subclass of the list class.

2 Use an instance of the list class within the new class and let the list con-
tain the data items.

For example, one might implement a stack class by extending a list class.
Extension is not a wise choice in this case, however, because this version of a
stack inherits the methods from the list that allow users to access items at posi-
tions other than the top, thus violating the spirit of the stack ADT. In the case of
stacks and queues, a better design decision is to contain a list within the stack or
queue. In that case, all of the list operations are available to the implementer of
the stack or queue, but only the essential stack or queue operations are available
to its users.

16.3 Applications of Lists [657]

C6840_16 11/19/08 11:44 AM Page 657

May not be copied, scanned, or duplicated, in whole or in part.

On the other hand, suppose we wanted to implement a sorted list. A sorted
list has all of the behavior of a list, but some of it is specialized. The methods that
differ are insert, replace, and append, which have extra preconditions to main-
tain the natural ordering of the objects in the list, and index, which can employ a
binary search. Clearly, in this case, sorted lists would benefit by inheriting the
common behavior.

ADTs that use lists also inherit their performance characteristics. For example, a
stack that uses an array-based list has the performance characteristics of an array-based
list, whereas a stack that uses a link-based list has characteristics of a link-based list.

The primary advantage of using a list ADT to implement another ADT is
that coding becomes easier. Instead of operating on a concrete array or linked
structure, the implementer of a stack need only call the appropriate list methods.

In Chapter 18 (Hierarchical Collections: Trees) and Chapter 19 (Unordered
Collections: Sets and Maps) we will see other situations in which lists can be used
in the implementation of ADTs.

16.4 Indexed List Implementations
Earlier in this chapter, we mentioned that there are two common data structures
used to implement lists, arrays and linked structures. In this section and the next
one, we develop array-based and linked implementations of the IndexedList
interface and a linked implementation of the PositionalList interface.

16.4.1 An Array-Based Implementation of an Indexed List

The array-based implementation of the IndexedList interface is a class called
ArrayIndexedList. An ArrayIndexedList maintains its data items in an instance
of the Array class introduced in Chapter 13 and uses one other instance variable to
track the number of these items. An ArrayIndexedList has an initial default capacity
that is automatically increased when append or insert needs room for a new item.
Figure 16.4 shows the relationships among the resources used in this implementation.

[FIGURE 16.4] Resources used in an array-based, indexed list

ArrayIndexedList
<<interface>>
IndexedList Array

CHAPTER 16 Linear Collections: Lists[658]

C6840_16 11/19/08 11:44 AM Page 658

May not be copied, scanned, or duplicated, in whole or in part.

16.4 Indexed List Implementations [659]

continued

The index-based operations get and replace simply use the subscript operator
on the array variable _items. The insert and remove methods shift the items
in this array using the techniques described in Chapter 13. Here is the code for
the class ArrayIndexedList:

“””
File:ƒindexedlist.py

Indexedƒlistsƒincludeƒtheƒindex-basedƒoperationsƒappend,ƒ
andƒindex.ƒ
“””

fromƒarraysƒimportƒArray

classƒArrayIndexedList(object):
ƒƒƒƒ“””Arrayƒimplementationƒofƒanƒindexedƒlist.”””

ƒƒƒƒDEFAULT_CAPACITY = 10

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._itemsƒ=ƒArray(ArrayIndexedList.DEFAULT_CAPACITY)
ƒƒƒƒƒƒƒƒself._sizeƒ=ƒ0

ƒƒƒƒdefƒ__len__(self):
ƒƒƒƒƒƒƒƒreturnƒself._size

ƒƒƒƒdefƒisEmpty(self):
ƒƒƒƒƒƒƒƒreturnƒlen(self)ƒ==ƒ0

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒresultƒ=ƒ“”
ƒƒƒƒƒƒƒƒforƒitemƒinƒself:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒstr(item)ƒ+ƒ“ƒ“
ƒƒƒƒƒƒƒƒreturnƒresult

ƒƒƒƒdefƒappend(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””Insertsƒitemƒafterƒtheƒtailƒofƒtheƒlist.”””
ƒƒƒƒƒƒƒƒ#ƒResizingƒarrayƒleftƒasƒanƒexercise.
ƒƒƒƒƒƒƒƒself._items[self._size]ƒ=ƒitem
ƒƒƒƒƒƒƒƒself._sizeƒ+=ƒ1

ƒƒƒƒdefƒ__getitem__(self,ƒindex):
ƒƒƒƒƒƒƒƒ“””Preconditionsƒleftƒasƒanƒexercise.”””
ƒƒƒƒƒƒƒƒreturnƒself._items[index]

ƒƒƒƒdefƒ__setitem__(self,ƒindex,ƒitem):
ƒƒƒƒƒƒƒƒ“””Preconditionsƒleftƒasƒanƒexercise.”””
ƒƒƒƒƒƒƒƒself._items[index]ƒ=ƒitem

C6840_16 11/19/08 11:44 AM Page 659

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Linear Collections: Lists[660]

ƒƒƒƒdefƒinsert(self,ƒindex,ƒitem):
ƒƒƒƒƒƒƒƒ“””Putsƒitemƒatƒindex,ƒshiftingƒitemsƒtoƒtheƒrightƒif
ƒƒƒƒƒƒƒƒnecessary.”””
ƒƒƒƒƒƒƒƒ#ƒResizingƒarrayƒleftƒasƒanƒexercise.
ƒƒƒƒƒƒƒƒ#ƒOpenƒaƒholeƒforƒtheƒnewƒitemƒbyƒshiftingƒitemsƒto
ƒƒƒƒƒƒƒƒ#ƒtheƒrightƒbyƒoneƒposition
ƒƒƒƒƒƒƒƒforƒprobeƒinƒxrange(len(self),ƒindex,ƒ-1):
ƒƒƒƒƒƒƒƒƒƒƒƒself._items[probe]ƒ=ƒself._items[probeƒ-ƒ1]
ƒƒƒƒƒƒƒƒself._items[index]ƒ=ƒitem
ƒƒƒƒƒƒƒƒself._sizeƒ+=ƒ1

ƒƒƒƒdefƒremove(self,ƒindex):
ƒƒƒƒƒƒƒƒ“””Deletesƒandƒreturnsƒitemƒatƒindex,ƒshiftingƒitemsƒ
ƒƒƒƒƒƒƒƒtoƒtheƒleftƒifƒnecessary.”””
ƒƒƒƒƒƒƒƒ#ƒPreconditionsƒleftƒasƒanƒexercise
ƒƒƒƒƒƒƒƒoldItemƒ=ƒself[index]
ƒƒƒƒƒƒƒƒforƒprobeƒinƒxrange(index,ƒlen(self)ƒ-ƒ1):
ƒƒƒƒƒƒƒƒƒƒƒƒself._items[probe]ƒ=ƒself._items[probeƒ+ƒ1]
ƒƒƒƒƒƒƒƒself._sizeƒ-=ƒ1
ƒƒƒƒƒƒƒƒ#ƒResizingƒarrayƒleftƒasƒanƒexercise
ƒƒƒƒƒƒƒƒreturnƒoldItem

ƒƒƒƒdefƒindex(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒindexƒofƒitemƒifƒfoundƒorƒ-1ƒ
ƒƒƒƒƒƒƒƒotherwise.”””
ƒƒƒƒƒƒƒƒpassƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒExercise

The completion of the index method is left as an exercise for you.

16.4.2 A Linked Implementation of an Indexed List

We used linked structures to implement stacks and queues earlier in this book.
The structure used for a linked stack (Chapter 14), which has a pointer to its
head but not to its tail, would be an unwise choice for a linked list. The list’s
append method would have to chain through the entire sequence of nodes to
locate the tail of the list. The singly linked structure used for the linked queue
(Chapter 15) would work much better, because a pointer is maintained to the
structure’s tail as well as its head. The list method append puts the new item at
the tail of the linked structure and adjusts the head link, if necessary.

Remaining to be developed are the index-based methods __getitem__,
__setitem__, insert, and remove. Each of these methods must chain through
the nodes in the linked structure, beginning with the head node, until the ith
node is reached. At that point, the datum contained in that node is returned or
modified (__getitem__ or __setitem__), or the node is removed (remove), or

C6840_16 11/19/08 11:44 AM Page 660

May not be copied, scanned, or duplicated, in whole or in part.

a new node is inserted before that node (insert). Because the search for the ith
node is an operation that all four methods must perform, we include a helper
method, named _locate, that does this. This method expects the index position
of the target node as an argument. It also uses two new instance variables, named
_currentNode and _previousNode, to track the relevant nodes during the
search. At the end of this process, _currentNode will refer to the ith node, if
there is one, and _previousNode will refer to the previous node, if there is one.
The four calling methods can then use these two pointers to manipulate the
linked structure accordingly. Figure 16.5 shows the resources used in this
implementation.

[FIGURE 16.5] Resources used in a linked, indexed list

Here is the code for the LinkedIndexedList class, which includes just the
methods append, _locate, __setitem__, and insert. The remaining methods
are left as exercises for you.

fromƒnodeƒimportƒNode

classƒLinkedIndexedList(object):
ƒƒƒƒ“””ƒLinkedƒimplementationƒofƒanƒindexedƒlist.”””

ƒƒƒƒ#ƒInstanceƒvariablesƒheadƒandƒtailƒreferenceƒtheƒfirst
ƒƒƒƒ#ƒandƒtheƒlastƒnodes,ƒrespectively.

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._headƒ=ƒNone
ƒƒƒƒƒƒƒƒself._tailƒ=ƒNone
ƒƒƒƒƒƒƒƒself._sizeƒ=ƒ0

ƒƒƒƒdefƒappend(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””Insertsƒitemƒafterƒtheƒtailƒofƒtheƒlist.”””
ƒƒƒƒƒƒƒƒnewNodeƒ=ƒNode(item,ƒNone)
ƒƒƒƒƒƒƒƒifƒself.isEmpty():
ƒƒƒƒƒƒƒƒƒƒƒƒself._headƒ=ƒnewNode
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._tail.nextƒ=ƒnewNode
ƒƒƒƒƒƒƒƒself._tailƒ=ƒnewNodeƒƒ
ƒƒƒƒƒƒƒƒself._sizeƒ+=ƒ1

LinkedIndexedList
<<interface>>
IndexedList Node

*

16.4 Indexed List Implementations [661]

continued

C6840_16 11/19/08 11:44 AM Page 661

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Linear Collections: Lists[662]

ƒƒƒƒdefƒ_locate(self,ƒindex):
ƒƒƒƒƒƒƒƒ“””Searchesƒforƒtheƒnodeƒatƒpositionƒindex.
ƒƒƒƒƒƒƒƒPostconditions:ƒ_currentNodeƒrefersƒtoƒtheƒithƒnode,ƒif
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthereƒisƒone,ƒorƒNoneƒifƒnot.
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ_previousNodeƒrefersƒtoƒtheƒprevious
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnode,ƒifƒthereƒisƒone,ƒorƒNoneƒifƒnot”””
ƒƒƒƒƒƒƒƒself._currentNodeƒ=ƒself._head
ƒƒƒƒƒƒƒƒself._previousNodeƒ=ƒNone
ƒƒƒƒƒƒƒƒwhileƒindexƒ>ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒƒself._previousNodeƒ=ƒself._currentNode
ƒƒƒƒƒƒƒƒƒƒƒƒself._currentNodeƒ=ƒself._currentNode.next
ƒƒƒƒƒƒƒƒƒƒƒƒindexƒ-=ƒ1

ƒƒƒƒdefƒ__setitem__(self,ƒindex,ƒitem):
ƒƒƒƒƒƒƒƒ“””Precondition:ƒ0ƒ<=ƒindexƒ<ƒlen(list)”””
ƒƒƒƒƒƒƒƒifƒindexƒ<ƒ0ƒorƒindexƒ>=ƒlen(self):
ƒƒƒƒƒƒƒƒƒƒƒƒraiseƒIndexError,ƒ“Indexƒoutƒofƒrange”
ƒƒƒƒƒƒƒƒself._locate(index)
ƒƒƒƒƒƒƒƒself._currentNode.dataƒ=ƒitem
ƒƒƒƒƒƒƒƒƒƒƒƒ
ƒƒƒƒdefƒinsert(self,ƒindex,ƒitem):
ƒƒƒƒƒƒƒƒ“””Putsƒitemƒatƒindex,ƒshiftingƒitemsƒtoƒtheƒrightƒif
ƒƒƒƒƒƒƒƒnecessary.”””
ƒƒƒƒƒƒƒƒifƒindexƒ>=ƒlen(self):
ƒƒƒƒƒƒƒƒƒƒƒƒself.append(item)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._locate(index)
ƒƒƒƒƒƒƒƒƒƒƒƒnewNodeƒ=ƒNode(item,ƒself._currentNode)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒself._previousNodeƒisƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._headƒ=ƒnewNode
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._previousNode.nextƒ=ƒnewNode
ƒƒƒƒƒƒƒƒƒƒƒƒself._sizeƒ+=ƒ1

ƒƒƒƒdefƒ__getitem__(self,ƒindex):
ƒƒƒƒƒƒƒƒ“””Exercise.”””
ƒƒƒƒƒƒƒƒpass

ƒƒƒƒdefƒremove(self,ƒindex):
ƒƒƒƒƒƒƒƒ“””Exercise.”””
ƒƒƒƒƒƒƒƒpass

ƒƒƒƒdefƒindex(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””Exercise.”””
ƒƒƒƒƒƒƒƒpass

C6840_16 11/19/08 11:44 AM Page 662

May not be copied, scanned, or duplicated, in whole or in part.

16.4.3 Time and Space Analysis for the Two Implementations

The running times of the IndexedList methods can be determined in the
following two different ways:

1 Examine the code and do the usual sort of analysis.

2 Reason from more general principles.

Here, we take the second approach. As a starting point, we consider three basic
manipulations involving lists. The manipulations are locating the ith item,
searching for a specified item, and either inserting or deleting an item at a
preestablished position. Running times for these manipulations were established
in Chapter 13, and for convenience, we list them again in Table 16.8.

[TABLE 16.8] Average and maximum running times for three basic manipulations

Using the information in Table 16.8, we now estimate the complexity of the
list’s __getitem__(index) method to be O(1) for an array implementation and
O(n) for a linked implementation. The list’s remove(index) method involves first
locating a specified position and then removing it from the now-established posi-
tion. For both implementations, the operation is O(n) —array implementation
locate O(1) + remove O(n), linked implementation locate O(n) + remove O(1).
Table 16.9 lists the complexity of the methods just discussed. Filling in the empty
slots is left as an exercise for you.

INSERT OR REMOVE AN
LOCATE THE SEARCH FOR A ITEM AT A PREESTABLISHED
i TH ITEM SPECIFIED ITEM POSITION

Array O(1) O(n) O(n)

Singly linked
structure O(n) O(n) O(1)

16.4 Indexed List Implementations [663]

C6840_16 11/19/08 11:44 AM Page 663

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 16.9] Average and maximum running times for IndexedList operations

A space analysis for list implementations follows the pattern already estab-
lished for stacks and queues. A minimal array implementation requires memory
for the following items:

� An array that can hold capacity references, where capacity >= n.
� A reference to the array.
� A variable for the number of items.

Thus, the total space requirement for the minimal array implementation
is capacity + 2. The linked implementation requires memory for the
following items:

� n data nodes, where each node contains two references.
� Variables that point to the first and last nodes.
� A variable for the number of items.

Thus, the total space requirement for the linked implementation is 2n + 3. These,
of course, are minimal implementations; the ones we presented, which inherit the
structures used by the stack and queue implementations, include extra memory
for a reference to the tail of the linked structure, and so forth.

When comparing the memory requirements of the two implementations, one
must remember that the space utilization for the array implementation depends
on the load factor. For load factors above 1⁄ 2, an array implementation makes
more efficient use of memory than a linked implementation, and for load factors
below 1⁄ 2, use is less efficient.

IndexedList METHOD ArrayIndexedList LinkedIndexedList

isEmpty() O(1) O(1)

__len()__ O(1) O(1)

__str__ O(n) O(n)

__getitem__(index) O(1) O(n)

__setitem__(index,
ƒƒƒƒƒƒƒƒƒƒƒƒitem)

insert(index,ƒitem)

remove(index) O(n) O(n)

append(item)

index(item)

CHAPTER 16 Linear Collections: Lists[664]

C6840_16 11/19/08 11:44 AM Page 664

May not be copied, scanned, or duplicated, in whole or in part.

16.4 Exercises
1 Fill in the remaining running times in Table 16.9.

2 Which indexed list implementations would work well for implementing
stacks and queues?

3 Someone suggests that ArrayIndexedList should extend ArrayStack
and LinkedIndexedList should extend LinkedQueue. Discuss the
advantages and disadvantages of this proposal.

4 Define a method __eq__ for the ArrayIndexedList class. This method
returns True if the two arguments are identical, or if they are of the
same type, have the same number of items, and their items are equal at
each position. Otherwise, the method returns False.

5 What is the running time of the __eq__ method, expressed in big-O
notation?

16.5 Implementing Positional Lists
Like their index-based or content-based counterparts, positional lists use either
arrays or linked structures. In this section, we develop a linked implementation
and leave the array-based version as an exercise for you.

16.5.1 The Data Structures for a Linked Positional List

We never use a singly linked structure to implement a positional list because it
provides no convenient mechanism for moving one node to the left—to a node’s
predecessor. In a singly linked structure, moving left requires repositioning to the
head of the structure and then traversing right. The cost of doing this is O(n). In
a doubly linked structure, it is equally easy to move left and right. Both are O(1)
operations. Figure 16.6 shows a doubly linked structure with three nodes.

[FIGURE 16.6] A doubly linked structure with three nodes

head D1 D2 D3D1

16.5 Implementing Positional Lists [665]

C6840_16 11/19/08 11:44 AM Page 665

May not be copied, scanned, or duplicated, in whole or in part.

The code needed to manipulate a doubly linked list can be simplified if one
extra node is added at the head of the list, as mentioned in Chapter 13. This node
is called a sentinel node, and it points forward to what was the first node and
backward to what was the last node. The head pointer now points to the sentinel
node. The resulting structure resembles the circular linked structure introduced
in Chapter 13. The sentinel node does not contain a list item, and when the list is
empty, the sentinel remains. Figure 16.7 shows an empty circular linked list and a
circular linked list containing one data item.

As you can see from the figure, the sentinel node’s next pointer locates the
first data node, whereas its previous pointer locates the last data node. Thus,
there is no need for a separate tail pointer in the implementation. Moreover, as
we shall soon see, when the first or last data node is inserted or removed, there is
no need to reset the implementation’s head pointer.

[FIGURE 16.7] Two circular, doubly linked lists with sentinel nodes

The basic building block of a doubly linked list is a node with two pointers:
next, which points right; and previous, which points left. This type of node,
called TwoWayNode, extends the Node class defined in Chapter 13.

The other data required for this implementation are a size variable and
three external pointers to the linked structure. The head pointer always refers to
the header node. The cursor pointer initially points to the header node, but
moves left or right in response to the navigational methods. The lastItemPos
pointer is initially None. Its role is to assist in enforcing the constraints on the
replace and remove operations, in a manner that will be discussed shortly.

The next code segment shows how these structures are defined for the class
LinkedPositionalList. The initial state of such a list is shown in Figure 16.8.

head D1
An empty, circular, doubly
linked structure with
a dummy header code

head D1
The linked structure after inserting
the first data node D1

CHAPTER 16 Linear Collections: Lists[666]

C6840_16 11/19/08 11:44 AM Page 666

May not be copied, scanned, or duplicated, in whole or in part.

fromƒnodeƒimportƒTwoWayNode

classƒLinkedPositionalList(object):
ƒƒƒƒ“””ƒLinkedƒimplementationƒofƒaƒpositionalƒlist.”””
ƒƒƒƒ
ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._headƒ=ƒTwoWayNode(None,ƒNone,ƒNone)
ƒƒƒƒƒƒƒƒself._head.nextƒ=ƒself._head
ƒƒƒƒƒƒƒƒself._head.previousƒ=ƒself._head
ƒƒƒƒƒƒƒƒself._cursorƒ=ƒself._head
ƒƒƒƒƒƒƒƒself._lastItemPosƒ=ƒNone
ƒƒƒƒƒƒƒƒself._sizeƒ=ƒ0

[FIGURE 16.8] The initial state of an instance of LinkedPositionalList

The next few subsections examine the method implementations in detail.

16.5.2 Methods Used to Navigate from Beginning to End

The purpose of the method hasNext is to determine whether the method next
can be called to move the cursor to the next item. Thus, hasNext should return
False when the list is empty, when the method first has not yet been called
after instantiation, or when the cursor has advanced beyond the end of the linked
structure to the header node. Each of these conditions occurs when the cursor
refers to the header node. Put another way, hasNext returns True only when the

head D1

cursor

lastItemPos

size 0

16.5 Implementing Positional Lists [667]

C6840_16 11/19/08 11:44 AM Page 667

May not be copied, scanned, or duplicated, in whole or in part.

cursor refers to a node containing a data item. Thus, the implementation of the
method hasNext follows:

defƒhasNext(self):
ƒƒƒƒreturnƒself._cursorƒ!=ƒself._head

The method first should move the cursor to the first item, if there is one.
The first item is in the next node after the header node. The method also resets
the lastItemPos pointer to None, to prevent the methods replace and remove
from being run at this point. Let’s assume that the user has created a positional
list and inserted two items. Figure 16.9 shows the states of this list before and
after the method first is run to position the cursor at the list’s beginning. Note
that the cursor moves to the first data node and the lastItemPos pointer
remains empty.

[FIGURE 16.9] The states of a positional list before and after running the method first

head D1

cursor

lastItemPos

size 2

head

cursor

lastItemPos

size 2

D1 D1 D2

D1 D1 D1 D2

CHAPTER 16 Linear Collections: Lists[668]

C6840_16 11/19/08 11:44 AM Page 668

May not be copied, scanned, or duplicated, in whole or in part.

Here is the code for the method first:

defƒfirst(self):
ƒƒƒƒ“””Movesƒtheƒcursorƒtoƒtheƒfirstƒitem
ƒƒƒƒifƒthereƒisƒone.”””
ƒƒƒƒifƒnotƒself.isEmpty():
ƒƒƒƒƒƒƒƒself._cursorƒ=ƒself._head.next
ƒƒƒƒƒƒƒƒself._lastItemPosƒ=ƒNone

The method next cannot be run if hasNext is False. It raises an exception
if this is the case. Otherwise, next sets lastItemPos to the cursor’s node, moves
the cursor to the next node, and returns the item at lastItemPos. This variable
now refers to the node after which the cursor just moved. Thus, the methods
replace and remove can use this pointer to reset the node’s datum or remove
this node from the structure. Figure 16.10 shows the states of a positional list
before and after running the method next.

[FIGURE 16.10] The states of a positional list before and after running the method next

head D1

cursor

lastItemPos

size 2

head

cursor

lastItemPos

size 2

D1 D1 D2

D1 D1 D1 D2

16.5 Implementing Positional Lists [669]

C6840_16 11/19/08 11:44 AM Page 669

May not be copied, scanned, or duplicated, in whole or in part.

Note that the cursor moves one node to the right and the lastItemPos pointer
is now aimed at the first node. The next method returns the datum D1. Now
that next has been called, the method replace can replace the datum in the first
node, the method remove can delete this node from the list, or the method
insert can insert a new node between this node and the node containing D2.

Here is the code for the method next:

defƒnext(self):
ƒƒƒƒ“””Precondition:ƒhasNextƒreturnsƒTrue.
ƒƒƒƒPostcondition:ƒlastItemPosƒrefersƒtoƒtheƒnodeƒthat
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcontainsƒtheƒdataƒitemƒreturned.”””
ƒƒƒƒifƒnotƒself.hasNext():
ƒƒƒƒƒƒƒƒraiseƒAttributeError,ƒ“Noƒnextƒitem”
ƒƒƒƒself._lastItemPosƒ=ƒself._cursor
ƒƒƒƒself._cursorƒ=ƒself._cursor.next
ƒƒƒƒreturnƒself._lastItemPos.data

16.5.3 Methods Used to Navigate from End to Beginning

Where should the cursor be placed to commence a navigation from the end of the
list to its beginning? You might think that it should be aimed at the last node con-
taining data, which is actually the node before the header node. However, when the
method previous is run, the cursor should be left in a position where the other
methods can appropriately modify the linked structure. Therefore, the method
last places the cursor at the header node instead. The header node is actually the
node after the last data node. The method hasPrevious returns True when the
cursor’s previous node is not the header node. The method previous moves both
the cursor and lastItemPos to the cursor’s previous node and then returns the
data in this node. The code for these three methods is left as an exercise for you.

16.5.4 Insertions into a Positional List

The insertion of a new item occurs in either of the two following scenarios:

1 The method hasNext returns False. This occurs at instantiation or
when navigation reaches the end of the list. In this case, the new item is
inserted after the last one.

2 The method hasNext returns True. This occurs when the cursor is aimed
at a data node. In this case, the new item is inserted before the cursor’s node.

CHAPTER 16 Linear Collections: Lists[670]

C6840_16 11/19/08 11:44 AM Page 670

May not be copied, scanned, or duplicated, in whole or in part.

The code for insert accomplishes these effects, as follows:

defƒinsert(self,ƒitem):
ƒƒƒƒ“””Insertsƒanƒitem.”””
ƒƒƒƒnewNodeƒ=ƒTwoWayNode(item,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._cursor.previous,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._cursor)
ƒƒƒƒself._cursor.previous.nextƒ=ƒnewNode
ƒƒƒƒself._cursor.previousƒ=ƒnewNode
ƒƒƒƒself._sizeƒ+=ƒ1
ƒƒƒƒself._lastItemPosƒ=ƒNone

Note that this method also resets lastItemPos to None. This will guarantee that
the user must call next or previous to reestablish the cursor before the meth-
ods replace and remove are successful.

16.5.5 Removals from a Positional List

The remove method removes the item most recently returned by a call to next or
previous. As such, remove should not be called immediately after insert or
another remove. This method relies on the lastItemPos pointer to detect this error
or to locate the node to be removed. If lastItemPos is None, the method’s precon-
dition has been violated and an exception is raised. Otherwise, lastItemPos points
either to the node before the cursor’s node (a next was just called) or to the same
node as the cursor (a previous was just called). The cursor is reset to the next node
if the latter is the case. Then, the node referenced by lastItemPos is unhooked
from the structure and the loose links are reset to close the hole in it. Finally, the
lastItemPos pointer is set to None to prevent a subsequent removal or replacement,
until another next or previous is called. Here is the code for the method remove:

defƒremove(self):
ƒƒƒƒ“””Removesƒtheƒitemƒmostƒrecentlyƒreturnedƒby
ƒƒƒƒnextƒorƒprevious.
ƒƒƒƒPrecondition:ƒinsertƒorƒremoveƒwasƒnotƒtheƒmost
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrecentlyƒusedƒmethod.”””
ƒƒƒƒifƒself._lastItemPosƒisƒNone:
ƒƒƒƒƒƒƒƒraiseƒAttributeError,ƒ“Noƒestablishedƒitemƒtoƒremove”
ƒƒƒƒifƒself._lastItemPosƒ==ƒself._cursor:
ƒƒƒƒƒƒƒƒself._cursorƒ=ƒself._cursor.next
ƒƒƒƒself._lastItemPos.previous.nextƒ=ƒself._lastItemPos.next
ƒƒƒƒself._lastItemPos.next.previousƒ=ƒself._lastItemPos.previous
ƒƒƒƒself._sizeƒ-=ƒ1
ƒƒƒƒself._lastItemPosƒ=ƒNone

16.5 Implementing Positional Lists [671]

C6840_16 11/19/08 11:44 AM Page 671

May not be copied, scanned, or duplicated, in whole or in part.

The implementation of the method replace is trivial and is left as an exer-
cise for you.

16.5.6 Time and Space Analysis of Positional List
Implementations

There is some overlap in the analysis of positional lists and index-based lists,
especially with regard to memory usage. The use of a doubly linked structure
adds another n memory units to the tally for the linked implementation, but the
convenience and improved running times gained for the operations might be
worth the additional memory units. In fact, the running times of all of the meth-
ods, except for __str__, in the linked implementation are O(1). That alone
makes it a clear winner over the array-based implementation, whose insert and
remove methods are both O(n).

16.5 Exercises
1 Write a code segment that prints the items in the positional list P, from

the last to the first.

2 The first three assignment statements in the insert method create a
new node and adjust links to hook it into the positional list’s linked struc-
ture. Assume that a list contains the elements A and B and that the pro-
grammer has run a single next to advance the cursor. Draw box and
pointer diagrams to show the states of the list before insert(C) is run
and after each of the three statements.

3 Does an array-based positional list have any advantages over a linked-
based implementation? If so, what are they?

4 A client is trying to decide which type of list would be better for a tra-
versal, a linked indexed list or a linked positional list. What would you
advise her, based on a complexity analysis of this operation for each type
of list?

CHAPTER 16 Linear Collections: Lists[672]

C6840_16 11/19/08 11:44 AM Page 672

May not be copied, scanned, or duplicated, in whole or in part.

16.6 Iterators
As you know, Python’s for loop allows the programmer to traverse the items in
strings, lists, tuples, and dictionaries, using the following syntax:

forƒ<eachItem>ƒinƒ<collection>:
ƒƒƒƒ<doƒsomethingƒwithƒeachItem>

To accomplish this type of iteration, the Python compiler translates the for loop to
code that uses a special type of object called an iterator. An iterator object behaves
like a stripped-down version of a positional list. An iterator allows its user to move
to each item in an underlying collection and examine it (see Figure 16.11).

[FIGURE 16.11] An iterator opened on an underlying collection

Even though the underlying collection might not be a positional list, an iter-
ator allows the user to view it as one for the purpose of a traversal. What is more
important is that if a collection provides support for an iterator, that collection
can be traversed using a Python for loop. This powerful capability opens up a
wide range of applications.

For example, suppose every collection, including stacks, queues, and priority
queues, included an iterator. Then you could define a constructor that easily cre-
ates an instance of one type of collection from the items contained in any other
collection, without altering the latter’s contents. Here is the code for an
ArrayStack constructor that does this:

defƒ__init__(self,ƒotherColƒ=ƒNone):
ƒƒƒƒ“””IfƒtheƒuserƒpassesƒotherColƒasƒanƒargument,ƒpush
ƒƒƒƒitsƒitemsƒontoƒtheƒnewƒArrayStack.”””
ƒƒƒƒself._itemsƒ=ƒArray(ArrayStack.DEFAULT_CAPACITY)
ƒƒƒƒself._topƒ=ƒ-1
ƒƒƒƒself._sizeƒ=ƒ0
ƒƒƒƒifƒotherCol:
ƒƒƒƒƒƒƒƒforƒitemƒinƒotherCol:ƒself.push(item)

an iterator
Data items

a collection

16.6 Iterators [673]

C6840_16 11/19/08 11:44 AM Page 673

May not be copied, scanned, or duplicated, in whole or in part.

The users of ArrayStack can now run code such as
sƒ=ƒArrayStack(aQueue)

or
sƒ=ƒArrayStack(aString)

to build the appropriate stack from a queue or a string.
In this section, we examine how an iterator is used, how it is implemented,

and how to provide one for any collection.

16.6.1 Using an Iterator in Python

We begin our discussion with a Python session that creates a short list of num-
bers and uses a for loop to print them:

>>>ƒlystƒ=ƒ[10,ƒ20,ƒ30]
>>>ƒforƒitemƒinƒlyst:ƒprintƒitem,

10ƒ20ƒ30
>>>

Behind the scenes, Python uses an iterator object to access the items in lyst. But
you can also do this without using a for loop. By convention, the function iter
expects a collection as an argument and returns an iterator on that collection (if it
supports one). Thus, the code

>>>ƒiteratorƒ=ƒiter(lyst)

creates an iterator that is ready to be used to visit the items in lyst. To do that,
the iterator object in turn provides just one method, named next. This method
has the same effect as does next for a positional list, returning the item at the
current position pointer and advancing to the next item. Thus, in our example,
we can safely call next three times to visit the items in lyst:

>>>ƒprintƒiterator.next(),ƒiterator.next(),ƒiterator.next()
10ƒ20ƒ30

CHAPTER 16 Linear Collections: Lists[674]

C6840_16 11/19/08 11:44 AM Page 674

May not be copied, scanned, or duplicated, in whole or in part.

Of course, it would be more convenient to use a loop to iterate over a list of arbi-
trary size. Sadly, however, the iterator object has no hasNext method to enable
you to construct the loop’s continuation condition. To see what happens when
you do not detect this condition, let’s open another iterator on our list and tra-
verse it with a while True loop:

>>>ƒiteratorƒ=ƒiter(lyst)
>>>ƒwhileƒTrue:ƒprintƒiterator.next(),

10ƒ20ƒ30

Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<pyshell#5>”,ƒlineƒ1,ƒinƒ<module>
ƒƒƒƒwhileƒTrue:ƒprintƒiterator.next(),
StopIteration
>>>

As you can see, the iterator visits all of the items and then raises a
StopIteration error when there is no next item.

Although there is no clean way to write a normal loop using an iterator, you
can use a try-except statement to handle the exception. In this new version, the
try clause obtains the next item and prints it. The except clause catches the
StopIteration error, whereupon the loop breaks. The code in the next session
is functionally equivalent to the for loop presented earlier:

>>>ƒiteratorƒ=ƒiter(lyst)
>>>ƒfromƒexceptionsƒimportƒStopIteration
>>>ƒwhileƒTrue:
ƒƒƒƒƒtry:ƒprintƒiterator.next(),
ƒƒƒƒƒexceptƒStopIteration:ƒbreak

10ƒ20ƒ30
>>>

You would never actually use an explicit iterator rather than a simple for
loop in application code. The point of this example is to show that the for loop
is just “syntactic sugar,” or shorthand, for an iterator-based loop. This should
motivate you to include an iterator in any collection that you develop. We now
turn to the resources and techniques needed to provide this service.

16.6 Iterators [675]

C6840_16 11/19/08 11:45 AM Page 675

May not be copied, scanned, or duplicated, in whole or in part.

16.6.2 Implementing an Iterator

To develop an iterator for a collection, you must first define a method that will be
called when the iter function is run. This method, naturally enough, is named
__iter__ . (As you’ll recall, you’ve learned about other such methods, such as
__str__, __len__, and __cmp__, which are called when the corresponding func-
tions are called.) The __iter__ method expects only self as an argument. This
method automatically builds and returns a generator object. A generator is an
object whose code executes in a separate process running concurrently with the
process that creates and uses that object. A generator object can maintain its own
state, such as a current position pointer to the elements in the underlying collec-
tion. This reference could be an index into a collection’s array or a link to a node
in a collection’s linked structure.

The generator object’s code also executes a while True loop, which is
defined in the __iter__ method. Within this loop, if there is no next item, the
generator should raise a StopIteration exception. This effectively terminates
the loop. Otherwise, the generator yields the element at the current position
pointer. The yield statement pauses the process that is executing the generator’s
code until the generator’s user calls the generator’s method next(). This method
returns the element just yielded. When control returns to the generator object,
the current position pointer is updated, in a manner that depends on the imple-
mentation. Although the while loop eventually terminates, the generator’s
process runs forever, unless the generator’s user calls its close() method (which
the for loop does automatically).

To summarize, the code in the __iter__ method does the following:
� Sets the current position pointer to the logical beginning of the collection.
� Enters a while True loop where

� If there is no next item, a StopIteration exception is raised.
� If there is a next item, it is returned in a yield statement.
� The current position pointer is moved to the next item.

The next code segment defines the __iter__ method for the
IndexedLinkedList class developed earlier in this chapter. Recall that this list
includes a head link, named _head, to the first node. The last node, if there is
one, contains an empty next link. Note that the temporary variable cursor tracks
the current position pointer, even though this is not an instance variable.

CHAPTER 16 Linear Collections: Lists[676]

C6840_16 11/19/08 11:45 AM Page 676

May not be copied, scanned, or duplicated, in whole or in part.

defƒ__iter__(self):
ƒƒƒƒ“””Anƒiteratorƒforƒaƒlinkedƒindexedƒlist.”””
ƒƒƒƒcursorƒ=ƒself._head
ƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒifƒcursorƒisƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒraiseƒStopIteration
ƒƒƒƒƒƒƒƒyieldƒcursor.data
ƒƒƒƒƒƒƒƒcursorƒ=ƒcursor.next

The loop that you see in the __iter__ method can now execute invisibly in the
following for loop:

lystƒ=ƒLinkedIndexedList()

#ƒaddƒaƒbunchƒofƒitemsƒtoƒlystƒ...

forƒitemƒinƒlyst:ƒprintƒitem

Now you are ready to develop an iterator for any programmer-defined col-
lection, including stacks, queues, and priority queues. Some of these tasks are
included as exercises for you.

16.6 Exercises
1 Assume that the class ArrayStack supports an iterator. Write a code

segment that prints all the items in the stack S but that does not use a
for loop and does not alter S in any way.

2 Assume that the LinkedIndexedList class supports an iterator. Write
two code segments, one that uses an index-based loop and another that
uses an iterator-based loop, to print all of the items in the list L. State the
running time of each code segment using big-O notation.

16.6 Iterators [677]

C6840_16 11/19/08 11:45 AM Page 677

May not be copied, scanned, or duplicated, in whole or in part.

16.7 Case Study: Developing a Sorted List
This case study explores the development of a useful type of collection, the
sorted list.

16.7.1 Request

Develop a sorted list collection.

16.7.2 Analysis

A client should be able to use any of the basic collection operations, such as str,
len, and isEmpty on a sorted list, as well as the index-based operations [] for
access and remove and the content-based operation index discussed earlier in
this chapter. An iterator can support position-based traversals.

As the name implies, the items in a sorted list are always in sorted order.
This fact has some implications for some of the operations. To maintain the
order of the items in the list, the implementation cannot include the index-based
operations [] for replacement and insert. Otherwise, a client could place a
larger item before a smaller item. For a sorted list, the insert operation
becomes content-based. Its argument is an item rather than a position and an
item, and the operation searches for the proper place to insert the item among
the items already in the list.

Depending on the data structure used in the implementation, the index
operation can now take advantage of the fact that the list is sorted by performing
a binary search for the given item.

Lastly, we assume that items can be compared using the standard comparison
operators. Thus, any class of an item that goes into a sorted list should include
the __cmp__ method.

A complete interface, which we call SortedList, is summarized in
Table 16.10.

CHAPTER 16 Linear Collections: Lists[678]

C6840_16 11/19/08 11:45 AM Page 678

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 16.10] The sorted list operations

16.7.3 Design

Because we would like to support binary search, we develop just an array-based
implementation, named ArraySortedList. A linked implementation is discussed
in Chapter 18.

The ArraySortedList class could extend the ArrayIndexedList class and
inherit several needed methods. However, our new class would also inherit the
replace method, which is not needed and should not be used. Therefore, we use
an instance of ArrayIndexedList within the new class to contain the list’s items.
Figure 16.12 shows the classes in our design.

[FIGURE 16.12] The classes in an array-based sorted list implementation

The ArraySortedList methods __str__, __len__, __iter__,
__getitem__, and remove each call the same method on the contained
ArrayIndexedList object, after checking any preconditions.

ArraySortedList ArrayIndexedList

SortedList METHOD WHAT IT DOES

L.insert(item) Inserts item into its proper place in L.

L.remove(index) Removes and returns the item at position index
from L. Precondition: 0 <= index < len(L).

L.[index] Returns the item at position index in the list.
Precondition: 0 <= index < len(L).

L.index(item) Returns the index of the first item that equals item,
or -1 if no matches are found.

L.isEmpty() Returns True if L has no items, or False otherwise.

L.__str__() Same as str(L). Returns a string containing the
items from left to right.

L.__len__() Same as len(L). Returns the number of items in L.

L.__iter__() Same as iter(L). Used by for item in L:

16.7 Case Study: Developing a Sorted List [679]

C6840_16 11/19/08 11:45 AM Page 679

May not be copied, scanned, or duplicated, in whole or in part.

The only method requiring additional discussion is insert. As mentioned
earlier, this method searches for the proper place to insert a given item. This will
be the position of the first existing item that is greater than or equal to the new
item, or the end of the list if the search reaches that point. We developed a simi-
lar algorithm to insert an item into a priority queue in Chapter 15.

16.7.4 Implementation (Coding)

Here is the code for the class ArraySortedList. Checking some preconditions
and completing the index method are left as exercises for you.

“””
File:ƒsortedlist.py

Sortedƒlistsƒincludeƒtheƒindex-basedƒoperationsƒ[]ƒandƒƒ
removeƒandƒtheƒcontent-basedƒoperationsƒinsertƒandƒindex.
Itemsƒareƒmaintainedƒinƒascendingƒorder.
“””

fromƒindexedlistƒimportƒArrayIndexedList

classƒArraySortedList(object):
ƒƒƒƒ“””ƒArray-basedƒimplementationƒofƒaƒsortedƒlist.”””
ƒƒƒƒ
ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._itemsƒ=ƒArrayIndexedList()
ƒƒƒƒ
ƒƒƒƒdefƒ__len__(self):
ƒƒƒƒƒƒƒƒreturnƒlen(self._items)

ƒƒƒƒdefƒisEmpty(self):
ƒƒƒƒƒƒƒƒreturnƒself._items.isEmpty()

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒreturnƒstr(self._items)

ƒƒƒƒdefƒ__iter__(self):
ƒƒƒƒƒƒƒƒreturnƒiter(self._items)

ƒƒƒƒdefƒ__getitem__(self,ƒindex):
ƒƒƒƒƒƒƒƒ“””Preconditionsƒleftƒasƒanƒexercise.”””
ƒƒƒƒƒƒƒƒreturnƒself._items[index]
ƒƒƒƒ

CHAPTER 16 Linear Collections: Lists[680]

continued

C6840_16 11/19/08 11:45 AM Page 680

May not be copied, scanned, or duplicated, in whole or in part.

Summary [681]

ƒƒƒƒdefƒremove(self,ƒindex):
ƒƒƒƒƒƒƒƒ“””Preconditionsƒleftƒasƒanƒexercise.”””
ƒƒƒƒƒƒƒƒreturnƒself._items.remove(index)
ƒƒƒƒ
ƒƒƒƒdefƒinsert(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””Insertsƒitemƒinƒitsƒproperƒplace.”””
ƒƒƒƒƒƒƒƒindexƒ=ƒ0
ƒƒƒƒƒƒƒƒwhileƒindexƒ<ƒlen(self)ƒandƒitemƒ>ƒself[index]:
ƒƒƒƒƒƒƒƒƒƒƒƒindexƒ+=ƒ1
ƒƒƒƒƒƒƒƒself._items.insert(index,ƒitem)

ƒƒƒƒdefƒindex(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒindexƒofƒtheƒgivenƒitemƒorƒ-1ƒif
ƒƒƒƒƒƒƒƒitƒisƒnotƒfound.”””
ƒƒƒƒƒƒƒƒpassƒƒƒ#ƒExercise:ƒusesƒaƒbinaryƒsearch

Summary
� A list is a linear collection that allows users to insert, remove, access,

and replace elements at any position.
� Operations on lists are index-based, content-based, or position-based.

An index-based list allows access to an element at a specified integer
index. A position-based list lets the user scroll through it by moving
a cursor.

� List implementations are based on arrays or on linked structures. A
doubly linked structure is more convenient and faster for a positional
list than a singly linked structure.

� An iterator is an object that allows a user to traverse a collection and
visit its elements. In Python, a collection can be traversed with a for
loop if it supports an iterator.

� A sorted list is a list whose elements are always in ascending or
descending order.

C6840_16 11/19/08 11:45 AM Page 681

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Linear Collections: Lists[682]

REVIEW QUESTIONS
1 Examples of lists are (choose all that apply)

a Customers waiting in a checkout line
b A deck of playing cards
c A file directory system
d A line of cars at a tollbooth
e The roster of a football team

2 Operations that access list elements at integer positions are called

a Content-based operations
b Index-based operations
c Position-based operations

3 Operations that access list elements by moving a cursor are called

a Content-based operations
b Index-based operations
c Position-based operations

4 The index-based operations on a linked implementation of a list run in

a Constant time
b Linear time

5 The operation that inserts an element after the tail of a list is called

a remove

b append

6 Most of the operations on a linked implementation of a positional list
run in

a Constant time
b Linear time

7 The insert and remove operations on an array-based indexed list run in

a Constant time
b Linear time

C6840_16 11/19/08 11:45 AM Page 682

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [683]

8 The positional list operation next has

a No preconditions
b One precondition—that hasNext returns True

9 A linked positional list is best implemented with a

a Singly linked structure
b Doubly linked structure

10 The index operation on an array-based sorted list uses

a Binary search
b Sequential search

PROJECTS
1 Complete and test the linked and array implementations of the indexed

list ADT that was discussed in this chapter. Verify that exceptions are
raised when preconditions are violated and that the array-based imple-
mentation adds or removes storage as needed.

2 Complete the linked implementation of the positional list ADT that was
discussed in this chapter. Verify that exceptions are raised when precon-
ditions are violated.

3 Develop an array-based implementation of the positional list ADT that
was discussed in this chapter. Verify that exceptions are raised when pre-
conditions are violated.

4 Define and test an iterator for the two stack implementations of
Chapter 14.

5 Write a program that inserts lines of text from a file into a positional list
and allows the user to view any line of text from the file. The program
should present a menu of options that allow the user to enter a filename
and to navigate to the first line, the last line, the next line, and the previ-
ous line. Be sure to hide the list in a data model class that performs the
required tasks.

C6840_16 11/19/08 11:45 AM Page 683

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 16 Linear Collections: Lists[684]

6 Add commands to the program of Project 5 so that the user can delete
the currently selected line, replace it with a new line, or insert a line at
the current cursor position. The user should also be able to save the
current file.

7 Most word processors have a feature called word wrap, which automati-
cally moves the user’s next word down a line when the right margin is
reached. To explore how this feature works, write a program that allows
the user to reformat the text in a file. The user should input the line
width in characters and input the names of the input and output files.
The program should then input the words from the file into a list of sub-
lists. Each sublist represents a line of text to be output to the file. As the
words are input into each sublist, the program tracks the length of that
line to ensure that it is less than or equal to the user’s line length. When
all the words have been entered into the sublists, the program should
traverse them to write their contents to the output file.

C6840_16 11/19/08 11:45 AM Page 684

May not be copied, scanned, or duplicated, in whole or in part.

[CHAPTER] Recursion17
After completing this chapter, you will be able to:

� Explain how a recursive, divide-and-conquer strategy can be
used to develop n log n sort algorithms

� Develop recursive algorithms for processing recursive data
structures

� Use a recursive strategy to implement a backtracking
algorithm

� Describe how recursion can be used in software that
recognizes or parses sentences in a language

� Recognize the performance trade-offs between recursive
algorithms and iterative algorithms

As you learned in Chapter 6, recursion is a special case of top-
down design. A recursive function simplifies the solution to a prob-
lem by decomposing it into sub-problems that have the same form
as the original problem. Each sub-problem is solved by a recursive
call of the same function, until a simple problem is encountered that
can be solved directly. Recursive algorithms enable the programmer
to employ divide-and-conquer strategies and backtracking strategies
to solve complex problems. When data structures are defined recur-
sively, recursive algorithms are often the most natural and obvious
way to process them.

In this chapter, we examine some applications of recursion, includ-
ing n log n sorting, list processing, backtracking problems, and lan-
guage processing. By the end of this chapter, you will have a sense of
the widespread use of recursive problem solving in computer science.

C6840_17 11/19/08 1:07 PM Page 685

May not be copied, scanned, or duplicated, in whole or in part.

17.1 n log n Sorting
The sort algorithms you studied in Chapter 11 have O(n2) running times. There
are several variations on these sort algorithms, some of which are marginally
faster, but they, too, are O(n2) in the worst and average cases. However, you can
take advantage of some better algorithms that are O(n log n). The secret to these
better algorithms is a divide-and-conquer strategy. That is, each algorithm finds a
way of breaking the list into smaller sublists. These sublists are then sorted recur-
sively. Ideally, if the number of these subdivisions is log(n) and the amount of
work needed to rearrange the data on each subdivision is n, then the total com-
plexity of such a sort algorithm is O(n log n). In Table 17.1, you can see that the
growth rate of work of an O(n log n) algorithm is much slower than that of an
O(n2) algorithm.

[TABLE 17.1] Comparing n log n and n2

In this section, we examine two recursive sort algorithms that break the n2

barrier—quicksort and merge sort.

17.1.1 Overview of Quicksort

Here is an outline of the strategy used in the quicksort algorithm:
� Begin by selecting the item at the list’s midpoint. We call this item

the pivot. (Later, we discuss alternative ways to choose the pivot.)
� Partition items in the list so that all items less than the pivot end up at the

left of the pivot, and the rest end up to its right. The final position of the
pivot itself varies, depending on the actual items involved. For instance, the
pivot ends up being rightmost in the list if it is the largest item and leftmost

n n LOG n n2

512 4,608 262,144

1,024 10,240 1,048,576

2,048 22,458 4,194,304

8,192 106,496 67,108,864

16,384 229,376 268,435,456

32,768 491,520 1,073,741,824

CHAPTER 17 Recursion[686]

C6840_17 11/19/08 1:07 PM Page 686

May not be copied, scanned, or duplicated, in whole or in part.

if it is the smallest. But wherever the pivot ends up, that is its final position
in the fully sorted list.

� Divide and conquer. Reapply the process recursively to the sublists formed
by splitting the list at the pivot. One sublist consists of all items to the left
of the pivot (now the smaller ones), and the other sublist has all items to
the right (now the larger ones).

� The process terminates each time it encounters a sublist with fewer than
two items.

17.1.2 Partitioning

From the programmer’s perspective, the most complicated part of the algorithm
is the operation of partitioning the items in a sublist. There are two principal
ways of doing this. Informally, what follows is a description of the easier method
as it applies to any sublist:

1 Interchange the pivot with the last item in the sublist.

2 Establish a boundary between the items known to be less than the pivot
and the rest of the items. Initially, this boundary is positioned immedi-
ately before the first item.

3 Starting with the first item in the sublist, scan across the sublist. Every
time an item less than the pivot is encountered, swap it with the first
item after the boundary and advance the boundary.

4 Finish by swapping the pivot with the first item after the boundary.

Figure 17.1 illustrates these steps as applied to the numbers 12 19 17 18
14 11 15 13 16. In Step 1, the pivot is established and interchanged with the
last item. In Step 2, the boundary is established before the first item. In Steps 3–6,
the sublist is scanned for items less than the pivot, these are swapped with the first
item after the boundary, and the boundary is advanced. Notice that items to the
left of the boundary are less than the pivot at all times. Finally, in Step 7, the pivot
is swapped with the first item after the boundary, and the sublist has been success-
fully partitioned.

17.1 n log n Sorting [687]

C6840_17 11/19/08 1:07 PM Page 687

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 17.1] Partitioning a sublist so that all numbers less than the pivot are to its left, and the
rest are to its right

After a sublist has been partitioned, we reapply the process to its left and
right sublists (12 11 13 and 16 19 15 17 18) and so on, until the sublists
have lengths of at most one.

1. Let the sublist consist of the numbers
 shown with a pivot of 14.

 Swap the pivot with the last item.

2. Establish the boundary before the first item.

3. Scan for the first item less than the pivot.

 Swap this item with the first item after the
 boundary. In this example, the item gets
 swapped with itself.

 Advance the boundary.

4. Scan for the next item less than the pivot.

 Swap this item with the first item after
 the boundary.

 Advance the boundary.

5. Scan for the next item less than the pivot.

 Swap this item with the first item after
 the boundary.

 Advance the boundary.

6. Scan for the next item less than the pivot;
 in this case, no item is less than the pivot.

7. Interchange the pivot with the first item
 after the boundary. At this point, all items
 less than the pivot are to the pivot’s left and

 12 19 17 18 14 11 15 13 16

 12 19 17 18 16 11 15 13 14

: 12 19 17 18 16 11 15 13 14

: 12 19 17 18 16 11 15 13 14

: 12 19 17 18 16 11 15 13 14

12 : 19 17 18 16 11 15 13 14

12 : 19 17 18 16 11 15 13 14

12 : 11 17 18 16 19 15 13 14

12 11 : 17 18 16 19 15 13 14

12 11 : 17 18 16 19 15 13 14

12 11 : 13 18 16 19 15 17 14

12 11 13 : 18 16 19 15 17 14

12 11 13 : 18 16 19 15 17 14

12 11 13 : 14 16 19 15 17 18

CHAPTER 17 Recursion[688]

C6840_17 11/19/08 1:07 PM Page 688

May not be copied, scanned, or duplicated, in whole or in part.

17.1.3 Complexity Analysis of Quicksort

We now present an informal analysis of the quicksort’s complexity. During the
first partition operation, we scan all of the items from the beginning of the list to
its end. Thus, the amount of work during this operation is proportional to n, the
list’s length.

The amount of work after this partition is proportional to the left sublist’s
length plus the right sublist’s length, which together yield n – 1. And when these
sublists are divided, there are four pieces whose combined length is approxi-
mately n, so the combined work is proportional to n yet again. As the list is
divided into more pieces, the total work remains proportional to n.

To complete the analysis, we need to determine how many times the lists are
partitioned. We will make the optimistic assumption that, each time, the dividing
line between the new sublists turns out to be as close to the center of the current
sublist as possible. In practice, this is not usually the case. You already know from
the discussion of the binary search algorithm that when you divide a list in half
repeatedly, you arrive at a single element in about log2 n steps. Thus, the algo-
rithm is O(n log n) in the best-case performance.

For the worst-case performance, consider the case of a list that is already
sorted. If the pivot element chosen is the first element, then there are n – 1 ele-
ments to its right on the first partition, n – 2 elements to its right on the second
partition, and so on, as shown in Figure 17.2.

17.1 n log n Sorting [689]

C6840_17 11/19/08 1:07 PM Page 689

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 17.2] A worst-case scenario for quicksort (arrows indicate pivot elements)

Although no elements are exchanged, the total number of partitions is n – 1
and the total number of comparisons performed is 1⁄ 2 n2 – 1⁄ 2 n, the same number
as in selection sort and bubble sort. Thus, in the worst case, the quicksort algo-
rithm is O(n2).

If quicksort is implemented as a recursive algorithm, analysis must also consider
memory usage for the call stack. Each recursive call requires a constant amount of
memory for a stack frame, and there are two recursive calls after each partition.
Thus, memory usage is O(log n) in the best case and O(n) in the worst case.

Although the worst-case performance of quicksort is rare, programmers cer-
tainly prefer to avoid it. Choosing the pivot at the first or last position is not a
wise strategy. Other methods of choosing the pivot, such as selecting a random
position or choosing the median of the first, middle, and last elements, can help
to approximate O(n log n) performance in the average case.

17.1.4 Implementation of Quicksort

The quicksort algorithm is most easily coded using a recursive approach. The
following script defines a top-level quicksort function for the client, a recursive
quicksortHelper function to hide the extra arguments for the end points of a

34 41 56 63 72 89 95

41 56 63 72 89 95

56 63 72 89 95

63 72 89 95

72 89 95

89 95

95

CHAPTER 17 Recursion[690]

C6840_17 11/19/08 1:07 PM Page 690

May not be copied, scanned, or duplicated, in whole or in part.

sublist, and a partition function. The script runs quicksort on a list of 20
randomly ordered integers.

defƒquicksort(lyst):
ƒƒƒƒquicksortHelper(lyst,ƒ0,ƒlen(lyst)ƒ-ƒ1)

defƒquicksortHelper(lyst,ƒleft,ƒright):
ƒƒƒƒifƒleftƒ<ƒright:
ƒƒƒƒƒƒƒƒpivotLocationƒ=ƒpartition(lyst,ƒleft,ƒright)
ƒƒƒƒƒƒƒƒquicksortHelper(lyst,ƒleft,ƒpivotLocationƒ-ƒ1)
ƒƒƒƒƒƒƒƒquicksortHelper(lyst,ƒpivotLocationƒ+ƒ1,ƒright)

defƒpartition(lyst,ƒleft,ƒright):
ƒƒƒƒ#ƒFindƒtheƒpivotƒandƒexchangeƒitƒwithƒtheƒlastƒitem
ƒƒƒƒmiddleƒ=ƒ(leftƒ+ƒright)ƒ/ƒ2
ƒƒƒƒpivotƒ=ƒlyst[middle]
ƒƒƒƒlyst[middle]ƒ=ƒlyst[right]
ƒƒƒƒlyst[right]ƒ=ƒpivot
ƒƒƒƒ#ƒSetƒboundaryƒpointƒtoƒfirstƒposition
ƒƒƒƒboundaryƒ=ƒleft
ƒƒƒƒ#ƒMoveƒitemsƒlessƒthanƒpivotƒtoƒtheƒleft
ƒƒƒƒforƒindexƒinƒxrange(left,ƒright):
ƒƒƒƒƒƒƒƒifƒlyst[index]ƒ<ƒpivot:
ƒƒƒƒƒƒƒƒƒƒƒƒtempƒ=ƒlyst[index]
ƒƒƒƒƒƒƒƒƒƒƒƒlyst[index]ƒ=ƒlyst[boundary]
ƒƒƒƒƒƒƒƒƒƒƒƒlyst[boundary]ƒ=ƒtemp
ƒƒƒƒƒƒƒƒƒƒƒƒboundaryƒ+=ƒ1
ƒƒƒƒ#ƒExchangeƒtheƒpivotƒitemƒandƒtheƒboundaryƒitem
ƒƒƒƒtempƒ=ƒlyst[boundary]
ƒƒƒƒlyst[boundary]ƒ=ƒlyst[right]
ƒƒƒƒlyst[right]ƒ=ƒtemp
ƒƒƒƒreturnƒboundary

importƒrandom

defƒmain(sizeƒ=ƒ20,ƒsortƒ=ƒquicksort):
ƒƒƒƒlystƒ=ƒ[]
ƒƒƒƒforƒcountƒinƒxrange(size):
ƒƒƒƒƒƒƒƒlyst.append(random.randint(1,ƒsizeƒ+ƒ1))
ƒƒƒƒprintƒlyst
ƒƒƒƒsort(lyst)
ƒƒƒƒprintƒlyst

main()

17.1 n log n Sorting [691]

C6840_17 11/19/08 1:07 PM Page 691

May not be copied, scanned, or duplicated, in whole or in part.

17.1.5 Merge Sort

Another algorithm called merge sort employs a recursive, divide-and-conquer
strategy to break the O(n2) barrier. Here is an informal summary of the algorithm:

� Compute the middle position of a list and recursively sort its left and right
sublists (divide and conquer).

� Merge the two sorted sublists back into a single sorted list.
� Stop the process when sublists can no longer be subdivided.

Three Python functions collaborate in this top-level design strategy:
� mergeSort—The function called by users.
� mergeSortHelper—A helper function that hides the extra parameters

required by recursive calls.
� merge—A function that implements the merging process.

The merging process uses an array of the same size as the list. We call this
array the copyBuffer. To avoid the overhead of allocating and deallocating the
copyBuffer each time merge is called, the buffer is allocated once in mergeSort
and subsequently passed as an argument to mergeSortHelper and merge. Each
time mergeSortHelper is called, it needs to know the bounds of the sublist with
which it is working. These bounds are provided by two other parameters, low
and high. Here is the code for mergeSort:

fromƒarraysƒimportƒArray

defƒmergeSort(lyst):
ƒƒƒƒ#ƒlystƒƒƒƒƒƒƒƒlistƒbeingƒsorted
ƒƒƒƒ#ƒcopyBufferƒƒtemporaryƒspaceƒneededƒduringƒmerge
ƒƒƒƒcopyBufferƒ=ƒArray(len(lyst))
ƒƒƒƒmergeSortHelper(lyst,ƒcopyBuffer,ƒ0,ƒlen(lyst)ƒ-ƒ1)

After checking that it has been passed a sublist of at least two items,
mergeSortHelper computes the midpoint of the sublist, recursively sorts the

CHAPTER 17 Recursion[692]

C6840_17 11/19/08 1:07 PM Page 692

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.

portions below and above the midpoint, and calls merge to merge the results.
Here is the code for mergeSortHelper:

defƒmergeSortHelper(lyst,ƒcopyBuffer,ƒlow,ƒhigh):
ƒƒƒƒ#ƒlystƒƒƒƒƒƒƒƒlistƒbeingƒsorted
ƒƒƒƒ#ƒcopyBufferƒƒtempƒspaceƒneededƒduringƒmerge
ƒƒƒƒ#ƒlow,ƒhighƒƒƒboundsƒofƒsublist
ƒƒƒƒ#ƒmiddleƒƒƒƒƒƒmidpointƒofƒsublist
ƒƒƒƒifƒlowƒ<ƒhigh:
ƒƒƒƒƒƒƒƒmiddleƒ=ƒ(lowƒ+ƒhigh)ƒ/ƒ2
ƒƒƒƒƒƒƒƒmergeSortHelper(lyst,ƒcopyBuffer,ƒlow,ƒmiddle)
ƒƒƒƒƒƒƒƒmergeSortHelper(lyst,ƒcopyBuffer,ƒmiddleƒ+ƒ1,ƒhigh)
ƒƒƒƒƒƒƒƒmerge(lyst,ƒcopyBuffer,ƒlow,ƒmiddle,ƒhigh)

Figure 17.3 shows the sublists generated during recursive calls to
mergeSortHelper, starting from a list of eight items. Note that, in this exam-
ple, the sublists are evenly subdivided at each level and there are 2k sublists to be
merged at level k. Had the length of the initial list not been a power of two, then
an exactly even subdivision would not have been achieved at each level and the
last level would not have contained a full complement of sublists. Figure 17.4
traces the process of merging the sublists generated in Figure 17.3.

[FIGURE 17.3] Sublists generated during calls of mergeSortHelper

4 1

7 6

7 6

4

14

14 67 35 28

8 235

1 8 25 3

7 6 5 3 8 2Level 0

Level 1

Level 2

Level 3

17.1 n log n Sorting [693]

C6840_17 11/19/08 1:07 PM Page 693

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 17.4] Merging the sublists generated during a merge sort

Finally, here is the code for the merge function:

defƒmerge(lyst,ƒcopyBuffer,ƒlow,ƒmiddle,ƒhigh):ƒ
ƒƒƒƒ#ƒlystƒƒƒƒƒƒƒƒlistƒthatƒisƒbeingƒsorted
ƒƒƒƒ#ƒcopyBufferƒƒtempƒspaceƒneededƒduringƒtheƒmergeƒprocess
ƒƒƒƒ#ƒlowƒƒƒƒƒƒƒƒƒbeginningƒofƒfirstƒsortedƒsublist
ƒƒƒƒ#ƒmiddleƒƒƒƒƒƒendƒofƒfirstƒsortedƒsublist
ƒƒƒƒ#ƒmiddleƒ+ƒ1ƒƒbeginningƒofƒsecondƒsortedƒsublist
ƒƒƒƒ#ƒhighƒƒƒƒƒƒƒƒendƒofƒsecondƒsortedƒsublist
ƒƒƒƒ
ƒƒƒƒ#ƒInitializeƒi1ƒandƒi2ƒtoƒtheƒfirstƒitemsƒinƒeachƒsublist
ƒƒƒƒi1ƒ=ƒlow
ƒƒƒƒi2ƒ=ƒmiddleƒ+ƒ1

ƒƒƒƒ#ƒInterleaveƒitemsƒfromƒtheƒsublistsƒintoƒthe
ƒƒƒƒ#ƒcopyBufferƒinƒsuchƒaƒwayƒthatƒorderƒisƒmaintained.ƒ
ƒƒƒƒforƒiƒinƒxrange(low,ƒhighƒ+ƒ1):ƒƒƒƒƒƒ
ƒƒƒƒƒƒƒƒifƒi1ƒ>ƒmiddle:ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒcopyBuffer[i]ƒ=ƒlyst[i2]ƒ#ƒFirstƒsublistƒexhausted
ƒƒƒƒƒƒƒƒƒƒƒƒi2ƒ+=ƒ1
ƒƒƒƒƒƒƒƒelifƒi2ƒ>ƒhigh:
ƒƒƒƒƒƒƒƒƒƒƒƒcopyBuffer[i]ƒ=ƒlyst[i1]ƒ#ƒSecondƒsublistƒexhausted
ƒƒƒƒƒƒƒƒƒƒƒƒi1ƒ+=ƒ1

continued

1Level 0 2

6 7

6 7

1Level 1

Level 2

Level 3

41

14 67 35 28

2 853

4 5 82 3

3 4 5 6 7 8

CHAPTER 17 Recursion[694]

C6840_17 11/19/08 1:07 PM Page 694

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒƒƒƒƒelifƒlyst[i1]ƒ<ƒlyst[i2]:ƒƒƒƒƒ
ƒƒƒƒƒƒƒƒƒƒƒƒcopyBuffer[i]ƒ=ƒlyst[i1]ƒ#ƒItemƒinƒfirstƒsublistƒ<
ƒƒƒƒƒƒƒƒƒƒƒƒi1ƒ+=ƒ1
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒcopyBuffer[i]ƒ=ƒlyst[i2]ƒ#ƒItemƒinƒsecondƒsublistƒ<
ƒƒƒƒƒƒƒƒƒƒƒƒi2ƒ+=ƒ1
ƒ
ƒƒƒƒforƒiƒinƒxrange(low,ƒhighƒ+ƒ1):ƒƒ#ƒCopyƒsortedƒitemsƒbackƒto
ƒƒƒƒƒƒƒƒlyst[i]ƒ=ƒcopyBuffer[i]ƒƒƒƒƒƒ#ƒproperƒpositionƒinƒlyst

The merge function combines two sorted sublists into a larger sorted sublist.
The first sublist lies between low and middle and the second between middle + 1
and high. The process consists of three steps:

1 Set up index pointers to the first items in each sublist. These are at posi-
tions low and middle + 1.

2 Starting with the first item in each sublist, repeatedly compare items.
Copy the smaller item from its sublist to the copy buffer and advance to
the next item in the sublist. Repeat until all items have been copied from
both sublists. If the end of one sublist is reached before the other’s, finish
by copying the remaining items from the other sublist.

3 Copy the portion of copyBuffer between low and high back to the
corresponding positions in lyst.

17.1.6 Complexity Analysis for Merge Sort

The running time of the merge function is dominated by the two for statements,
each of which loops (high - low + 1) times. Consequently, the function’s run-
ning time is O(high - low), and all the merges at a single level take O(n) time.
Because mergeSortHelper splits sublists as evenly as possible at each level, the
number of levels is O(log n), and the maximum running time for this function is
O(n log n) in all cases.

The merge sort has two space requirements that depend on the list’s size.
First, O(log n) space is required on the call stack to support recursive calls.
Second, O(n) space is used by the copy buffer.

17.1 n log n Sorting [695]

C6840_17 11/19/08 1:07 PM Page 695

May not be copied, scanned, or duplicated, in whole or in part.

17.1 Exercises
1 Describe the strategy of quicksort and explain why it can reduce the time

complexity of sorting from O(n2) to O(n log n).

2 Why is quicksort not O(n log n) in all cases? Describe the worst-case sit-
uation for quicksort and give a list of 10 integers, 1–10, that would pro-
duce this behavior.

3 The partition operation in quicksort chooses the item at the midpoint
as the pivot. Describe two other strategies for selecting a pivot value.

4 Sandra has a bright idea: When the length of a sublist in quicksort is less
than a certain number—say, 30 elements—run an insertion sort to
process that sublist. Explain why this is a bright idea.

5 Why is merge sort an O(n log n) algorithm in the worst case?

17.2 Recursive List Processing
As mentioned in Chapter 1, the computer scientist John McCarthy developed
the programming language Lisp as a general-purpose, symbolic information-
processing language. The term Lisp itself stands for list processing. The list is the
basic data structure of Lisp. A Lisp list is a recursive data structure, and Lisp
programs often consist of a set of recursive functions for processing lists. In this
section, we explore recursive list processing by developing a variant of Lisp lists.

17.2.1 Basic Operations on a Lisp-Like List

A Lisp-like list has the following recursive definition. A list is either empty or
consists of two parts: a data item followed by another list. The base case of this
recursive definition is the empty list, whereas the recursive case is a structure that
contains another list.

We can describe any Lisp-like list in terms of this definition. For example, a
list that contains just one data item has a data item followed by an empty list. A list
that contains two data items has a data item followed by a list that contains just
one data item, and so on. The advantage of this way of describing a list is that it
naturally leads to some design patterns for recursive list-processing algorithms.

CHAPTER 17 Recursion[696]

C6840_17 11/19/08 1:07 PM Page 696

May not be copied, scanned, or duplicated, in whole or in part.

Users of a Lisp-like list use three basic functions to examine lists. The first
function is a predicate named isEmpty. This function returns True if its argu-
ment is an empty list, or False otherwise. The other two functions, named
first and rest, access a nonempty list’s component parts. The function first
returns the data item at the head of the list. The function rest returns a list con-
taining the data items after this first one.

Let’s consider some example uses of these operations. If we assume that lyst
refers to a list that contains the items 34, 22, and 16, then Table 17.2 shows the
results of applying the three basic functions to lyst:

[TABLE 17.2] Applying the basic list functions to a list containing 34, 22, and 16

Note that nested calls of the function rest can have the effect of chaining
through a list to a given data element, as long as the list argument to rest is not
an empty list. The last application in Table 17.2 shows what happens when the
function first is applied to an empty list. The functions first and rest are
undefined for an empty list and raise errors when so applied.

The box-and-pointer diagrams in Figure 17.5 depict the structure of a Lisp-like
list containing 34, 22, and 16. The first diagram shows that the structure of this list
appears to be the same as that of the singly linked structure introduced in Chapter 13.
The second diagram outlines the lists returned by the three successive calls of the
rest function in Table 17.2. Note that each outline gets smaller as the calls of rest
advance through the list. However, each outline in this recursive structure encloses a
list, including the empty list.

FUNCTION APPLICATION RESULT

isEmpty(lyst) Returns False.

first(lyst) Returns 34.

rest(lyst) Returns a list containing 22 and 16.

first(rest(lyst)) Returns 22.

first(rest(rest(lyst))) Returns 16.

isEmpty(rest(rest(rest(lyst)))) Returns True.

first(rest(rest(rest(lyst)))) Raises an error (no data in an empty list).

17.2 Recursive List Processing [697]

C6840_17 11/19/08 1:07 PM Page 697

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 17.5] A Lisp-like list containing 34, 22, and 16

17.2.2 Recursive Traversals of a Lisp-Like List

Given the recursive definition of a Lisp-like list and its basic operations, we can
now define some recursive functions that traverse lists. The function contains
searches a list for a given item. This function expects a target item and a list as
arguments and returns True or False. If the list is empty, we’ve run out of items
to examine, so the function returns False. Otherwise, if the target item equals
the first item in the list, the function returns True. Otherwise, we use contains
to search the rest of the list recursively for the given item. Here is the code for
this function:

defƒcontains(item,ƒlyst):
ƒƒƒƒ“””ReturnsƒTrueƒifƒitemƒisƒinƒlystƒor
ƒƒƒƒFalseƒotherwise.”””
ƒƒƒƒifƒisEmpty(lyst):
ƒƒƒƒƒƒƒƒreturnƒFalse
ƒƒƒƒelifƒitemƒ==ƒfirst(lyst):
ƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒcontains(item,ƒrest(lyst))

The index-based function get returns the ith element of a given list. We
assume that the index argument ranges from 0 to the length of the lyst argu-
ment minus 1. The function essentially advances through the list and counts
down from the given index to 0. When index reaches 0, the function returns the

lyst

lyst

rest(rest(rest(lyst)))

34 22 16

34 22 16

(rest)lyst
rest(rest(lyst))

CHAPTER 17 Recursion[698]

C6840_17 11/19/08 1:07 PM Page 698

May not be copied, scanned, or duplicated, in whole or in part.

first item in the list at that point. Each recursive call not only decrements the
index, but also advances to the rest of the list. The definition of get follows:

defƒget(index,ƒlyst):
ƒƒƒƒ“””Returnsƒtheƒitemƒatƒpositionƒindexƒinƒlyst.
ƒƒƒƒPrecondition:ƒ0ƒ<=ƒindexƒ<ƒlength(lyst)”””
ƒƒƒƒifƒindexƒ==ƒ0:
ƒƒƒƒƒƒƒƒreturnƒfirst(lyst)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒget(indexƒ-ƒ1,ƒrest(lyst))

Suppose you do not know the length of a list. The definition of the length of
a Lisp-like list can be stated recursively. Its length is 0 if the list is empty.
Otherwise, a list’s length is one plus the length of the rest of the list after the first
item. Here is the code for the recursive function length:

defƒlength(lyst):
ƒƒƒƒ“””Returnsƒtheƒnumberƒofƒitemsƒinƒlyst.”””
ƒƒƒƒifƒisEmpty(lyst):
ƒƒƒƒƒƒƒƒreturnƒ0
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒ1ƒ+ƒlength(rest(lyst))

A similar pattern can be used to build a string from a Lisp-like list. Once
again, you can state a recursive definition of this value. The string representation
of an empty list is an empty string; otherwise, its string representation is the con-
catenation of the string representation of the list’s first item, the blank space, and
the string representation of the rest of the list after the first item. We use
Python’s str function to obtain the string representation of a list’s first item,
and embody our recursive definition in a function named toString. Here is
the code:

defƒtoString(lyst):
ƒƒƒƒ“””Returnsƒaƒstringƒrepresentationƒofƒlyst.”””
ƒƒƒƒifƒisEmpty(lyst):
ƒƒƒƒƒƒƒƒreturnƒ“”
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒstr(first(lyst))ƒ+ƒ“ƒ“ƒ+ƒtoString(rest(lyst))

The most important thing about these traversals is that they reflect the
recursive structure of a list. A wide range of recursive list-processing functions

17.2 Recursive List Processing [699]

C6840_17 11/19/08 1:07 PM Page 699

May not be copied, scanned, or duplicated, in whole or in part.

can be defined simply in terms of the basic list access functions isEmpty, first,
and rest.

17.2.3 Building a Lisp-Like List

We now examine how to create a Lisp-like list. A Lisp-like list has a single basic
constructor function named cons. This function expects two arguments: a data
item and another list. The function builds and returns a new list whose first item
is the function’s first argument. The rest of the items in the new list are contained
in the function’s second argument. The relationships between the functions cons,
first, and rest can be expressed algebraically in the following pair of equations:

first(cons(A, B)) == A
rest(cons(A, B)) == B

If the cons function builds a list from a data item and another list, from
where do we get the other list? Initially, this list must be an empty list. A Lisp-
like list package usually includes a constant that represents this special case of a
list. In the examples that follow, the symbol THE_EMPTY_LIST refers to this con-
stant. Table 17.3 presents some examples of lists and how they are constructed.

[TABLE 17.3] Building lists with cons

Note that lists that have more than one data item are built by successive applica-
tions of the cons function.

Let’s use this information to define a recursive function that returns a list
containing a range of consecutive numbers. The bounds of this range are the
arguments to our function, which we name buildRange. For example, a call
of buildRange(1, 5) returns a list containing 1, 2, 3, 4, and 5, and
buildRange(10, 10) returns a list containing just 10. To generalize, if the
bounds are equal, buildRange returns a list containing one of them. Otherwise,

FUNCTION APPLICATION OR VARIABLE REFERENCE RESULTING LIST

THE_EMPTY_LIST An empty list

cons(22, THE_EMPTY_LIST) A list containing 22

cons(11, cons(22, THE_EMPTY_LIST)) A list containing 11 and 22

CHAPTER 17 Recursion[700]

C6840_17 11/19/08 1:07 PM Page 700

May not be copied, scanned, or duplicated, in whole or in part.

buildRange returns a list whose first item is the lower bound and whose remain-
ing items comprise a list built from the range between the lower bound plus one
and the upper bound. Here is the code for buildRange, followed by an explanation:

defƒbuildRange(lower,ƒupper):
ƒƒƒƒ“””Returnsƒaƒlistƒcontainingƒtheƒnumbersƒfrom
ƒƒƒƒlowerƒthroughƒupper.
ƒƒƒƒPrecondition:ƒlowerƒ<=ƒupper”””
ƒƒƒƒifƒlowerƒ==ƒupper:
ƒƒƒƒƒƒƒƒreturnƒcons(lower,ƒTHE_EMPTY_LIST)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒcons(lower,ƒbuildRange(lowerƒ+ƒ1,ƒupper))

Our function essentially counts from lower to upper. When this case is reached,
the function returns a list containing lower. This list may become the second
argument to the second call of cons, which makes the previous value of lower the
first item of the list. As the recursion unwinds, successive calls of cons add the rest
of the numbers in the proper order to the beginning of the list. Figure 17.6 shows
a trace of the calls of function buildRange to build a list of four numbers. Each
pair of numbers on the first four lines contains the arguments of a new call of
buildRange. The lists returned from each call are on the last four lines.

[FIGURE 17.6] Tracing the recursive building of a list with buildRange

The recursive pattern in the function just discussed is found in many other
list-processing functions. As one more example, consider the problem of remov-
ing the item at the ith position in a list. If that position is the first one (0), then
we return the rest of the list. Otherwise, we return a list built from the first item
and the list that results from removing the item from the rest of the list. Like the

1 4
 2 4
 3 4
 4 4
 4
 3 4
 2 3 4
1 2 3 4

17.2 Recursive List Processing [701]

C6840_17 11/19/08 1:07 PM Page 701

May not be copied, scanned, or duplicated, in whole or in part.

get function discussed earlier, remove decrements the index and moves to the
rest of the list on each recursive call. Here is the code:

defƒremove(index,ƒlyst):
ƒƒƒƒ“””Returnsƒaƒlistƒwithƒtheƒitemƒatƒindexƒremoved.
ƒƒƒƒPrecondition:ƒ0ƒ<=ƒindexƒ<ƒlength(lyst)”””
ƒƒƒƒifƒindexƒ==ƒ0:
ƒƒƒƒƒƒƒƒreturnƒrest(lyst)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒcons(first(lyst),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒremove(indexƒ-ƒ1,ƒrest(lyst)))

17.2.4 The Internal Structure of a Lisp-Like List

As shown in Figure 17.5, a Lisp-like list’s internal structure resembles that of the
singly linked structure introduced in Chapter 13. This structure consists of a
sequence of nodes, where each node contains a data item named data and a link
to the next node named next. The next link in the last node is None. If we define
the symbol THE_EMPTY_LIST to be None, then we can use the Node class of
Chapter 13 to represent nodes in a Lisp-like list. The definitions of the four basic
list functions are trivial, as the next code segment shows:

“””
File:ƒlisplist.py

DataƒandƒbasicƒoperationsƒforƒLisp-likeƒlists.
“””

fromƒnodeƒimportƒNode

THE_EMPTY_LISTƒ=ƒNone

defƒisEmpty(lyst):
ƒƒƒƒreturnƒlystƒisƒTHE_EMPTY_LIST

defƒfirst(lyst):
ƒƒƒƒreturnƒlyst.data

defƒrest(lyst):
ƒƒƒƒreturnƒlyst.next

defƒcons(data,ƒlyst):
ƒƒƒƒreturnƒNode(data,ƒlyst)

CHAPTER 17 Recursion[702]

C6840_17 11/19/08 1:07 PM Page 702

May not be copied, scanned, or duplicated, in whole or in part.

The important point to remember is that a Lisp-like list is an ADT that
includes these four basic functions and the constant for the empty list. The user
of this ADT doesn’t have to know anything about nodes, links, or pointers.

17.2.5 Lists and Functional Programming

One of the interesting things about Lisp-like lists, at least as we have defined
them, is that they have no mutator operations. Even the remove function devel-
oped earlier does not change the structure of its list argument; it simply returns a
list with the ith item removed. The next code segment illustrates this by remov-
ing list A’s first item and assigning the result to list B:

>>>ƒAƒ=ƒbuildRange(1,ƒ3)
>>>ƒprintƒA
1ƒ2ƒ3
>>>ƒBƒ=ƒremove(0,ƒA)ƒƒƒƒƒƒƒ#ƒRemoveƒtheƒitemƒatƒpositionƒ0
>>>ƒprintƒB
2ƒ3
>>>ƒprintƒAƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒListƒreferencedƒbyƒAƒnotƒchangedƒ
1ƒ2ƒ3

This behavior is not at all like that of Python’s list method pop, which mutates
the list object on which it is run.

The two lists A and B actually share structure as well, as shown in Figure 17.7.

[FIGURE 17.7] The shared structure of two lists

If there were mutator operations on these lists, such sharing of structure would
be a bad idea, because any changes to the structure of list A would then result in
changes to the structure of list B. However, when no mutations are possible, shar-
ing structure is a good idea because it can save on memory.

Lisp-like lists without mutators fit nicely into a style of software development
called functional programming. A program written in this style consists of a set
of cooperating functions that transform data values into other data values. Thus,
when a data structure should be changed, it is not mutated but instead passed as

B

A 1 2 3

17.2 Recursive List Processing [703]

C6840_17 11/19/08 1:07 PM Page 703

May not be copied, scanned, or duplicated, in whole or in part.

an argument to a function. The function builds and returns a data structure that
represents the desired changes.

The benefit of this style of programming is that it can be easy to verify that
the functions work correctly because the changes they effect in the data are all
transparent (no hidden side effects).

On the other hand, the run-time cost of prohibiting mutations can be expen-
sive. For example, the index-based remove method discussed in Chapter 16
requires no extra memory to remove an item from a list. By contrast, the removal
of an item at position i from a Lisp-like list requires i – 1 extra nodes.

These trade-offs have led to the old joke that Lisp programmers know the
value of everything and the cost of nothing. Clearly, an object-based data struc-
ture that supports mutation would be a better choice for applications with large
databases that incur frequent insertions and removals. But for processing rela-
tively short lists of symbolic information, there are few data structures so simple
and elegant as the recursive, Lisp-like list.

17.2 Exercises
1 What is meant by the first and the rest of a Lisp-like list?

2 Define a function insert that expects an index, an item, and a Lisp-like
list as arguments. The function returns a list in which the item is
inserted at the given index position.

3 Define a recursive function equals for two Lisp-like lists. Two lists are
equal if they are both empty, or their first items are equal and the rest of
their items are equal.

4 Define a function removeAll that expects an item and a list as arguments.
This function returns a list with all of the instances of the item removed.
(Hint: Keep on removing the item if it equals the list’s first item.)

5 The function append expects two Lisp-like lists as arguments and
returns a single list with the contents of the two arguments. Define this
as a recursive function. (Hint: The append of any non-empty list and the
empty list is the non-empty list.)

6 Define the functions lispMap and lispFilter for Lisp-like lists. Their
behavior is similar to that of the Python functions map and filter.

7 Discuss the trade-offs between Lisp-like lists and Python lists, including
space/time performance and ease of verification.

CHAPTER 17 Recursion[704]

C6840_17 11/19/08 1:07 PM Page 704

May not be copied, scanned, or duplicated, in whole or in part.

17.3 Recursion and Backtracking
In Chapter 14, we examined one approach to solving backtracking problems,
namely by using stacks. Now we show how recursion can be used instead. As
stated in Chapter 14, a backtracking algorithm begins in a predefined starting
state and then moves from state to state in search of a desired ending state. At every
point along the way, when there is a choice between several alternative states, the
algorithm picks one, possibly at random, and continues. If the algorithm reaches a
state representing an undesirable outcome, it backs up to the last point at which
there was an unexplored alternative and tries it. In this way, the algorithm either
exhaustively searches all states or reaches the desired ending state.

17.3.1 A General Recursive Strategy

Recursion is applied to backtracking by calling a recursive function each time an
alternative state is considered. The recursive function tests the current state, and
if it is an ending state, success is reported all the way back up the chain of recur-
sive calls. Otherwise, there are two possibilities. One, the recursive function calls
itself on an untried adjacent state. Two, all adjacent states have been tried and the
recursive function reports failure to the function that called it. In this scheme, the
activation records on the call stack serve as the memory of the system so that,
when control returns to a recursive function, it can resume where it left off. For a
more precise illustration, see the following pseudocode:

SUCCESS = True
FAILURE = False
...
...
...
def testState(state)

if state == ending state
return SUCCESS

else
mark state as visited
for all adjacent unvisited states

if testState(adjacentState) == SUCCESS
return SUCCESS

return FAILURE

outcome = testState(starting state)

17.3 Recursion and Backtracking [705]

C6840_17 11/19/08 1:07 PM Page 705

May not be copied, scanned, or duplicated, in whole or in part.

We now illustrate the process with a simple example. Suppose there are just
five states, as shown in the diagram in Figure 17.8, with states 1 and 5 representing
the starting and ending states, respectively, and lines between states indicating adja-
cency. The succession of calls and returns then proceeds as shown in Figure 17.8.

[FIGURE 17.8] A recursive backtracking search for state 5 from state 1

Keep in mind that we are presenting a generic application of recursion to
backtracking. In a specific situation, the problem details can lead to minor varia-
tions. However, the general approach remains valid. To give you some practice
with recursive backtracking, we now present two examples.

17.3.2 The Maze Problem Revisited

Our first example uses recursive backtracking to solve the maze problem introduced
in Chapter 14. We represent a maze as a grid of characters. With two exceptions,
each character at a position (row, column) in this grid is initially either a space, indi-
cating a path, or a star (*), indicating a wall. The exceptions, the letters P and T,
mark the single start (a parking lot) and exit (a mountaintop) positions, respectively.

Recall from the discussion in Chapter 14 that the algorithm leaves a period (a
dot) in each cell that it visits so that cell will not be visited again. At the end of
the search process, the solution path contains the periods, but the periods are also
in other paths that were explored but which led to dead ends. In the new version
of the program, we can discriminate between the solution path and the cells vis-
ited but not on the path by using two marking characters: the period and an X.
The algorithm initially leaves an X in each cell that it visits. If the algorithm can-
not find a solution path from this cell, it is marked with a period. Thus, at the
end of the process, the solution path consists of cells with an X, whereas cells
visited but on dead-end paths contain a period. Figure 17.9 shows a maze before
and after running the algorithm.

3 5

4

2

1

call testState (state1)
 call testState(state2)

 call testState(state3)
 return FAILURE

 return FAILURE
 call testState(4)

 call testState(5)
 return SUCCESS

 return SUCCESS
return SUCCESS

CHAPTER 17 Recursion[706]

C6840_17 11/19/08 1:07 PM Page 706

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 17.9] Solving a maze problem

P

T

P X X X X X X

X X X X

X
X
X
X

X

X
X
X

X X X X X

X

X
X

X X X X X

X X X X X X

X X X X X X X X X X X X X

X X X X X

X

X
X
X

X

X

X
X

X
X
X

.

.

.

........

....

..

.

.......

.... .

. .. .

. .. .
. .

.

.

..

...

.

.

.

.

.
. ...

.......

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

X

X

X X X X X X X X X XX

X
X
X

X
X

X

X
X

Maze solved:

Enter a filename for the maze: maze.txt

T

17.3 Recursion and Backtracking [707]

C6840_17 11/19/08 1:07 PM Page 707

May not be copied, scanned, or duplicated, in whole or in part.

We now develop a recursive algorithm, called solve, that attempts to find a
path through this maze. This algorithm:

� Expects a grid and the index positions of a cell as parameters.
� Can observe or modify cells in the grid.
� Returns True if the cell marked T is found or False if a dead end is reached.

The function solve begins by examining the state of the cell at its position
(row, column). Here are the possible states and the algorithm’s actions:

1 If this cell contains T, then solve returns True (the player exits the maze).

2 If this cell contains* (a wall) or a period (a mark left on a branch of the
same path), then solve returns False, indicating a dead end.

3 If this cell contains a space (an untried path), then solve does the
following:

� Puts an X into the cell.
� Uses recursion in each of the four directions from the current cell,

breaking and returning True if one of these calls returns true.
� Puts a period into the cell if none of the recursive calls return True.

Here is the pseudocode for the function solve:

function solve(row, col)
If row is out of range or col is out of range

return False
Else if maze[row][col] == ‘T’

return True
Else if maze[row][col] == ‘*’ or

maze[row][col] == ‘X’ or
maze[row][col] == ‘.’ or
return False

Else
Set maze[row][col] to ‘X’
Set found to solve(row – 1, col) # NORTH
If not found

Set found to solve(row + 1, col) # SOUTH
If not found

Set found to solve(row, col + 1) # EAST
If not found

Set found to solve(row, col – 1) # WEST
If not found

Set maze[row][col] to “.”
Return found

CHAPTER 17 Recursion[708]

C6840_17 11/19/08 1:07 PM Page 708

May not be copied, scanned, or duplicated, in whole or in part.

The coding of a complete program that implements this algorithm is left as
an exercise for you.

17.3.3 The Eight Queens Problem

In the Eight Queens problem, eight queens are placed on a chessboard in such a
manner that the queens do not threaten each other. A queen can attack any other
piece in the same row, column, or diagonal, so there can be at most one queen in
each row, column, and diagonal of the board. It is not obvious that there is a
solution, but Figure 17.10 shows one.

[FIGURE 17.10] One solution to the Eight Queens problem

Backtracking is the best approach that anyone has found to solving this prob-
lem. Figure 17.11 illustrates how it works, as described in the following:

� Figure 17.11 (a): We place the first queen in square (0, 0) of column 0. We
place the second queen in column 1 in the first square not under attack,
namely (2, 1). Applying the same strategy to columns 2, 3, and 4, we place
queens in squares (4, 2), (1, 3), and (3, 4).

� Figure 17.11 (b): When we attempt to place a queen in column 5, we dis-
cover that all of the squares are under attack, so we backtrack to column 4
and place the queen in the next square not under attack, which is (7, 4).

� Figure 17.11 (c): However, all squares in column 5 are still under attack,
and we must backtrack to column 4 again. There are no untried squares
left in column 4, and we backtrack to column 3, where we try the next

0

Q

Q

1

Q

3 4 6 7

0

1

2

3

4

5

6

7

Q

2 5

Q

Q

Q

Q

17.3 Recursion and Backtracking [709]

C6840_17 11/19/08 1:07 PM Page 709

May not be copied, scanned, or duplicated, in whole or in part.

square not under attack at (6, 3). Now we can go forward again to column 5
and so on. In this way, we will find a solution if there is one.

[FIGURE 17.11] Using backtracking to find a solution to the Eight Queens problem

Here is a recursive algorithm based on the preceding strategy. Initially, the
algorithm is called with the value of col equal to 0 (using 0-based indexing for
the grid).

function canPlaceQueen(col, board)
for each row in the board

if board[row][col] is not under attack
if col is the rightmost one

place a queen at board[row][col]
return True

else:
place a queen at board[row][col]
if canPlaceQueen(col + 1, board)

return True
else

remove the queen at board[row][col] (backtrack to previous column)
return False

We now present a program that attempts to solve this problem and others of
a similar nature. We call it the manyqueens program, and it attempts to place n
queens safely on an n by n board. The program prints a solution or a message
saying that there is no solution (Figure 17.12).

0

(a) (b) (c)

Q
Q

1

Q

3 4 6 7
0
1
2
3
4
5
6
7

Q

2

Q

0
Q

Q

1 3 4 6 7
0
1

3
4
5
6
7

Q

2 5

Q

0 1 3 4 6 7
0
1
2
3
4
5
6
7

2 5
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

5

Q

Q

Q

Q

Q2

CHAPTER 17 Recursion[710]

C6840_17 11/19/08 1:07 PM Page 710

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 17.12] Outputs of the manyqueens program for boards of size 2, 4, and 8

The recursive function called canPlaceQueen implements the backtracking
algorithm discussed earlier. The initial board consists of an n by n grid of
hyphens. The first time the function is called, it places a Q at the top of column
0. It then calls itself to place a Q in the first safe square of column 1 and then
again to place a Q in the first safe square of column 2 and so forth, until finally it
calls itself to place a Q in the first safe square of the last column. If at some step
(say, for column 5) the function fails, then it returns and processing resumes in
the previous column by looking for the next safe square. If there is one, then the
process moves onward to column 5 again, and so it goes. Either a solution is
found or all possibilities are exhausted.

The program includes a second function named attacked. This function
determines if a queen placed in row r, column c is threatened by any queens
already present in columns 0 to c - 1.

>>> main()
Enter the board size: 2
Impossible on a board of size 2x2

>>> main()
Enter the board size: 4
Solution:
- - Q -
Q - - -
- - - Q
- Q - -

>>> main()
Enter the board size: 8
Solution:
Q - - - - - - -
- - - Q - - - -
- Q - - - - - -
- - - - - - Q -
- - Q - - - - -
- - - - - Q - -
- - - - - - - Q
- - - - Q - - -

>>>

17.3 Recursion and Backtracking [711]

C6840_17 11/19/08 1:07 PM Page 711

May not be copied, scanned, or duplicated, in whole or in part.

The Python code uses an instance of the Grid class, developed in Chapter 13,
to represent the board. Following is the code:

“””
File:ƒmanyqueens.py
DetermineƒtheƒsolutionƒtoƒtheƒManyƒQueensƒproblemƒforƒaƒchessboard ofƒanyƒsize.
1)ƒThereƒisƒaƒsingleƒinputƒindicatingƒtheƒsizeƒofƒtheƒboard.
2)ƒIfƒthereƒisƒaƒsolutionƒdisplayƒit,ƒelseƒindicateƒthatƒthereƒisƒnone.
“””

fromƒgridƒimportƒGrid

defƒmain():
ƒƒƒƒsizeƒ=ƒinput(“Enterƒtheƒboardƒsize:ƒ“)
ƒƒƒƒboardƒ=ƒGrid(size,ƒsize,ƒ“-”)
ƒƒƒƒifƒnotƒcanPlaceQueen(0,ƒboard):
ƒƒƒƒƒƒƒƒprintƒ“Impossibleƒonƒaƒboardƒofƒsizeƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(size)ƒ+ƒ“x”ƒ+ƒstr(size)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprintƒ“Solution:”
ƒƒƒƒƒƒƒƒprintƒboard

defƒcanPlaceQueen(col,ƒboard):
ƒƒƒƒ“””MarkƒwithƒaƒQƒtheƒfirstƒunattackedƒlocationƒinƒcolumn
ƒƒƒƒcolƒthatƒpermitsƒaƒsolutionƒacrossƒtheƒremainingƒcolumns.
ƒƒƒƒPreconditions:ƒ0ƒ<=ƒcolƒ<ƒboard.getWidth()
ƒƒƒƒPostconditions:ƒifƒanƒentryƒinƒcolƒgetsƒmarkedƒQ
ƒƒƒƒreturnƒTrueƒelseƒreturnƒFalse.”””
ƒƒƒƒ#ƒIterateƒdownƒtheƒrowsƒinƒthisƒcolumn
ƒƒƒƒforƒrowƒinƒxrange(board.getHeight()):ƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒƒƒ#ƒifƒsquareƒisƒnotƒunderƒattack
ƒƒƒƒƒƒƒƒƒifƒnotƒattacked(row,ƒcol,ƒboard):
ƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒifƒthisƒisƒtheƒlastƒcolumn
ƒƒƒƒƒƒƒƒƒƒƒƒƒifƒcolƒ==ƒboard.getWidth()ƒ-ƒ1:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒendƒrecursion,ƒsetƒsquareƒtoƒQ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒrecursiveƒascentƒtrue
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒboard[row][col]ƒ=ƒ“Q”ƒƒƒƒƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrueƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒtrialƒsolution,ƒsetƒsquareƒtoƒQ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒboard[row][col]ƒ=ƒ“Q”ƒƒƒƒƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒifƒrecursiveƒdescentƒsucceeds
ƒƒƒƒƒƒƒƒƒƒƒƒƒifƒcanPlaceQueen(colƒ+ƒ1,ƒboard):
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒrecursiveƒascentƒtrue
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrue

continued

CHAPTER 17 Recursion[712]

C6840_17 11/19/08 1:07 PM Page 712

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒtrialƒsolutionƒdidn'tƒwork,ƒso
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒresetƒsquareƒtoƒ-
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒboard[row][col]ƒ=ƒ“-”
ƒƒƒƒ#ƒrecursiveƒascentƒfalse
ƒƒƒƒreturnƒFalse

defƒattacked(row,ƒcol,ƒboard):
ƒƒƒƒ“””Determineƒifƒtheƒsquareƒatƒlocationƒ(row,ƒcol)
ƒƒƒƒisƒunderƒattackƒfromƒanyƒqueenƒinƒcolumnsƒ0ƒtoƒcolƒ-ƒ1.
ƒƒƒƒPreconditions:ƒ0ƒ<=ƒrow,ƒcolƒ<ƒboard.getWidth()
ƒƒƒƒReturnsƒTrueƒifƒsquareƒunderƒattackƒorƒFalseƒotherwise.”””
ƒƒƒƒ#ƒLookƒforƒhorizontalƒattack
ƒƒƒƒforƒjƒinƒxrange(col):
ƒƒƒƒƒƒƒƒifƒboard[row][j]ƒ==ƒ“Q”:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒ#ƒLookƒforƒattackƒfromƒaƒdescendingƒdiagonal
ƒƒƒƒiƒ=ƒrowƒ-ƒ1
ƒƒƒƒjƒ=ƒcolƒ-ƒ1
ƒƒƒƒkƒ=ƒ0
ƒƒƒƒwhileƒkƒ<=ƒmin(i,ƒj):
ƒƒƒƒƒƒƒƒifƒboard[i][j]ƒ==ƒ“Q”:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒiƒ-=ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒjƒ-=ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒkƒ+=ƒ1
ƒƒƒƒ#ƒLookƒforƒattackƒfromƒanƒascendingƒdiagonal
ƒƒƒƒiƒ=ƒrowƒ+ƒ1
ƒƒƒƒjƒ=ƒcolƒ-ƒ1
ƒƒƒƒkƒ=ƒ0
ƒƒƒƒwhileƒkƒ<=ƒmin(board.getHeight()ƒ-ƒiƒ-ƒ1,ƒj):
ƒƒƒƒƒƒƒƒifƒboard[i][j]ƒ==ƒ“Q”:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒiƒ+=ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒjƒ-=ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒkƒ+=ƒ1
ƒƒƒƒreturnƒFalse

main()

17.3 Recursion and Backtracking [713]

C6840_17 11/19/08 1:07 PM Page 713

May not be copied, scanned, or duplicated, in whole or in part.

17.4 Recursive Descent and Programming
Languages
In Chapter 14, we discussed algorithms that use a stack to convert expressions
from infix to postfix and then evaluate the postfix form. Recursive algorithms are
also used in processing languages, whether they are programming languages such
as Python or natural languages such as English. In this section, we give a brief
overview of grammars, parsing, and a recursive descent-parsing strategy, followed
in the next section by a related case study.

17.4.1 Introduction to Grammars

Most programming languages, no matter how small or large they are, have a precise
and complete definition called a grammar. A grammar consists of several parts:

1 A vocabulary (or dictionary or lexicon) consisting of words and sym-
bols allowed in sentences in the language.

2 A set of syntax rules that specify how symbols in the language are com-
bined to form sentences.

3 A set of semantic rules that specify how sentences in the language
should be interpreted. For example, the statement x = y might mean
“copy the value of y to the variable x.”

Computer scientists have developed several notations for expressing gram-
mars. For example, suppose we want to define a language for representing simple
arithmetic expressions such as the following:

4ƒ+ƒ2
3ƒ*ƒ5
6ƒ-ƒ3
10ƒ/ƒ2
(4ƒ+ƒ5)ƒ*ƒ10

CHAPTER 17 Recursion[714]

C6840_17 11/19/08 1:07 PM Page 714

May not be copied, scanned, or duplicated, in whole or in part.

Now suppose we don’t want to allow expressions such as 4 + 3 - 2 or 4 * 3 / 2.
The following grammar defines the syntax and vocabulary of this new little language:

expressionƒ=ƒtermƒ[ƒaddingOperatorƒƒtermƒ]

termƒ=ƒfactorƒ[ƒmultiplyOperatorƒfactorƒ]

factorƒ=ƒnumberƒ|ƒ“(“ƒexpressionƒ“)”

numberƒ=ƒdigitƒ{ƒdigitƒ}

digitƒ=ƒ“0”ƒ|ƒ“1”ƒ|ƒ“2”ƒ|ƒ“3”ƒ|ƒ“4”ƒ|ƒ“5”ƒ|ƒ“6”ƒ|ƒ“7”ƒ|ƒ“8”ƒ|ƒ“9”

addingOperatorƒ=ƒ“+”ƒ|ƒ“-”

multiplyingOperatorƒ=ƒ“*”ƒ|ƒ“/”

This type of grammar is called an Extended Backus-Naur Form (EBNF)
grammar. An EBNF grammar uses three kinds of symbols:

1 Terminal symbols. These symbols are in the vocabulary of the language
and literally appear in programs in the language, for instance, + and * in
the preceding examples.

2 Nonterminal symbols. These symbols name phrases in the language,
such as expression or factor in the preceding examples. A phrase usu-
ally consists of one or more terminal symbols and/or the names of other
phrases.

3 Metasymbols. These symbols are used to organize the rules in the
grammar. Table 17.4 lists the metasymbols used in EBNF.

[TABLE 17.4] Metasymbols in EBNF

METASYMBOLS USE

“” Enclose literal items.

= Means “is defined as.”

[] Enclose optional items.

{ } Enclose zero or more items.

() Group together required choices (same as parentheses).

| Indicates a choice.

17.4 Recursive Descent and Programming Languages [715]

C6840_17 11/19/08 1:07 PM Page 715

May not be copied, scanned, or duplicated, in whole or in part.

Thus, the rule

expressionƒ=ƒtermƒ[ƒaddingOperatorƒtermƒ]ƒ

means “an expression is defined as a term, which might or might not be fol-
lowed by an addingOperator and another term.” The symbol to the left of the
= in a rule is called the left side of the rule; the set of items to the right of the = is
called the right side of the rule.

The grammar just discussed does not allow expressions such as 45 * 22 +
14 / 2, thus forcing programmers to use parentheses if they want to form an
equivalent expression, such as (45 * 22) + (14 / 2). The next grammar
solves this problem by allowing iteration over terms and factors:

expressionƒ=ƒtermƒ{ƒaddingOperatorƒƒtermƒ}

termƒ=ƒfactorƒ{ƒmultiplyOperatorƒfactorƒ}

factorƒ=ƒnumberƒ|ƒ“(“ƒexpressionƒ“)”

numberƒ=ƒdigitƒ{ƒdigitƒ}

digitƒ=ƒ“0”ƒ|ƒ“1”ƒ|ƒ“2”ƒ|ƒ“3”ƒ|ƒ“4”ƒ|ƒ“5”ƒ|ƒ“6”ƒ|ƒ“7”ƒ|ƒ“8”ƒ|ƒ“9”

addingOperatorƒ=ƒ“+”ƒ|ƒ“-”

multiplyingOperatorƒ=ƒ“*”ƒ|ƒ“/”

In any grammar, there is one privileged symbol known as the start symbol.
In our two example grammars, the start symbol is expression. The use of this
symbol is discussed shortly.

You might have noticed that the foregoing grammars have a recursive quality.
For instance, an expression consists of terms, a term consists of factors, and
a factor can be a number or an expression within parentheses. Thus, an
expression can contain another expression.

CHAPTER 17 Recursion[716]

C6840_17 11/19/08 1:07 PM Page 716

May not be copied, scanned, or duplicated, in whole or in part.

17.4.2 Recognizing, Parsing, and Interpreting Sentences in
a Language

To process the sentences in a language, we use recognizers, parsers, and inter-
preters. A recognizer analyzes a string to determine if it is a sentence in a given
language. The inputs to the recognizer are the grammar and a string. The out-
puts are “Yes” or “No” and appropriate syntax error messages. If there are one or
more syntax errors, we get “No,” and the string is not a sentence.

A parser has all of the features of a recognizer and also returns information
about the syntactic and semantic structure of the sentence. This information is used
in further processing and might be contained in a parse tree (see Chapter 18) or in
some other representation.

An interpreter carries out the actions specified by a sentence. In other
words, an interpreter runs the program. Occasionally, parsing and interpreting
occur at the same time. Otherwise, the input to the interpreter is the data struc-
ture that results from parsing.

From now on, we don’t distinguish between a recognizer and a parser, but
use “parser” to refer to both.

17.4.3 Lexical Analysis and the Scanner

When developing a parser, it is convenient to assign the task of recognizing sym-
bols in a string to a lower-level module called a scanner. The scanner performs
lexical analysis, in which individual words are picked out of a stream of charac-
ters. The scanner also outputs lexical error messages as needed. Examples of
lexical errors are inappropriate characters in a number and unrecognized symbols
(ones not in the vocabulary).

The output of the scanner is a stream of words called tokens. These
become the input to another module called the syntax analyzer. This module
uses the tokens and the grammar rules to determine whether the program is
syntactically correct. Thus, the lexical analyzer determines if characters go
together to form correct words, while the syntax analyzer determines if words
go together to form correct sentences. For simplicity, we refer to the lexical
analyzer as the scanner and to the syntax analyzer as the parser. The connection
between the scanner and parser is shown in Figure 17.13.

17.4 Recursive Descent and Programming Languages [717]

C6840_17 11/19/08 1:07 PM Page 717

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 17.13] A scanner and parser working in tandem.

17.4.4 Parsing Strategies

There are several strategies for parsing. One of the simplest is called recursive
descent parsing. A recursive descent parser defines a function for each rule in
the grammar. Each function processes the phrase or portion of the input sentence
covered by its rule. The top-level function corresponds to the rule that has the
start symbol on its left side. When this function is called, it calls the functions
corresponding to the nonterminal symbols on the right side of its rule. For exam-
ple, here is the top-level rule and the associated parsing function for the original
grammar shown in this section:

#ƒSyntaxƒrule:
#ƒexpressionƒ=ƒtermƒ[ƒaddingOperatorƒtermƒ]

#ƒParsingƒfunction:
defƒexpression():
ƒƒƒƒterm()
ƒƒƒƒtokenƒ=ƒscanner.get()ƒ
ƒƒƒƒifƒtoken.getType()ƒinƒ(Token.PLUS,ƒToken.MINUS):
ƒƒƒƒƒƒƒƒscanner.next()
ƒƒƒƒƒƒƒƒterm()
ƒƒƒƒƒƒƒƒtokenƒ=ƒscanner.get()

Note the following points:

1 Each nonterminal symbol in the grammar becomes the name of a func-
tion in the parser.

2 The body of a method processes the phrases on the right side of the rule.

3 To process a nonterminal symbol, you simply invoke a function.

4 To process an optional item, you use an if statement.

Source string Tokens Yes or no

Lexical error messages Syntax error messages

ParserScanner

CHAPTER 17 Recursion[718]

C6840_17 11/19/08 1:07 PM Page 718

May not be copied, scanned, or duplicated, in whole or in part.

5 You observe the current token by calling the method get on the
scanner object.

6 You scan to the next token by calling the method next on the
scanner object.

Our parser descends through the grammar rules, starting with the top-level
function and working its way down to lower-level functions, which can then
recursively call functions at a higher level.

Recursive descent parsers can easily be extended to interpret as well as parse
programs. In the case of our languages, for example, each parsing function could
compute and return the value represented by the associated phrase in the expres-
sion. The value returned by the topmost function would be the value of the
entire expression. Alternatively, as we show in Chapter 18, a recursive descent
parser can build and return a parse tree. Another module then traverses this tree
to compute the value of the expression.

17.5 Case Study: A Recursive Descent Parser
In the Case Study for Chapter 14, we developed a program that used a stack to
evaluate postfix expressions. That program assumed that the user entered syntac-
tically correct postfix expressions and made no attempt to parse them. We also
presented an algorithm in Chapter 14 to convert infix expressions to postfix
expressions. By adding error handling to this algorithm, we would create a parser.
In the present case study, we develop a recursive descent parser using the meth-
ods described earlier in this chapter.

17.5.1 Request

Write a program that parses arithmetic expressions.

17.5.2 Analysis

The user interface prompts the user for an arithmetic expression. When the user
enters her expression, the program parses it and displays the following:

� The message “No errors” if the expression is syntactically correct.
� A message containing the kind of error and the input string up to the point

of error, if a syntax error occurs.

17.5 Case Study: A Recursive Descent Parser [719]

C6840_17 11/19/08 1:07 PM Page 719

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Recursion[720]

As in the earlier version developed in Chapter 14, this one has a view class and
several model classes. Figure 17.14 shows the complete structure of our parsing
system. Figure 17.15 gives the user interface.

[FIGURE 17.14] Classes in the parser program

[FIGURE 17.15] The user interface for the parser program

17.5.3 Classes

We developed the Scanner and Token classes for evaluating expressions in the
case study of Chapter 14. To slightly modified versions of these, we add the
classes Parser and ParserView.

17.5.4 Implementation (Coding)

The class Parser implements the recursive descent strategy discussed earlier.
There is one parsing method for each rule in the grammar. Here is the code:

“””
File:ƒparser.py
DefinesƒParser
“””

continued

Enter an infix expression: (22 + 34) * 6
No errors
Enter an infix expression: (33 - 5
Error:
Parsing error -- ')' expected
Expression so far = (33 - 5
Enter an infix expression:
>>>

Scanner

Token

ParserParserView

C6840_17 11/19/08 1:07 PM Page 720

May not be copied, scanned, or duplicated, in whole or in part.

fromƒtokensƒimportƒToken
fromƒscannerƒimportƒScanner

classƒParser(object):

ƒƒƒƒdefƒparse(self,ƒsourceStr):
ƒƒƒƒƒƒƒƒself._completionMessageƒ=ƒ“Noƒerrors”
ƒƒƒƒƒƒƒƒself._parseSuccessfulƒ=ƒTrue
ƒƒƒƒƒƒƒƒself._scannerƒ=ƒScanner(sourceStr)
ƒƒƒƒƒƒƒƒself._expression()
ƒƒƒƒƒƒƒƒself._accept(self._scanner.get(),ƒToken.EOE,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“symbolƒafterƒendƒofƒexpression”)
ƒƒƒ
ƒƒƒƒdefƒparseStatus(self):
ƒƒƒƒƒƒƒƒreturnƒself._completionMessage
ƒƒƒƒ
ƒƒƒƒdefƒ_accept(self,ƒtoken,ƒexpected,ƒerrorMessage):
ƒƒƒƒƒƒƒƒifƒtoken.getType()ƒ!=ƒexpected:
ƒƒƒƒƒƒƒƒƒƒƒƒself._fatalError(token,ƒerrorMessage)

ƒƒƒƒdefƒ_fatalError(self,ƒtoken,ƒerrorMessage):
ƒƒƒƒƒƒƒƒself._parseSuccessfulƒ=ƒFalse
ƒƒƒƒƒƒƒƒself._completionMessageƒ=ƒ“Parsingƒerrorƒ—ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒerrorMessageƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“\nExpressionƒsoƒfarƒ=ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._scanner.stringUpToCurrentToken()
ƒƒƒƒƒƒƒƒraiseƒException,ƒself._completionMessage

ƒƒƒƒdefƒ_expression(self):
ƒƒƒƒƒƒƒƒ“””Syntaxƒrule:
ƒƒƒƒƒƒƒƒexpressionƒ=ƒtermƒ{ƒaddingOperatorƒtermƒ}ƒƒ“””
ƒƒƒƒƒƒƒƒself._term()
ƒƒƒƒƒƒƒƒtokenƒ=ƒself._scanner.get()
ƒƒƒƒƒƒƒƒwhileƒtoken.getType()ƒinƒ(Token.PLUS,ƒToken.MINUS):
ƒƒƒƒƒƒƒƒƒƒƒƒself._scanner.next()
ƒƒƒƒƒƒƒƒƒƒƒƒself._term()
ƒƒƒƒƒƒƒƒƒƒƒƒtokenƒ=ƒself._scanner.get()

ƒƒƒƒdefƒ_term(self):
ƒƒƒƒƒƒƒƒ“””Syntaxƒrule:
ƒƒƒƒƒƒƒƒtermƒ=ƒfactorƒ{ƒmultiplyingOperatorƒfactorƒ}ƒƒ“””
ƒƒƒƒƒƒƒƒself._factor()
ƒƒƒƒƒƒƒƒtokenƒ=ƒself._scanner.get()
ƒƒƒƒƒƒƒƒwhileƒtoken.getType()ƒinƒ(Token.MUL,ƒToken.DIV):
ƒƒƒƒƒƒƒƒƒƒƒƒself._scanner.next()
ƒƒƒƒƒƒƒƒƒƒƒƒself._factor()
ƒƒƒƒƒƒƒƒƒƒƒƒtokenƒ=ƒself._scanner.get()

17.5 Case Study: A Recursive Descent Parser [721]

continued

C6840_17 11/19/08 1:07 PM Page 721

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Recursion[722]

ƒƒƒƒdefƒ_factor(self):
ƒƒƒƒƒƒƒƒ“””Syntaxƒrule:
ƒƒƒƒƒƒƒƒfactorƒ=ƒnumberƒ|ƒ“(“ƒexpressionƒ“)ƒƒ“”””
ƒƒƒƒƒƒƒƒtokenƒ=ƒself._scanner.get()
ƒƒƒƒƒƒƒƒifƒtoken.getType()ƒ==ƒToken.INT:
ƒƒƒƒƒƒƒƒƒƒƒƒself._scanner.next()
ƒƒƒƒƒƒƒƒelifƒtoken.getType()ƒ==ƒToken.L_PAR:
ƒƒƒƒƒƒƒƒƒƒƒƒself._scanner.next()
ƒƒƒƒƒƒƒƒƒƒƒƒself._expression()
ƒƒƒƒƒƒƒƒƒƒƒƒself._accept(self._scanner.get(),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒToken.R_PAR,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“')'ƒexpected”)
ƒƒƒƒƒƒƒƒƒƒƒƒself._scanner.next()
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._fatalError(token,ƒ“badƒfactor”)

The methods _accept and _fatalError handle the bulk of the possible syntax
errors. The method accept expects three parameters: the expected token type;
the type of the current token; and an error message. If the current token’s type is
not the expected one, _accept calls _fatalError with the message. The
method _fatalError builds the appropriate completion message and then raises
an exception. As we saw earlier, this exception is caught in the view module.

The class ParserView is very similar to the class PFEvaluatorView of
Chapter 14. The completion of this and the other two classes is left as an exercise
for you.

17.6 The Costs and Benefits of Recursion
Recursive algorithms can always be rewritten to remove recursion, thus raising
the question: Why use recursion in the first place? When developing an algo-
rithm, you should balance several occasionally conflicting considerations.
Prominent among these are efficiency, simplicity, and maintainability. First and
foremost, you must meet the performance requirements of our application, after
which we should strive to write code that is as easy to develop and maintain as
possible. Because of the time and space overhead associated with function calls,
recursive functions usually are not as efficient as their nonrecursive counterparts;
however, their elegance and simplicity sometimes make them the preferred
choice. To put these remarks in perspective, we consider examples of processes
that we think should not be recursive, others that might be recursive, and, finally,
those that should be recursive.

C6840_17 11/19/08 1:07 PM Page 722

May not be copied, scanned, or duplicated, in whole or in part.

17.6.1 No, Maybe, and Yes

Summing the numbers in a list should never be done recursively, except as an
exercise. The result is awkward and inefficient. The recursive fibonacci func-
tion discussed in Chapter 11 affords another poor application of recursion.
Although the function is simple and follows the recursive definition closely, it is
very inefficient and should be replaced by the equivalent O(n) iterative function.

Binary search is implemented equally well with or without recursion. We
presented an iterative version in Chapter 11. Both strategies are straightforward
and clear, and both have a maximum running time of O(log n). Although the
overhead associated with function calls makes the recursive algorithm slower and
more space intensive, this consideration is relatively unimportant considering the
fact that searching a list of even one million items takes no more than 20 recur-
sive calls.

Quicksort is implemented best using recursion. An iterative version is mar-
ginally faster but considerably more complex. While the iterative version might
be worth considering if we were developing a utilities library for commercial dis-
tribution, the added development and maintenance costs normally outweigh the
slight performance advantage.

17.6.2 Getting Rid of Recursion

The fact that Python implements recursion by means of a call stack suggests that
every recursive algorithm can be emulated as an iterative algorithm operating on a
stack, and, in fact, this is the case. However, the general manner of making this
conversion produces results that are so awkward that we say no more about it.
Instead, we suggest approaching each conversion on an individual basis. Frequently,
recursion can be replaced by iteration alone, as is the case when computing factori-
als or Fibonacci numbers. Sometimes a stack is also needed, as illustrated in the fol-
lowing nonrecursive version of quicksort:

classƒEntry(object):

ƒƒƒƒdefƒ__init__(self,ƒlow,ƒhigh):
ƒƒƒƒƒƒƒƒself.lowƒ=ƒlow
ƒƒƒƒƒƒƒƒself.highƒ=ƒhigh

...

...

17.6 The Costs and Benefits of Recursion [723]

continued

C6840_17 11/19/08 1:07 PM Page 723

May not be copied, scanned, or duplicated, in whole or in part.

fromƒstackƒimportƒArrayStack

def quickSort(lyst):
ƒƒƒƒstackƒ=ƒArrayStack()
ƒƒƒƒstack.push(Entry(0,ƒlen(lyst)ƒ–ƒ1))
ƒƒƒƒwhileƒnotƒstack.isEmpty():
ƒƒƒƒƒƒƒƒentryƒ=ƒstack.pop()
ƒƒƒƒƒƒƒƒifƒentry.lowƒ<ƒentry.high:
ƒƒƒƒƒƒƒƒƒƒƒƒpivotLocationƒ=ƒpartition(lyst,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒentry.low,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒentry.high)
ƒƒƒƒƒƒƒƒƒƒƒƒstack.push(Entry(entry.low,ƒpivotLocationƒ-ƒ1))
ƒƒƒƒƒƒƒƒƒƒƒƒstack.push(Entry(pivotLocationƒ+ƒ1,ƒentry.high))

Here recursive calls have been replaced by pushing sublist limits onto a stack.
Notice that the partition function is used unchanged.

17.6.3 Tail Recursion

We have seen that recursion has two costs: extra time and extra memory.
However, as Guy Steele has shown (see “Debunking the ‘Expensive Procedure
Call’ Myth,” Proceedings of the National Conference of the ACM, 1977), it is possible
to run certain types of recursive algorithms as if they were iterative ones without
the overhead associated with recursion. The essential requirement is that the
algorithms must be tail-recursive. An algorithm is tail-recursive if no work is
done in the algorithm after a recursive call. For example, according to this crite-
rion, the factorial function presented earlier is not tail-recursive because a multi-
plication is performed after each recursive call. You can convert this version of
the factorial function to a tail-recursive version by performing the multiplication
before the recursive call. To do so, you need an additional parameter that passes
down the accumulated value of the factorial on each recursive call. In the last call
to the method, this value is returned as the result. Here is the code for the tail-
recursive function, which is named factIter:

defƒfactIter(n,ƒresult):
ƒƒƒƒifƒnƒ<=ƒ1:
ƒƒƒƒƒƒƒƒreturnƒresult
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒfactIter(nƒ-ƒ1,ƒnƒ*ƒresult)

CHAPTER 17 Recursion[724]

C6840_17 11/19/08 1:07 PM Page 724

May not be copied, scanned, or duplicated, in whole or in part.

Note that the multiplication is performed before the recursive call when the
parameters are evaluated. On the first call to factIter, the result parameter
should be 1:

defƒfactorial(n):
ƒƒƒƒreturnƒfactIter(n,ƒ1)

Steele showed that compilers can translate tail-recursive code written in a high-
level language to a loop in machine language. The machine code treats the
method’s parameters as variables associated with the loop and generates an iterative
process rather than a recursive one. Thus, these methods incur none of the costs
usually associated with recursion.

There are, however, two catches. The programmer must be able to convert a
recursive function to a tail-recursive function, and the compiler must be one that
generates iterative machine code from tail-recursive functions. Unfortunately,
some functions are difficult or impossible to convert to tail-recursion, and few
compilers perform the needed optimization. If you find that your Python compiler
supports this optimization, you should convert some functions to tail-recursion
and see if they run faster than the originals.

Summary
� The n log n sort algorithms use a recursive, divide-and-conquer strategy

to break the n2 barrier. Quicksort rearranges items around a pivot item
and recursively sorts the sublists on either side of the pivot. Merge sort
splits a list, recursively sorts each half, and merges the results.

� A list can have a recursive definition: it is either empty or consists of a
data item and another list. The recursive structure of such lists sup-
ports a wide array of recursive list-processing functions.

� A backtracking algorithm can be implemented recursively by running
the algorithm again on a neighbor of the previous state when the cur-
rent state does not produce a solution.

� Recursive descent parsing is a technique of analyzing expressions in a
language whose grammar has a recursive structure. Each parsing
method or function implements a grammar rule that defines a phrase
or type of expression in a language.

Summary [725]

C6840_17 11/19/08 1:07 PM Page 725

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Recursion[726]

� The programmer must balance the ease of writing recursive routines
against their run-time performance cost. Some problems, such as n
log n sorting, lend themselves naturally to recursive solutions and
these solutions incur little extra cost. Others, such as computing the
nth Fibonacci number, are best implemented with iteration.

� Tail-recursion is a special case of recursion that in principle requires
no extra run-time cost. To make this savings real, the compiler must
translate tail-recursive code to iterative code.

REVIEW QUESTIONS
1 The quicksort algorithm has a worst-case running time of

a O(n log n)
b O(n2)

2 The merge sort has a worst-case running time of

a O(n log n)
b O(n2)

3 Which method of selecting a pivot would be better for quicksort?

a Selecting the first item
b Selecting the median of the first three items, if there are three

4 The recursive step in an algorithm that processes a Lisp-like list runs on its

a first element
b the rest of the elements after the first one

5 The constructor function for a Lisp-like list is named

a head

b tail

c cons

C6840_17 11/19/08 1:07 PM Page 726

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [727]

6 The internal structure of a Lisp-like list most closely resembles that of a(n)

a Array-based list
b Singly linked structure without a header node

7 Recursion can support backtracking because

a Previous states are saved on the system call stack
b Previous states are saved on a programmer-defined stack

8 A program that analyzes an expression for syntactic correctness is called a

a Scanner
b Parser

9 A program that factors a source string into words and recognizes them is
called a

a Lexical analyzer
b Syntax analyzer

10 In a tail-recursive routine

a There is more work to do after a recursive call returns
b There is no work to do after a recursive call returns

PROJECTS
1 Write a program that profiles the quicksort function. The program

should be similar to the one developed for the sort algorithms of
Chapter 11. It should track the number of comparisons and exchanges
and the total running time. The program should allow the programmer
to vary the function used to partition the list, so that different strategies
for selecting the pivot can be profiled. Compare at least three of these.

2 Modify the quicksort function so that it calls insertion sort to sort any
sublist whose size is less than 50 items. Compare the performance of this
version with that of the original one, using data sets of 50, 500, and 5000
items. Then, adjust the threshold for using the insertion sort to deter-
mine an optimal setting.

C6840_17 11/19/08 1:07 PM Page 727

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 17 Recursion[728]

3 The binary search algorithm developed in Chapter 11 uses two variables
to track the endpoints of each sublist. These end points can become argu-
ments to a recursive binary search function. Write a program that imple-
ments the binary search of a sorted list using recursion. The program
should include definitions of a top-level function that hides the end points
of the sublist and a helper function that uses them in recursive calls.

4 According to the myth of the Towers of Hanoi, many centuries ago in
the city of Hanoi, the monks in a certain monastery were continually
engaged in what now seems a peculiar enterprise. Sixty-four rings of
increasing size had been placed on a vertical wooden peg (Figure 17.16).
Beside this peg were two other pegs. The monks spent their time
attempting to move all the rings from the first to the third peg—subject
to two constraints:
� Only one ring could be moved at a time.
� A ring could be moved to any peg, provided it was not placed on top

of a smaller ring.

[FIGURE 17.16] The Towers of Hanoi

C6840_17 11/19/08 1:07 PM Page 728

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [729]

According to the legend, the monks believed that the world would end and
humankind would be freed from suffering when the task was finally com-
pleted. The world is still here today and you are enduring the frustrations
of writing computer programs, which seems to indicate that the monks
were interrupted in their work. But even if they had stuck with it, they
would not have finished anytime soon. A little experimentation should con-
vince you that for n rings, 2n – 1 separate moves are required. At the rate of
one move per second, 264 – 1 moves would take about 600 billion years.
It might be more practical to harness the incredible processing power of
modern computers to move virtual rings between virtual pegs. To get
started, write a recursive function for printing the required moves. In the
spirit of moderation, we suggest that you begin by running the program
for small values of n. Figure 17.17 shows the result of running the pro-
gram with three rings. In the output, the rings are numbered from small-
est (1) to largest (3). Run the program with different numbers of rings to
satisfy yourself that the printed output is correct. The number of lines of
output corresponds to the formula given earlier.

[FIGURE 17.17] Running the Towers of Hanoi program with three rings

The program uses a recursive function called move that expects four
arguments: the number of disks; and numbers representing the first,
third, and second pegs (in that order). The first time this function is
called, it is asked to move all n rings from peg 1 to peg 3, using peg 2 as
temporary working storage. The function then proceeds by doing the
following: it calls itself to move the top n – 1 rings to peg 2: it prints a
message to move the largest ring from peg 1 to peg 3: and, finally, it calls
itself again to move the n – 1 rings from peg 2 to peg 3.

5 The phrase “n choose k” is used to refer to the number of ways in which
we can choose k objects from a set of n objects, where n >= k >= 0. For
example, “52 choose 13” expresses the number of possible hands that
could be dealt in the game of bridge. Write a program that takes the

Enter a number or return to quit: 3
Move ring 1 from peg 1 to peg 3
Move ring 2 from peg 1 to peg 2
Move ring 1 from peg 3 to peg 2
Move ring 3 from peg 1 to peg 3
Move ring 1 from peg 2 to peg 1
Move ring 2 from peg 2 to peg 3
Move ring 1 from peg 1 to peg 3

C6840_17 11/19/08 1:07 PM Page 729

May not be copied, scanned, or duplicated, in whole or in part.

values of n and k as inputs and displays as output the value n choose k.
Your program should define a recursive function, nChooseK(n, k), that
calculates and returns the result. When the program has finished inter-
acting with the user, it should print a table of results that show how
nChooseK increases with n and also how nChooseK increases with k.
(Hint: We can partition the selections of k objects from n objects as the
groups of k objects that come from n – 1 objects, and we can partition
the groups of k objects that include the nth object in addition to the
groups of k - 1 objects chosen from among n – 1 objects.) (Caution: Don’t
start your testing with 52 choose 13, but with smaller numbers for k,
such as 2, 3, 4, and so forth.)

6 Write a program that solves the maze problem by using the recursive
algorithm developed in this chapter (see also Programming Project 10 in
Chapter 14).

7 Profile the Many Queens algorithm by tracking the number of recursive
calls and the total running time needed to find a solution. Compare the
results for board sizes of 6, 7, 8, and 9.

8 The recursive algorithm for the Many Queens problem can be modified
to list not just one, but also all the possible solutions. When each solu-
tion is found, it is added to a list. The function then removes the queen
from the last column to force a failure and a search for another solution.
Here is the pseudocode for the modified algorithm, named solve:

function solve(col, board, listOfSolutions)
for each row in the board

if board[row][col] is not under attack
place queen in board[row][col]
if col is the rightmost one then

add board to listOfSolutions
else

solve(col + 1, board, listOfSolutions)
remove queen from board[row][col]

Modify the Many Queens program so that it displays all the solutions.

9 Complete and test the parsing program developed in the case study.

CHAPTER 17 Recursion[730]

C6840_17 11/19/08 1:07 PM Page 730

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [731]

10 Add the operator ^ for exponentiation to the language of expressions in
the case study. This operation is right associative, which means that con-
secutive instances of it are evaluated from right to left. Thus, the expres-
sion 3 ^ 3 ^ 2 is equivalent to 3 ^ 9 (19683), not 9 ^ 2 (81). This
behavior is expressed by adding a new grammar rule and renaming
another rule. First, you rename the existing rule (and the existing
method in the parser) for factor to primary. Second, you define a new
rule (and a new parsing method) for factor. This rule states that a fac-
tor is a primary followed by an optional exponentiation operator fol-
lowed by another factor. Modify the token set and the parser in the case
study to handle exponentiation.

11 An interpreter not only parses expressions for their syntax, but also eval-
uates them to determine their values. Extend the parser of the case study
so that it both parses and evaluates expressions. The only change to the
user interface is that the output contains the value of the expression if
that expression is syntactically correct. The program also detects as a
semantic error the attempt to divide by 0. Make each parsing method
responsible for computing and returning the value of the portion of the
expression that it parses. For example, the method primary has the fol-
lowing options:
� The current token is an integer literal, so return that token’s

integer value.
� The current token is a left parenthesis, so consume it, call

expression, and return that method’s value.
� The current token is something else, so there is a syntax error. Return

a default value of 0.

C6840_17 11/19/08 1:07 PM Page 731

May not be copied, scanned, or duplicated, in whole or in part.

C6840_17 11/19/08 1:07 PM Page 732

This page intentionally left blank

[CHAPTER] Hierarchical Collections: Trees18
After completing this chapter, you will be able to:

� Describe the difference between trees and other types of col-
lections using the relevant terminology

� Recognize applications for which general trees and binary
trees are appropriate

� Describe the behavior and use of specialized trees, such as
heaps, binary search trees, and expression trees

� Analyze the performance of operations on binary search trees
and heaps

� Develop recursive algorithms to process trees
A third major category of collections, which we called “hierar-

chical” in Chapter 13, consists of various types of tree structures.
Most programming languages do not include trees as a standard
type. Nonetheless, trees have widespread uses. They represent col-
lections of objects, such as a file directory structure and a book’s
table of contents, quite naturally. Trees can also be used for imple-
menting other ADTs, such as sorted sets and sorted dictionaries, that
require efficient searching, or that, like priority queues, must impose
some priority order on their elements. In this chapter, we examine
the properties of trees that make them useful data structures and
explore their role in implementing several types of collections.

C6840_18 11/19/08 11:45 AM Page 733

May not be copied, scanned, or duplicated, in whole or in part.

18.1 An Overview of Trees
In the linear data structures you have studied thus far, all items except for the first
have a distinct predecessor and all items except the last have a distinct successor.
In a tree, the ideas of predecessor and successor are replaced with those of parent
and child. Trees have two main characteristics:

1 Each item can have multiple children.

2 All items, except a privileged item called the root, have exactly one parent.

18.1.1 Tree Terminology

Tree terminology is a peculiar mix of biological, genealogical, and geometric
terms. Table 18.1 provides a quick summary of these terms. Figure 18.1 shows a
tree and some of its properties.

continued

TERM DEFINITION

Node An item stored in a tree.

Root The topmost node in a tree. It is the only node without
a parent.

Child A node immediately below and directly connected to a
given node. A node can have more than one child, and its
children are viewed as organized in left-to-right order. The
leftmost child is called the first child, and the rightmost is
called the last child.

Parent A node immediately above and directly connected to a
given node. A node can have only one parent.

Siblings The children of a common parent.

Leaf A node that has no children.

Interior node A node that has at least one child.

Edge/Branch/Link The line that connects a parent to its child.

Descendant A node’s children, its children’s children, and so on, down
to the leaves.

Ancestor A node’s parent, its parent’s parent, and so on, up to the root.

CHAPTER 18 Hierarchical Collections: Trees[734]

C6840_18 11/19/08 11:45 AM Page 734

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 18.1] A summary of terms used to describe trees

[FIGURE 18.1] Some properties of a tree

D

B F

H

EJ

NL M

CA

PROPERTY

Number of nodes 10

Height 3

Root node H

Leaves A, C, J, L, M, N

Interior nodes H, B, F, E

Ancestors of E F, H

Nodes at level 2 A, C, J, E

Descendants of F J, E, L, M, N

Node in the
rightmost subtree of F E, L, M, N

VALUE

Level 1

Level 0

Level 2

Level 3

Path The sequence of edges that connect a node and one of its
descendants.

Path length The number of edges in a path.

Depth or level The depth or level of a node equals the length of the path
connecting it to the root. Thus, the root depth or level of
the root is 0. Its children are at level 1, and so on.

Height The length of the longest path in the tree; put differently,
the maximum level number among leaves in the tree.

Subtree The tree formed by considering a node and all its
descendants.

18.1 An Overview of Trees [735]

C6840_18 11/19/08 11:45 AM Page 735

May not be copied, scanned, or duplicated, in whole or in part.

Note that the height of a tree is different from the number of nodes contained in
it. The height of a tree containing one node is 0, and, by convention, the height
of an empty tree is –1.

18.1.2 General Trees and Binary Trees

The tree shown in Figure 18.1 is sometimes called a general tree to distinguish
it from a special category called a binary tree. In a binary tree, each node has at
most two children, referred to as the left child and the right child. In a binary
tree, when a node has only one child, we distinguish it as being either a left child
or a right child. Thus, the two trees shown in Figure 18.2 are not the same when
they are considered binary trees, although they are the same when they are con-
sidered general trees.

[FIGURE 18.2] Two unequal binary trees that have the same sets of nodes

18.1.3 Recursive Definitions of Trees

We now give more formal definitions of general trees and binary trees. As is often
the case, one cannot understand the formal definition without an intuitive grasp of
the concept being defined. The formal definition is important, however, because it
provides a precise basis for further discussion. Furthermore, because recursive
processing of trees is common, we offer recursive definitions of both types of tree:

General tree. A general tree is either empty or consists of a finite set of nodes T.
One node r is distinguished from all others and is called the root. In addition, the
set T – {r} is partitioned into disjoint subsets, each of which is a general tree.

Binary tree. A binary tree is either empty or consists of a root plus a left subtree
and a right subtree, each of which are binary trees.

C

B D

A

B D

A

C

CHAPTER 18 Hierarchical Collections: Trees[736]

C6840_18 11/19/08 11:45 AM Page 736

May not be copied, scanned, or duplicated, in whole or in part.

18.1 Exercise
1 Use the following tree to answer the next six questions.

1 What are the leaf nodes in the tree?
2 What are the interior nodes in the tree?
3 What are the siblings of node 7?
4 What is the height of the tree?
5 How many nodes are in level 2?
6 Is the tree a general tree or a binary tree or both?

18.2 Why Use a Tree?
As mentioned earlier, trees nicely represent hierarchical structures. Consider, for
example, a parse tree, which describes the syntactic structure of a particular sen-
tence in terms of its component parts, such as noun phrases and verb phrases.
Figure 18.3 shows the parse tree for the following sentence: “The girl hit the ball
with a bat.”

D

3 4

2

8765

18.2 Why Use a Tree? [737]

C6840_18 11/19/08 11:45 AM Page 737

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 18.3] A parse tree for a sentence

The root node of this tree, labeled “Sentence,” represents the top-level phrase in
this structure. Its two children, labeled “Noun phrase” and “Verb phrase,” repre-
sent the constituent phrases of this sentence. The node labeled “Prepositional
phrase” is a child of “Verb phrase,” which indicates that the prepositional phrase
“with a bat” modifies the verb “hit” rather than the noun phrase “the ball.” At the
bottom level, the leaf nodes such as “ball,” represent the words within the
phrases.

As we will see later in this chapter, computer programs can construct parse
trees during the analysis of arithmetic expressions. These trees can then be used
for further processing, such as checking expressions for grammatical mistakes and
interpreting them for their meaning or values.

File system structures, such as those described in Chapter 4 and the case
study of Chapter 6, are also tree-like. Figure 18.4 shows one such structure,
where the directories are labeled “D” and the files are labeled “F.”

Noun phrase Verb phrase

Sentence

Noun Verb Noun phrase

Article Noun

Article Noun

Prepositional phraseArticle

girlThe hit

the

Preposition Noun phrase

withball

a bat

CHAPTER 18 Hierarchical Collections: Trees[738]

C6840_18 11/19/08 11:45 AM Page 738

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 18.4] A file system structure

Note that the root node represents the root directory. The other directories are
either interior nodes when they are nonempty or leaves when they are empty.
The files are all leaves.

Sorted collections can also be represented as tree-like structures. This type of
tree is called a binary search tree, or BST for short. Each node in the left sub-
tree of a given node is less than that node, and each node in the right subtree of a
given node is greater than that node. Figure 18.5 shows a binary search tree rep-
resentation of a sorted collection that contains the letters A through G.

[FIGURE 18.5] A sorted collection as a binary search tree

Unlike the sorted list discussed in Chapter 16, a binary search tree can support
not only logarithmic searches, but also logarithmic insertions.

These three examples show that the most important and useful feature of a
tree is not the positions of its items, but the relationships between parents and
children. These relationships are essential to the meaning of the structure’s data.

B F

D

GECA

FF

D

D DF F F F

FDFFF

18.2 Why Use a Tree? [739]

C6840_18 11/19/08 11:45 AM Page 739

May not be copied, scanned, or duplicated, in whole or in part.

They may indicate alphabetical ordering, phrase structure, containment in a sub-
directory, or any one-to-many relationship in a given problem domain. The pro-
cessing of the data within trees is based on the parent/child relationships among
the data.

In the sections that follow, we restrict our attention to different types, appli-
cations, and implementations of binary trees.

18.3 The Shape of Binary Trees
Trees in nature come in various shapes and sizes, and trees as data structures also
come in various shapes and sizes. Speaking informally, some trees are vine-like
and almost linear in shape, whereas others are bushy. The two extremes of these
shapes are shown in Figure 18.6.

[FIGURE 18.6] A vine-like tree and a bushy tree

The shape of a binary tree can be described more formally by specifying the rela-
tionship between its height and the number of nodes contained in it. This rela-
tionship also gives us information about the potential efficiency of some
operations on the tree.

At one extreme, a binary tree can be vine-like, with N nodes and a height of
N – 1 (see the left side of Figure 18.6). Such a tree resembles a linear chain of
nodes in a linked list. An access, an insertion, or a removal of a node in this struc-
ture would therefore be linear in the worst case.

At the other extreme, consider a full binary tree, which contains the maxi-
mum number of nodes for a given height H (see the right side of Figure 18.6). A

D

B F

D

GECA

E

D

G

F

C

B

A

CHAPTER 18 Hierarchical Collections: Trees[740]

C6840_18 11/19/08 11:45 AM Page 740

May not be copied, scanned, or duplicated, in whole or in part.

tree of this shape contains the full complement of nodes at each level. All of the
interior nodes have two children and all of the leaves are on the lowest level.
Table 18.2 lists the height and number of nodes for full binary trees of four
heights.

[TABLE 18.2] The relationship between the height and the number of nodes in some full binary trees

Let’s generalize from this table. What is the number of nodes, N, contained in a
full binary tree of height H? To express N in terms of H, you start with the root
(1 node), add its children (2 nodes), add their children (4 nodes), and so on, as
follows:

N = 1 + 2 + 4 + . . . + 2H

= 2H + 1 – 1

And what is the height, H, of a full binary tree with N nodes? Using simple alge-
bra, you get

H = log2(N + 1) – 1

Because the number of nodes on a given path from the root to a leaf is close to
log2(N), the maximum amount of work that it takes to access a given node in a
full binary tree is O(log N).

Not all bushy trees are full binary trees. However, a perfectly balanced
binary tree, which includes a complete complement of nodes at each level but
the last one, is bushy enough to support worst-case logarithmic access to leaf
nodes. A complete binary tree, in which any nodes on the last level are filled in
from left to right, is, like a full binary tree, a special case of a perfectly balanced
binary tree. Figure 18.7 summarizes these types of shapes of binary trees with
some examples.

HEIGHT OF THE TREE NUMBER OF NODES IN THE TREE

0 1

1 3

2 7

3 15

18.3 The Shape of Binary Trees [741]

C6840_18 11/19/08 11:45 AM Page 741

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 18.7] Four types of shapes of binary trees

Generally speaking, as a binary tree becomes more balanced, the performance of
accesses, insertions, and removals improves.

18.3 Exercises
1 What is the difference between a perfectly balanced binary tree and a

complete binary tree?

2 What is the difference between a complete binary tree and a full binary tree?

3 A full binary tree has a height of 5. How many nodes does it contain?

4 A complete binary tree contains 125 nodes. What is its height?

5 How many nodes are on a given level L in a full binary tree? Express
your answer in terms of L.

D

F

D

G

Unbalanced binary tree

D

B F

D

CA

Complete binary tree

D

B F

D

GE

Perfectly balanced binary tree

D

B F

D

GECA

Full binary tree

CHAPTER 18 Hierarchical Collections: Trees[742]

C6840_18 11/19/08 11:45 AM Page 742

May not be copied, scanned, or duplicated, in whole or in part.

18.4 Three Common Applications of Binary Trees
As mentioned earlier, trees emphasize the parent/child relationship, which allows
users to order data according to criteria other than position. In this section, we
introduce three special uses of binary trees that impose an ordering on their data:
heaps, binary search trees, and expression trees.

18.4.1 Heaps

The data in binary trees are often drawn from ordered sets whose items can be
compared. A min-heap is a binary tree in which each node is less than or equal
to both of its children. A max-heap places the larger nodes nearer to the root.
Either constraint on the order of the nodes is called the heap property. You
should not confuse this kind of heap with the heap that a computer uses to man-
age dynamic memory. Figure 18.8 shows two examples of min-heaps.

[FIGURE 18.8] Examples of min-heaps

As the figure shows, the smallest item is in the root node, and the largest
items are in the leaves. Note that the heaps in Figure 18.8 have the shape of a
complete binary tree, according to the definition given earlier. This arrangement
of data in a heap supports an efficient sorting method called the heap sort. The
heap sort algorithm builds a heap from a set of data and then repeatedly removes
the root item and adds it to the end of a list. Heaps are also used to implement
priority queues. We will develop implementations of heaps and heap-based prior-
ity queues later in this chapter.

A

C B

GEFD

C B

D

A

18.4 Three Common Applications of Binary Trees [743]

C6840_18 11/19/08 11:45 AM Page 743

May not be copied, scanned, or duplicated, in whole or in part.

18.4.2 Binary Search Trees

As mentioned earlier, a binary search tree imposes a sorted ordering on its nodes.
The manner in which it does so differs from that of a heap, however. In a BST,
the nodes in the left subtree of a given node are less than the given node, and the
nodes in its right subtree are greater than the given node. When the shape of a
BST approaches that of a perfectly balanced binary tree, searches and insertions
are O(log n) in the worst case.

Figure 18.9 shows all of the possible search paths for the binary search of a
sorted list, although only one of these paths is taken on any given search. The
items visited for comparison in each sublist are shaded.

[FIGURE 18.9] The possible search paths for the binary search of a sorted list

As the figure shows, the longest search path (items 5–7–8–9) requires four com-
parisons in the list of nine items. Because the list is sorted, the search algorithm
reduces the search space by one-half after each comparison.

Now let us transfer the items that are shaded to an explicit binary tree struc-
ture, as shown in Figure 18.10.

10

Level of call

2

3

3

11

12

93

8 95

2 8 95 7

3 4 5 6 7 8 9

CHAPTER 18 Hierarchical Collections: Trees[744]

C6840_18 11/19/08 11:45 AM Page 744

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 18.10] A binary search tree

The search algorithm, which we develop later in this chapter, follows an explicit
path from the root node to the target node. In this case, a perfectly balanced tree
yields a logarithmic search time. Unfortunately, not all BSTs are perfectly bal-
anced. In the worst case, they become linear and support linear searches.
Fortunately, the worst case rarely occurs in practice.

18.4.3 Expression Trees

In Chapter 14, we showed how to use a stack to convert infix expressions to post-
fix form and examined how to use a stack to evaluate postfix expressions. In
Chapter 17, we developed a recursive descent parser for a language of arithmetic
expressions. Yet another way to process expressions is to build a parse tree during
parsing. For a language of expressions, this structure is also called an expression
tree. Figure 18.11 shows several expression trees that result from parsing infix
expressions.

4

2 7

8

9

531

0

Level of call

1

2

3

18.4 Three Common Applications of Binary Trees [745]

C6840_18 11/19/08 11:45 AM Page 745

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 18.11] Some expression trees

Note the following points:

1 An expression tree is never empty.

2 Each interior node represents a compound expression, consisting of an
operator and its operands. Thus, each interior node has exactly two chil-
dren, which represent its operands.

3 Each leaf node represents an atomic, numeric operand.

4 Operands of higher precedence usually appear near the bottom of the
tree, unless they are overridden in the source expression by parentheses.

If you assume that an expression tree represents the structure of an infix expres-
sion, then you can make the following requests of an expression tree:

� Ask for the expression’s value.
� Ask for the expression in postfix form.
� Ask for the expression in prefix form.
� Ask for the expression in infix form.

This chapter’s case study develops an expression tree ADT and incorporates it
into a program for performing these operations.

Root node

Right subtree

Left subtree

(3+5) * 4

23

3+5 * 4

45

+

*3

53

*

4+

+

53

3+5

23

CHAPTER 18 Hierarchical Collections: Trees[746]

C6840_18 11/19/08 11:45 AM Page 746

May not be copied, scanned, or duplicated, in whole or in part.

18.4 Exercises
1 What is the heap property for a min-heap?

2 How is a binary search tree different from a binary tree?

3 Draw diagrams of the expression trees for the following expressions:

a 3 * 5 + 6
b 3 + 5 * 6
c 3 * 5 ** 6

18.5 Binary Tree Traversals
In earlier chapters, you saw how to traverse the items in linear collections using a
for loop or an iterator. There are four standard types of traversals for binary
trees, called preorder, inorder, postorder, and level order. Each type of traversal
follows a particular path and direction as it visits the nodes in the tree. In this
section, we show diagrams of each type of traversal on binary search trees, and we
then develop algorithms for the traversals later in the chapter.

The preorder traversal algorithm visits a tree’s root node, and then trav-
erses the left subtree and the right subtree in a similar manner. The sequence of
nodes visited by a preorder traversal is illustrated in Figure 18.12.

[FIGURE 18.12] A preorder traversal

The inorder traversal algorithm traverses the left subtree, visits the root
node, and traverses the right subtree. This process has the effect of moving as far

B F

D Order of nodes visited:

D B A C F E G

GECA

18.5 Binary Tree Traversals [747]

C6840_18 11/19/08 11:45 AM Page 747

May not be copied, scanned, or duplicated, in whole or in part.

to the left in the tree as possible before visiting a node. The sequence of nodes
visited by an inorder traversal is illustrated in Figure 18.13.

[FIGURE 18.13] An inorder traversal

The postorder traversal algorithm traverses the left subtree, traverses the
right subtree, and visits the root node. The path traveled by a postorder traversal
is illustrated in Figure 18.14:

[FIGURE 18.14] A postorder traversal

Beginning with level 0, the level order traversal algorithm visits the nodes
at each level in left-to-right order. The path traveled by a level order traversal is
illustrated in Figure 18.15.

[FIGURE 18.15] A level order traversal

B F

D Order of nodes visited:

D B F A C E G

GECA

D Order of nodes visited:

A C B E G F D

B F

D

GECA

D Order of nodes visited:

B F

D

GECA

A B C D E F G

CHAPTER 18 Hierarchical Collections: Trees[748]

C6840_18 11/19/08 11:45 AM Page 748

May not be copied, scanned, or duplicated, in whole or in part.

As you can see, an inorder traversal is appropriate for visiting the items in a
binary search tree in sorted order. The preorder, inorder, and postorder traversals
of expression trees can be used to generate the prefix, infix, and postfix represen-
tations of the expressions, respectively.

18.5 Exercise
1 Write the expression represented by the following expression tree in

infix, prefix, and postfix notations. (Hint: Use the inorder, preoder, and
postorder traversals described in this section to obtain your answers.)

18.6 A Binary Tree ADT
A binary tree ADT provides many of the common operations required for build-
ing more specialized types of trees, such as a binary search tree. Like other types
of collections, a binary tree ADT should support basic operations for creating
new trees, determining whether a tree is empty, and traversing a tree. The
remaining operations focus on accessing, replacing, or removing the component
parts of a nonempty binary tree—its root, left subtree, and right subtree. Keep in
mind that the subtrees are themselves binary trees. Given these basic operations
and the recursive structure of a binary tree, designers of more specialized trees or
other applications can easily develop any other binary tree-processing algorithms.
In this section, we present an interface for a binary tree ADT, show how it can be
used to implement some tree-processing algorithms, and discuss an implementa-
tion of a binary tree.

* 4

+

53

18.6 A Binary Tree ADT [749]

C6840_18 11/19/08 11:45 AM Page 749

May not be copied, scanned, or duplicated, in whole or in part.

18.6.1 The Interface for a Binary Tree ADT

Our binary tree ADT follows the recursive definition mentioned earlier: a binary
tree is either empty or consists of a root item and two other binary trees. Thus,
an implementation of this ADT and its interface will include two classes, one that
represents empty trees and the other that represents nonempty trees. Nonempty
trees support all of the methods in the ADT’s interface, whereas empty trees can
support only some of them. For now, we focus on nonempty trees and defer con-
sideration of empty trees to the section on implementation.

The interface for a binary tree ADT includes the methods just mentioned, as
well as an __str__ method that builds and returns a string that shows the shape
of the tree. One class that implements this interface is named BinaryTree,
which includes a constructor that allows users to create a nonempty tree with a
given root item. Table 18.3 describes the operations.

continued

BINARY TREE METHOD WHAT IT DOES

T = BinaryTree(item) Creates a new binary tree with item as the root and
empty left and right subtrees. This is essentially a
leaf node.

T.__str__() Same as str(T). Returns a string representation of
the tree that shows its structure.

T.isEmpty() Returns True if T is empty, or False otherwise.

T.preorder(aList) Performs a preorder traversal of T. Postcondition: the
items visited are added to aList.

T.inorder(aList) Performs an inorder traversal of T. Postcondition: the
items visited are added to aList.

T.postorder(aList) Performs a postorder traversal of T. Postcondition: the
items visited are added to aList.

T.levelorder(aList) Performs a level order traversal of T. Postcondition:
the items visited are added to aList.

T.getRoot() Returns the item at the root. Precondition: T is not an
empty tree.

CHAPTER 18 Hierarchical Collections: Trees[750]

C6840_18 11/19/08 11:45 AM Page 750

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 18.3] The operations on a binary tree ADT

Note the preconditions on the methods that access the component parts of a tree.
These parts exist only when the tree is nonempty, so the preconditions warn
users not to run these methods unless that is the case.

The next Python script assumes that the BinaryTree class has been defined
in the binarytree module. The script creates the full binary tree containing the
letters shown in Figure 18.15. We will use this tree in some of the example algo-
rithms shortly.

fromƒbinarytreeƒimportƒBinaryTree

#ƒCreateƒinitialƒleafƒnodes
aƒ=ƒBinaryTree(“A”)
bƒ=ƒBinaryTree(“B”)
cƒ=ƒBinaryTree(“C”)
dƒ=ƒBinaryTree(“D”)
eƒ=ƒBinaryTree(“E”)
fƒ=ƒBinaryTree(“F”)
gƒ=ƒBinaryTree(“G”)

T.getLeft() Returns the left subtree. Precondition: T is not an
empty tree.

T.getRight() Returns the right subtree. Precondition: T is not an
empty tree.

T.setRoot(item) Sets the root to item. Precondition: T is not an
empty tree.

T.setLeft(tree) Sets the left subtree to tree. Precondition: T is not an
empty tree.

T.setRight(tree) Sets the right subtree to tree. Precondition: T is not
an empty tree.

T.removeLeft() Removes and returns the left subtree. Precondition: T
is not an empty tree. Postcondition: the left subtree is
empty.

T.removeRight() Removes and returns the right subtree. Precondition:
T is not an empty tree. Postcondition: the left subtree
is empty.

18.6 A Binary Tree ADT [751]

continued

C6840_18 11/19/08 11:45 AM Page 751

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 18 Hierarchical Collections: Trees[752]

#ƒBuildƒtheƒtreeƒfromƒtheƒbottomƒup,ƒwhere
#ƒdƒisƒtheƒrootƒnodeƒofƒtheƒentireƒtree

#ƒBuildƒandƒsetƒtheƒleftƒsubtreeƒofƒd
b.setLeft(a)
b.setRight(c)
d.setLeft(b)

#ƒBuildƒandƒsetƒtheƒrightƒsubtreeƒofƒd
f.setLeft(e)
f.setRight(g)
d.setRight(f)

#ƒDisplayƒtheƒstructureƒofƒtheƒtree
printƒd

Here is the output of this script:

|ƒ|ƒG
|ƒF
|ƒ|ƒE
D
|ƒ|ƒC
|ƒB
|ƒ|ƒA

18.6.2 Processing a Binary Tree

Many algorithms for processing binary trees follow the trees’ recursive structure.
For example, although the BinaryTree interface includes no __len__ method,
you could easily define a function size that returns the number of nodes in a
tree. This function returns 0 if the tree is empty, or 1 plus the sum of the size of
the tree’s two subtrees otherwise. Here is the code for the function size, fol-
lowed by a session that prints the size of our tree named d:

defƒsize(tree):
ƒƒƒƒifƒtree.isEmpty():
ƒƒƒƒƒƒƒƒreturnƒ0
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒ1ƒ+ƒsize(tree.getLeft())ƒ+ƒsize(tree.getRight())

>>>ƒsize(d)
7

C6840_18 11/19/08 11:45 AM Page 752

May not be copied, scanned, or duplicated, in whole or in part.

Programmers are occasionally interested in the frontier, or set of leaf nodes,
of a tree. For example, the frontier of the parse tree for the English sentence
shown earlier in this chapter contains the words in the sentence. The following
function uses a recursive strategy for building a list that contains the nodes in the
frontier of a binary tree. The frontier function expects a binary tree as an argu-
ment and returns a list. There are two base cases:

1 The tree is empty. The function returns an empty list.

2 The tree is a leaf node (its left and right subtrees are both empty). The
function returns a list containing the root item.

On the recursive step, the function returns the concatenation of recursive calls
with the left and right subtrees. Here is the code for the frontier function, fol-
lowed by a session that obtains the frontier of our tree named d:

defƒfrontier(tree):
ƒƒƒƒ“””Returnsƒaƒlistƒcontainingƒtheƒleafƒnodes
ƒƒƒƒofƒtree.”””
ƒƒƒƒIfƒtree.isEmpty():
ƒƒƒƒƒƒƒƒreturnƒ[]
ƒƒƒƒelifƒtree.getLeft().isEmpty()ƒandƒtree.getRight().isEmpty():
ƒƒƒƒƒƒƒƒreturnƒ[tree.getRoot()]
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒfrontier(tree.getLeft())ƒ+ƒfrontier(tree.getRight())

>>>ƒfrontier(d)
['A',ƒ'C',ƒ'E',ƒ'G']

Other operations to build a string representation, search a tree for a given
item, compute a tree’s height, and determine whether a tree is perfectly balanced,
complete, or full, are left as exercises for you.

18.6.3 Implementing a Binary Tree

The attributes of a nonempty tree are its root, a left subtree, and a right subtree,
whereas an empty tree has no attributes. A nonempty tree should support all of
the methods, whereas an empty tree should support only the isEmpty method,
the __str__ method, and the traversals. With these restrictions in mind, we can
define a simple implementation that consists of two classes, named BinaryTree
and EmptyTree.

The BinaryTree class implements a constructor and all of the methods.
Users of nonempty binary trees need be concerned only with this class.

18.6 A Binary Tree ADT [753]

C6840_18 11/19/08 11:45 AM Page 753

May not be copied, scanned, or duplicated, in whole or in part.

The EmptyTree class is used primarily within the BinaryTree class to pro-
vide values for empty left and right subtrees of any given nodes. As such, the
EmptyTree class contains no data. The user of a nonempty binary tree normally
has contact with an EmptyTree object only when she tests a nonempty tree’s left
or right subtree for emptiness.

Here is a listing of a partial implementation, followed by further discussion:

“””
File:ƒbinarytree.py

AƒbinaryƒtreeƒADT

Exampleƒinitializations:
anEmptyTreeƒ=ƒBinaryTree.THE_EMPTY_TREE
aNonemptyTreeƒ=ƒBinaryTree(“Oneƒitem”)
“””

fromƒqueueƒimportƒLinkedQueue

classƒEmptyTree(object):
ƒƒƒƒ“””Representsƒanƒemptyƒtree.”””

ƒƒƒƒ#ƒSupportedƒmethods

ƒƒƒƒdefƒisEmpty(self):
ƒƒƒƒƒƒƒƒreturnƒTrue

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒreturnƒ“”

ƒƒƒƒdefƒ__iter__(self):
ƒƒƒƒƒƒƒƒ“””Iteratorƒforƒtheƒtree.”””
ƒƒƒƒƒƒƒƒreturnƒiter([])

ƒƒƒƒdefƒpreorder(self,ƒlyst):
ƒƒƒƒƒƒƒƒreturn

ƒƒƒƒdefƒinorder(self,ƒlyst):
ƒƒƒƒƒƒƒƒreturn

ƒƒƒƒdefƒpostorder(self,ƒlyst):
ƒƒƒƒƒƒƒƒreturn

ƒƒƒƒdefƒpostorder(self,ƒlyst):
ƒƒƒƒƒƒƒƒreturn

ƒƒƒƒ#ƒMethodsƒnotƒsupportedƒbyƒemptyƒtreesƒbutƒinƒtheƒinterfaceƒ
ƒƒƒƒ#ƒforƒallƒbinaryƒtrees

continued

CHAPTER 18 Hierarchical Collections: Trees[754]

C6840_18 11/19/08 11:45 AM Page 754

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒgetRoot(self):
ƒƒƒƒƒƒƒƒraiseƒAttributeError,ƒ“Emptyƒtree”

ƒƒƒƒ#ƒAllƒotherƒmethodsƒinƒtheƒADT'sƒinterfaceƒgoƒhere

classƒBinaryTree(object):
ƒƒƒƒ“””Representsƒaƒnonemptyƒtree.”””

ƒƒƒƒ#ƒSingletonƒconstantƒforƒallƒemptyƒtreeƒobjects
ƒƒƒƒTHE_EMPTY_TREEƒ=ƒEmptyTree()

ƒƒƒƒdefƒ__init__(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””Createsƒaƒtreeƒwith
ƒƒƒƒƒƒƒƒtheƒgivenƒitemƒatƒtheƒroot.”””
ƒƒƒƒƒƒƒƒself._rootƒ=ƒitem
ƒƒƒƒƒƒƒƒself._leftƒ=ƒBinaryTree.THE_EMPTY_TREE
ƒƒƒƒƒƒƒƒself._rightƒ=ƒBinaryTree.THE_EMPTY_TREE

ƒƒƒƒdefƒisEmpty(self):
ƒƒƒƒƒƒƒƒreturnƒFalse

ƒƒƒƒdefƒgetRoot(self):
ƒƒƒƒƒƒƒƒreturnƒself._root

ƒƒƒƒdefƒsetRoot(self,ƒitem):
ƒƒƒƒƒƒƒƒself._rootƒ=ƒitem

ƒƒƒƒdefƒremoveLeft(self):
ƒƒƒƒƒƒƒƒleftƒ=ƒself._left
ƒƒƒƒƒƒƒƒself._leftƒ=ƒBinaryTree.THE_EMPTY_TREE
ƒƒƒƒƒƒƒƒreturnƒleft

ƒƒƒƒ#ƒOtherƒaccessors,ƒmutators,ƒandƒ__str__ƒgoƒhere
ƒƒƒƒ
ƒƒƒƒdefƒ__iter__(self):
ƒƒƒƒƒƒƒƒ“””Iteratorƒforƒtheƒtree.
ƒƒƒƒƒƒƒƒSupportsƒanƒinorderƒtraversalƒofƒtheƒitems.”””
ƒƒƒƒƒƒƒƒlystƒ=ƒ[]
ƒƒƒƒƒƒƒƒself.inorder(lyst)
ƒƒƒƒƒƒƒƒreturnƒiter(lyst)

ƒƒƒƒdefƒinorder(self,ƒlyst):
ƒƒƒƒƒƒƒƒ“””Addsƒitemsƒtoƒlystƒduring
ƒƒƒƒƒƒƒƒanƒinorderƒtraversal.”””
ƒƒƒƒƒƒƒƒself.getLeft().inorder(lyst)
ƒƒƒƒƒƒƒƒlyst.append(self.getRoot())
ƒƒƒƒƒƒƒƒself.getRight().inorder(lyst)

ƒƒƒƒ#ƒTheƒotherƒtraversalsƒandƒ__str__ƒgoƒhere

18.6 A Binary Tree ADT [755]

C6840_18 11/19/08 11:45 AM Page 755

May not be copied, scanned, or duplicated, in whole or in part.

The first thing to note is that the EmptyTree class includes all the methods
in the binary tree ADT, but supports only those that make sense for empty trees.
The methods that are supported return suitable values for empty trees, such as
True for isEmpty, the empty string for __str__, and None for traversals. The
unsupported methods, such as setRoot, raise an AttributeError exception
when a user runs them with an empty tree.

The BinaryTree class sets the class variable THE_EMPTY_TREE to an instance
of EmptyTree. This one instance is used for every reference to an empty tree,
including the left and right subtrees of new nonempty binary trees. The strategy
of using one and only one instance of a class for multiple references is called the
singleton pattern.

Unlike their namesakes in the EmptyTree class, the methods in BinaryTree
do not check preconditions or raise any exceptions, because this type of tree is
never empty. The basic accessor and mutator methods call for no further comment.

Like the other methods, the traversals are defined in both classes. In the class
EmptyTree, a traversal, such as the method inorder, simply returns with no
changes to the method’s list argument. The inorder method of BinaryTree
looks like a recursive routine. However, this method has no if statement to dis-
tinguish between a base case (an empty tree) and the recursive cases. What looks
like a recursive call of inorder in this method is actually a call of a method with
the same name on another tree object. This tree is either another BinaryTree or
an EmptyTree. The Python virtual machine selects the particular inorder
method to run based on the type of tree on which it is called (polymorphism).
The process of calling inorder stops when the tree on which it is called is an
EmptyTree.

18.6.4 The String Representation of a Tree

The __str__ method for a binary tree can be implemented with any of the tra-
versals. This method, which is used primarily in testing and debugging, returns a
string that displays the tree’s shape as well as its elements. A convenient way to do
this for a text-only display is to “rotate” the tree 90 degrees counterclockwise and
display vertical bars between the interior nodes. The following code builds the
appropriate string by first recursing with the right subtree, then visiting an item,
and finally recursing with the left subtree.

CHAPTER 18 Hierarchical Collections: Trees[756]

C6840_18 11/19/08 11:45 AM Page 756

May not be copied, scanned, or duplicated, in whole or in part.

defƒ__str__(self):
ƒƒƒƒ“””Returnsƒaƒstringƒrepresentationƒofƒtheƒtree
ƒƒƒƒrotatedƒ90ƒdegreesƒtoƒtheƒleft.”””
ƒƒƒƒdefƒstrHelper(tree,ƒlevel):
ƒƒƒƒƒƒƒƒresultƒ=ƒ“”ƒ
ƒƒƒƒƒƒƒƒifƒnotƒtree.isEmpty():
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒstrHelper(tree.getRight(),ƒlevelƒ+ƒ1)
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒ“|ƒ“ƒ*ƒlevel
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒstr(tree.getRoot())ƒ+ƒ“\n”
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒstrHelper(tree.getLeft(),ƒlevelƒ+ƒ1)
ƒƒƒƒƒƒƒƒreturnƒresult
ƒƒƒƒreturnƒstrHelper(self,ƒ0)

18.6 Exercises
1 Explain why the binary tree implementation discussed in this section has

two classes, one for an empty tree and one for a nonempty tree.

2 Explain how polymorphism is used in the binary tree implementation
discussed in this section.

18.7 Developing a Binary Search Tree
A binary search tree imposes a special ordering on the nodes in a binary tree, so
as to support logarithmic searches and insertions. In this section, we use the
binary tree ADT to develop a binary search tree, and assess its performance.

18.7.1 The Binary Search Tree Interface

The interface for a binary search tree should include a constructor and basic
methods to test a tree for emptiness, determine the number of items, add an item,
remove an item, and search for an item. Another useful method is __iter__,
which allows users to traverse the items in a binary search tree with a for loop. In
addition, a search tree might support the four types of traversals discussed earlier.
These methods, which are coded in the Python class BST (Binary Search Tree), are
described in Table 18.4.

18.7 Developing a Binary Search Tree [757]

C6840_18 11/19/08 11:45 AM Page 757

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 18.4] The methods of the BST class

Because an ordering of items is required, the element type of any binary search
tree must include a __cmp__ method.

18.7.2 Data Structures for the Implementation of BST

Our implementation of a binary search tree essentially wraps one ADT, a binary
search tree, around another ADT, a binary tree, which is treated as the concrete
data structure. The BST class includes a reference to a BinaryTree and an inte-
ger to track its size. On instantiation, these variables are set to a new, empty
binary tree and to 0, respectively. Most of the BST methods manipulate these two

BST METHOD WHAT IT DOES

T = BST() Creates and returns a new, empty tree.

T.add(item) Adds item to the tree, increasing the tree’s size by one.

T.find(target) Returns the first item that matches target in the tree, or
None if there is no such item.

T.remove(item) If item is in the tree, removes and returns it, or returns
None otherwise.

T.isEmpty() Returns True if the tree contains no items, or False
otherwise.

T.__len__() Same as len(T). Returns the number of items in the tree.

T.__iter__() Returns an iterator that performs an inorder traversal of
the tree.

T.levelorder() Returns a list containing items from a level order traversal
of the tree.

T.inorder() Returns a list containing items from an inorder traversal of
the tree.

T.preorder() Returns a list containing items from a preorder traversal of
the tree.

T.postorder() Returns a list containing items from a postorder traversal of
the tree.

T.__str__() Same as str(T). Returns a string containing the string rep-
resentations of the items in a format that shows the tree
structure.

CHAPTER 18 Hierarchical Collections: Trees[758]

C6840_18 11/19/08 11:45 AM Page 758

May not be copied, scanned, or duplicated, in whole or in part.

variables. Here is the code for the part of the BST class that creates a tree and
implements some of the basic methods.

“””
File:ƒbst.py
BSTƒandƒBTNodeƒclassesƒforƒbinaryƒsearchƒtrees.
“””

fromƒbinarytreeƒimportƒBinaryTree

classƒBST(object):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._treeƒ=ƒBinaryTree.THE_EMPTY_TREE
ƒƒƒƒƒƒƒƒself._sizeƒ=ƒ0

ƒƒƒƒdefƒisEmpty(self):
ƒƒƒƒƒƒƒƒreturnƒlen(self)ƒ==ƒ0

ƒƒƒƒdefƒ__len__(self):
ƒƒƒƒƒƒƒƒreturnƒself._size

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒreturnƒstr(self._tree)

ƒƒƒƒdefƒ__iter__(self):
ƒƒƒƒƒƒƒƒreturnƒiter(self.inorder())

ƒƒƒƒdefƒinorder(self,ƒlyst):
ƒƒƒƒƒƒƒƒlystƒ=ƒ[]
ƒƒƒƒƒƒƒƒself._tree.inorder(lyst)
ƒƒƒƒƒƒƒƒreturnƒlyst

#ƒRemainingƒmethodƒdefinitionsƒgoƒhere

We now examine several other methods in more detail.

18.7.3 Searching a Binary Search Tree

The find method returns the first matching item if the target item is in the tree;
otherwise, it returns None. We can use a recursive strategy that takes advantage

18.7 Developing a Binary Search Tree [759]

C6840_18 11/19/08 11:45 AM Page 759

May not be copied, scanned, or duplicated, in whole or in part.

of the recursive structure of the underlying binary tree. Following is a
pseudocode algorithm for this process:

if tree is empty
return None

else if the target item equals the root item
return the root item

else if the target item is less than the root item
return the result of searching the left subtree

else
return the result of searching the right subtree

Because the recursive search algorithm requires a parameter for the binary
tree, we cannot include it as a top-level method. Instead, the algorithm is defined
as a nested helper function that is called within the top-level find method.
Following is the code for the two routines:

defƒfind(self,ƒtarget):
ƒƒƒƒ“””ReturnsƒdataƒifƒtargetƒisƒfoundƒorƒNoneƒotherwise.”””

ƒƒƒƒ#ƒHelperƒfunctionƒtoƒsearchƒtheƒbinaryƒtreeƒ
ƒƒƒƒdefƒfindHelper(tree):
ƒƒƒƒƒƒƒƒifƒtree.isEmpty():
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒNone
ƒƒƒƒƒƒƒƒelifƒtargetƒ==ƒtree.getRoot():
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒtree.getRoot()
ƒƒƒƒƒƒƒƒelifƒtargetƒ<ƒtree.getRoot():
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒfindHelper(tree.getLeft())
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒfindHelper(tree.getRight())

ƒƒƒƒreturnƒfindHelper(self._tree)

18.7.4 Inserting an Item into a Binary Search Tree
The add method inserts an item in its proper place in the binary search tree.

In general, an item’s proper place will be in one of three positions:

1 The root node, if the tree is already empty

2 A node in the current node’s left subtree, if the new item is less than the
item in the current node

3 A node in the current node’s right subtree, if the new item is greater than
or equal to the item in the current node

CHAPTER 18 Hierarchical Collections: Trees[760]

C6840_18 11/19/08 11:45 AM Page 760

May not be copied, scanned, or duplicated, in whole or in part.

For options 2 and 3, the add method uses a recursive helper function named
addHelper. This function, which takes a nonempty binary tree and the new item as
arguments, searches for the new item’s spot in its left or right subtrees. The
addHelper function looks to the left or to the right of the current node, depending
on whether the new item is less than or greater than or equal to the item in the cur-
rent node. If the appropriate subtree is empty, the new item is encased in a new
BinaryTree and attached at that position. Otherwise, addHelper is called recur-
sively with the nonempty subtree to continue the search for the appropriate position.

Following is the code for the add method:

defƒadd(self,ƒnewItem):
ƒƒƒƒ“””AddsƒnewItemƒtoƒtheƒtreeƒifƒit'sƒnotƒalreadyƒinƒit
ƒƒƒƒorƒreplacesƒtheƒexistingƒitemƒifƒitƒisƒinƒit.
ƒƒƒƒReturnsƒNoneƒifƒtheƒitemƒisƒaddedƒorƒtheƒold
ƒƒƒƒitemƒifƒitƒisƒreplaced.”””

ƒƒƒƒ#ƒHelperƒfunctionƒtoƒsearchƒforƒitem'sƒpositionƒ
ƒƒƒƒdefƒaddHelper(tree):
ƒƒƒƒƒƒƒƒcurrentItemƒ=ƒtree.getRoot()
ƒƒƒƒƒƒƒƒleftƒ=ƒtree.getLeft()
ƒƒƒƒƒƒƒƒrightƒ=ƒtree.getRight()

ƒƒƒƒƒƒƒƒ#ƒNewƒitemƒisƒless,ƒgoƒleftƒuntilƒspotƒisƒfound
ƒƒƒƒƒƒƒƒifƒnewItemƒ<ƒcurrentItem:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒleft.isEmpty():
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtree.setLeft(BinaryTree(newItem))
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒaddHelper(left)

ƒƒƒƒƒƒƒƒ#ƒNewƒitemƒisƒgreaterƒorƒequal,ƒ
ƒƒƒƒƒƒƒƒ#ƒgoƒrightƒuntilƒspotƒisƒfound
ƒƒƒƒƒƒƒƒelifƒright.isEmpty():
ƒƒƒƒƒƒƒƒƒƒƒƒtree.setRight(BinaryTree(newItem))
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒaddHelper(right)
ƒƒƒƒƒƒƒƒ#ƒEndƒofƒaddHelper

ƒƒƒƒ#ƒTreeƒisƒempty,ƒsoƒnewƒitemƒgoesƒatƒtheƒroot
ƒƒƒƒifƒself.isEmpty():
ƒƒƒƒƒƒƒƒself._treeƒ=ƒBinaryTree(newItem)

ƒƒƒƒ#ƒOtherwise,ƒsearchƒforƒtheƒitem'sƒspot
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒaddHelper(self._tree)

Note that, in all cases, an item is added as a leaf node.

18.7 Developing a Binary Search Tree [761]

C6840_18 11/19/08 11:45 AM Page 761

May not be copied, scanned, or duplicated, in whole or in part.

18.7.5 Removing an Item from a Binary Search Tree

Recall that removing an item from an array causes a shift of items to fill the hole.
Removing an item from a linked list requires rearranging a few pointers.
Removing an item from a binary search tree can require both of the preceding
actions. Following is an outline of the strategy for this process:

1 Save a reference to the root node.

2 Attempt to locate the node to be removed, its parent, and its parent’s ref-
erence to this node.

3 If the item is not in the tree, return None.

4 Otherwise, if the node has a left child and a right child, replace the
node’s value with the largest value in the left subtree and delete that
value’s node from the left subtree.

5 Otherwise, set the parent’s reference to the node to the node’s only child.

6 Reset the root node to the saved reference.

7 Decrement the size and return the item.

Step 4 in this process is fairly complex, so it can be factored out into a helper
function, which takes the node to be deleted as a parameter. The outline for this
function follows. In this outline, the node containing the item to be removed is
referred to as the top node.

1 Search the top node’s left subtree for the node containing the largest
item. This will be in the rightmost node of the subtree (the node at the
end of the rightmost path in this subtree). Be sure to track the parent of
the current node during the search.

2 Replace the top node’s value with the item.

3 If the top node’s left child contained the largest item (for example, that
node had no right subtree, so the parent reference still refers to the top
node), set the top node’s left child to its left child’s left child.

4 Otherwise, set the parent node’s right child to that right child’s left child.

The coding of these two routines is left for you as Project 18.1.

CHAPTER 18 Hierarchical Collections: Trees[762]

C6840_18 11/19/08 11:45 AM Page 762

May not be copied, scanned, or duplicated, in whole or in part.

18.7.6 Complexity Analysis of Binary Search Trees

As you might have expected, binary search trees are set up with the intent of
replicating the O(logn) behavior for the binary search of a sorted list. In addition,
a binary search tree can also provide fast insertions. Unfortunately, as mentioned
earlier, this intent is not always realized. Optimal behavior depends on the height
of the tree. A perfectly balanced tree (one with a height of log(n)) supports loga-
rithmic searches. In the worst case, when the items are inserted in sorted order
(either ascending or descending), the tree’s height becomes linear, as does its
search behavior. Surprisingly, insertions in random order result in a tree with
close-to-optimal search behavior.

The run time of insertions is also highly dependent on the height of the tree.
Recall that an insertion involves a search for the item’s spot and this spot will
always be a leaf node. Thus, the run time of an insertion into a perfectly balanced
tree will be close to logarithmic. Removals also require a search for the target
item, with behavior similar to that of the other operations.

Strategies for maintaining a tree structure that supports optimal insertions and
searches in all cases are the subject of advanced computer science courses.
However, if you assume that a tree is relatively balanced already, there is one tech-
nique that you can apply immediately to preserve the tree’s shape, if your applica-
tion must transfer BSTs to and from text files. Let’s consider the output operation.
The only way to obtain the tree’s items is to run one of the traversals. The worst
possible choice would be an inorder traversal. Because this traversal visits the nodes
in sorted order, the items in the tree will be saved in sorted order. Then, when the
items are input from the file to another tree, they will be inserted in sorted order,
leaving behind a tree with a linear shape. Alternatively, if you select a preorder tra-
versal, the items will be output to the file, starting with each parent node and mov-
ing down to its left and right children. The input of the items from such a file will
then generate a new tree whose shape is the same as the original tree.

18.7 Exercises
1 Describe how insertions can have a negative effect on subsequent

searches of a binary search tree.

2 Discuss the trade-offs between the array-based implementation of a
sorted list presented in Chapter 16 and a binary search tree implementa-
tion of a sorted list.

18.7 Developing a Binary Search Tree [763]

C6840_18 11/19/08 11:45 AM Page 763

May not be copied, scanned, or duplicated, in whole or in part.

18.8 Case Study: Parsing and Expression Trees
As mentioned earlier, expression trees are binary trees that contain the operands and
operators of expressions. Because an expression tree is never empty, it lends itself to
a particularly elegant kind of recursive processing. In this section, we design and
implement an expression tree to support the processing of arithmetic expressions.

18.8.1 Request

Write a program that uses an expression tree to evaluate expressions or convert
them to alternative forms.

18.8.2 Analysis

Like the parser developed in the case study of Chapter 17, the current program
parses an input expression and prints syntax error messages if errors occur. But if
the expression is syntactically correct, the program prints its value and its prefix,
infix, and postfix representations. Figure 18.16 shows an interaction with the pro-
gram. As you can see, the infix output is placed in parentheses to show the prece-
dence of the operators explicitly.

[FIGURE 18.16] A session with the expression tree processor

The program includes a modified version of the Parser class from Chapter 17
as well as the Scanner and Token classes. To these, we add two new classes to rep-
resent expression trees named LeafNode and InteriorNode. Leaf nodes represent
integer operands in an expression, whereas interior nodes represent an operator
and its two operands. The structure of the system is shown in the class diagram
of Figure 18.17.

Enter an infix expression: 4 + 5 * 2
Prefix: + 4 * 5 2
Infix: (4 + (5 * 2))
Postfix: 4 5 2 * +
Value: 14
Enter an infix expression: (4 + 5) * 2
Prefix: * + 4 5 2
Infix: ((4 + 5) * 2)
Postfix: 4 5 + 2 *
Value: 18

CHAPTER 18 Hierarchical Collections: Trees[764]

C6840_18 11/19/08 11:45 AM Page 764

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 18.17] The classes for the parsing system

18.8.3 Design and Implementation of the Node Classes

The parser builds an expression tree in two ways:

1 It builds a leaf node containing a number.

2 It builds an interior node whose value is an operator and whose left and
right subtrees are nodes representing the operand expressions.

A simple and elegant design results from partitioning the nodes into two types.
The first type of node, called LeafNode, contains an integer. The second type of
node, called InteriorNode, contains an operator and two other nodes. The lat-
ter nodes can be either leaf nodes or interior nodes.

Both types of nodes recognize the same methods, which are listed in Table 18.5.

[TABLE 18.5] Methods for the node classes

METHOD WHAT IT DOES

N.prefix() Returns the string representation of the node’s expression in
prefix form.

N.infix() Returns the string representation of the node’s expression in
infix form.

N.postfix() Returns the string representation of the node’s expression in
postfix form.

N.value() Returns the value of the node’s expression.

Scanner

TokenInteriorNode

ParserParseView

LeafNode

18.8 Case Study: Parsing and Expression Trees [765]

C6840_18 11/19/08 11:45 AM Page 765

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 18 Hierarchical Collections: Trees[766]

The constructor for LeafNode expects an integer as an argument, whereas the
constructor for InteriorNode expects a character-based operator symbol and
two other nodes as arguments.

Here is a short tester program that illustrates the use of the node classes:

fromƒexpressiontreeƒimportƒLeafNode,ƒInteriorNode

aƒ=ƒLeafNode(4)
bƒ=ƒInteriorNode('+',ƒLeafNode(2),ƒLeafNode(3))
cƒ=ƒInteriorNode('*',ƒa,ƒb)
cƒ=ƒInteriorNode('-',ƒc,ƒb)

printƒ“Expectƒ((4ƒ*ƒ(2ƒ+ƒ3))ƒ-ƒ(2ƒ+ƒ3))ƒ:”,ƒc.infix()
printƒ“Expectƒ-ƒ*ƒ4ƒ+ƒ2ƒ3ƒ+ƒ2ƒ3ƒƒƒƒƒƒƒƒƒ:”,ƒc.prefix()
printƒ“Expectƒ4ƒ2ƒ3ƒ+ƒ*ƒ2ƒ3ƒ+ƒ-ƒƒƒƒƒƒƒƒƒ:”,ƒc.postfix()
printƒ“Expectƒ15ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ:”,ƒc.value()

We now develop one of the traversal methods for both classes and leave the
others as exercises for you. The method postfix returns the string representa-
tion of an expression in postfix form. In the case of a LeafNode, that is the string
representation of the node’s integer.

classƒLeafNode(object):
ƒƒƒƒ“””Representsƒanƒinteger.”””

ƒƒƒƒdefƒ__init__(self,ƒdata):
ƒƒƒƒƒƒƒƒself._dataƒ=ƒdata

ƒƒƒƒdefƒpostfix(self):
ƒƒƒƒƒƒƒƒreturnƒstr(self)

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒreturnƒstr(self._data)

An InteriorNode’s postfix string contains the postfix strings of its two
operand nodes, followed by the node’s operator.

C6840_18 11/19/08 11:45 AM Page 766

May not be copied, scanned, or duplicated, in whole or in part.

18.8 Case Study: Parsing and Expression Trees [767]

classƒInteriorNode(object):
ƒƒƒƒ“””Representsƒanƒoperatorƒandƒitsƒtwoƒoperands.”””

ƒƒƒƒdefƒ__init__(self,ƒop,ƒleftOper,ƒrightOper):
ƒƒƒƒƒƒƒƒself._operatorƒ=ƒop
ƒƒƒƒƒƒƒƒself._leftOperandƒ=ƒleftOper
ƒƒƒƒƒƒƒƒself._rightOperandƒ=ƒrightOper

ƒƒƒƒdefƒpostfix(self):
ƒƒƒƒƒƒƒƒreturnƒself._leftOperand.postfix()ƒ+ƒ“ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._rightOperand.postfix()ƒ+ƒ“ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._operator

The design pattern of the postfix methods of InteriorNode and LeafNode is
like the one used for the traversals of binary trees. The only difference is that in
this application, an expression tree is never empty, so a leaf node is the base case.
The other expression tree traversals have a similar design and are left as exercises
for you.

18.8.4 Design and Implementation of the Parser Class

It is easiest to build an expression tree with a parser that uses a recursive descent
strategy, and fortunately, we already have such a parser from Chapter 17. Thus,
we borrow that parser and modify it.

The method parse should now return an expression tree to its caller, which
uses that tree to obtain information about the expression. Each parsing method
that handles a syntactic form in the language builds and returns an expression
tree. That tree represents the phrase of the expression parsed by the method. We
develop two of these methods and leave the other as an exercise for you.

The method factor processes either a number or an expression nested in
parentheses. When the token is a number, the method creates a leaf node con-
taining the number and returns it. Otherwise, if the token is a left parenthesis,
the method calls the method expression to parse the nested expression. This

C6840_18 11/19/08 11:45 AM Page 767

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 18 Hierarchical Collections: Trees[768]

method returns a tree representing the results, and factor passes this tree back
to its caller. Here is the revised code for factor:

defƒ_factor(self):
ƒƒƒƒtokenƒ=ƒself._scanner.get()
ƒƒƒƒifƒtoken.getType()ƒ==ƒToken.INT:
ƒƒƒƒƒƒƒƒtreeƒ=ƒLeafNode(token.getValue())
ƒƒƒƒƒƒƒƒself._scanner.next()
ƒƒƒƒelifƒtoken.getType()ƒ==ƒToken.L_PAR:
ƒƒƒƒƒƒƒƒself._scanner.next()
ƒƒƒƒƒƒƒƒtreeƒ=ƒself._expression()
ƒƒƒƒƒƒƒƒself._accept(self._scanner.get(),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒToken.R_PAR,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“')'ƒexpected”)
ƒƒƒƒƒƒƒƒself._scanner.next()
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒtreeƒ=ƒNone
ƒƒƒƒƒƒƒƒself._fatalError(token,ƒ“badƒfactor”)
ƒƒƒƒreturnƒtree

The method expression processes a term followed by zero or more adding
operators and terms. We begin by calling the method term, which returns a tree
representing the term. If the current token is not an adding operator, then
expression just passes the tree back to its caller. Otherwise, expression enters
a loop. In this loop, expression builds an interior node whose value is the
adding operator, whose left subtree is the tree just received from the last call to
term, and whose right subtree is the tree received from a new call to term. This
process ends when expression does not see an adding operator. By this point, a
fairly complex tree might have built up, and expression returns it. Here is the
code for expression:

defƒ_expression(self):
ƒƒƒƒtreeƒ=ƒself._term()
ƒƒƒƒtokenƒ=ƒself._scanner.get()
ƒƒƒƒwhileƒtoken.getType()ƒinƒ(Token.PLUS,ƒToken.MINUS):
ƒƒƒƒƒƒƒƒopƒ=ƒstr(token)
ƒƒƒƒƒƒƒƒself._scanner.next()
ƒƒƒƒƒƒƒƒtreeƒ=ƒInteriorNode(op,ƒtree,ƒself._term())
ƒƒƒƒƒƒƒƒtokenƒ=ƒself._scanner.get()
ƒƒƒƒreturnƒtree

The other parsing methods build their trees in a similar manner. The com-
pletion of the program is left as an exercise for you.

C6840_18 11/19/08 11:45 AM Page 768

May not be copied, scanned, or duplicated, in whole or in part.

18.9 An Array Implementation of Binary Trees
An array-based implementation of a binary tree is also possible, but it is difficult to
define and practical only in some special situations. Mapping stacks, queues, and
lists to arrays is straightforward because all are linear and support the same notion
of adjacency, each element having an obvious predecessor and successor. But given
a node in a tree, what would be its immediate predecessor in an array? Is it the
parent or a left sibling? What is its immediate successor? Is it a child or a right
sibling? Trees are hierarchical and resist being flattened. Nevertheless, for com-
plete binary trees, there is an elegant and efficient array-based representation.

Consider the complete binary tree in Figure 18.18.

[FIGURE 18.18] A complete binary tree

In an array-based implementation, the elements are stored by level, as shown
in Figure 18.19.

[FIGURE 18.19] An array representation of a complete binary tree

Given an arbitrary item at position i in the array, it is easy to determine the
location of related items, as shown in Table 18.6.

b c d f h i j

0 41 2 3 5 6 7 8 9

a e g

bLevel 1 c

aLevel 0

gfedLevel 2

hLevel 3 i j

18.9 An Array Implementation of Binary Trees [769]

C6840_18 11/19/08 11:45 AM Page 769

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 18.6] The locations of given items in an array representation of a complete binary tree

Thus, for item d at location 3, we get the results shown in Table 18.7.

[TABLE 18.7] The relatives of item “d” in an array representation of a complete binary tree

One might naturally ask why the array representation does not work for
incomplete binary trees. The reason is not hard to see. In an incomplete binary
tree, some levels are not filled above others. But the calculation of a node’s rela-
tives in an array is based on being able to multiply or divide its index by 2, which
cannot be done when levels are not filled in a top-down manner.

The array representation of a binary tree is pretty rare and is used mainly to
implement a heap, which is discussed in the next section.

18.9 Exercises
1 Assume that a node is at position 12 in an array representation of a binary

tree. Give the positions of that node’s parent, left child, and right child.

2 What are the constraints on a binary tree that is contained in an array?

ITEM LOCATION

Parent b at 1

Left sibling, if there is one Not applicable

Right sibling, if there is one e at 4

Left child, if there is one h at 7

Right child, if there is one i at 8

ITEM LOCATION

Parent (i – 1) / 2

Left sibling, if there is one i – 1

Right sibling, if there is one i + 1

Left child, if there is one i * 2 + 1

Right child, if there is one i * 2 + 2

CHAPTER 18 Hierarchical Collections: Trees[770]

C6840_18 11/19/08 11:45 AM Page 770

May not be copied, scanned, or duplicated, in whole or in part.

18.10 Implementing Heaps
We will use a heap to implement a priority queue, so the heap interface should
include methods to return its size, add an item, remove an item, and peek at an
item (see Table 18.8).

[TABLE 18.8] The methods in the heap interface

The two most critical heap operations are add and pop. The add method
expects a comparable element as an argument and inserts the element into its
proper place in the heap. That place is generally at a level above an element that
is larger and below an element that is smaller. Duplicate elements are placed
below previously entered ones. The pop method deletes the topmost node in the
heap, returns the element contained there, and maintains the heap property. The
peek operation returns but does not remove the topmost element in a heap.

The methods add (insertion) and pop (removal), which are used throughout
the heap implementation, are defined in the class ArrayHeap. In the array-based
implementation, both methods need to maintain the structure of the heap within
the array (we actually use a Python list, but refer to the structure as an array in
the following discussion). This structure is similar to the array representation of a
binary tree discussed earlier, but it has the constraint that each node is less than
either of its children.

HEAP METHOD WHAT IT DOES

H.add(item) Inserts item in its proper place in the heap, increasing the
heap’s size by one.

H.pop() Precondition: the heap is not empty. Removes and returns the
topmost item in the heap.

H.peek() Precondition: the heap is not empty. Returns the item at the top
of the heap.

H.isEmpty() Returns True if the heap is empty, or False otherwise.

H.__len__() Same as len(H). Returns the number of items in the heap.

H.__iter__() Same as iter(H). Returns an iterator on the heap. This itera-
tor visits the items from the minimum to the maximum.

H.__str__() Same as str(H). Returns a string representation of the heap
that shows its shape.

18.10 Implementing Heaps [771]

C6840_18 11/19/08 11:45 AM Page 771

May not be copied, scanned, or duplicated, in whole or in part.

Let us consider insertion first. The goal is to find the new element’s proper
place in the heap and insert it there. Following is our strategy for insertions:

1 Begin by inserting the element at the bottom of the heap. In the array
implementation, this will be the position after the last element currently
in the array.

2 Then, enter a loop that “walks” the new element up the heap while the
new element’s value is less than that of its parent. Each time this relation-
ship is true, we swap the new element with its parent. When this process
stops (either the new element is greater than or equal to its parent or we
will have reached the top node), the new element is in its proper place.

Recall that the position of an element’s parent in the array is computed by
subtracting 1 from the element’s position and dividing the result by 2. The top of
the heap is at position 0 in the array. In the implementation, the instance variable
_heap refers to a Python list. Following is the code for the method add:

defƒadd(self,ƒitem):
ƒƒƒƒself._heap.append(item)
ƒƒƒƒcurPosƒ=ƒlen(self._heap)ƒ-ƒ1
ƒƒƒƒwhileƒcurPosƒ>ƒ0:
ƒƒƒƒƒƒƒƒparentƒ=ƒ(curPosƒ-ƒ1)ƒ/ƒ2
ƒƒƒƒƒƒƒƒparentItemƒ=ƒself._heap[parent]
ƒƒƒƒƒƒƒƒifƒparentItemƒ<=ƒitem:
ƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._heap[curPos]ƒ=ƒself._heap[parent]
ƒƒƒƒƒƒƒƒƒƒƒƒself._heap[parent]ƒ=ƒitem
ƒƒƒƒƒƒƒƒƒƒƒƒcurPosƒ=ƒparent

A quick analysis of this method reveals that, at most, log2n comparisons must
be made to walk up the tree from the bottom, so the add operation is O(logn).
The method occasionally triggers a doubling in the size of the underlying array.
When doubling occurs, this operation is O(n), but amortized over all additions,
the operation is O(1) per addition.

The goal of a removal is to return the element in the root node after deleting
this node and adjusting the positions of other nodes so as to maintain the heap
property. Following is our strategy for removals:

1 Begin by saving pointers to the top element and the bottom element in the
heap and by moving the element from the bottom of the heap to the top.

2 Walk down the heap from the top, moving the smallest child up one
level, until the bottom of the heap is reached.

CHAPTER 18 Hierarchical Collections: Trees[772]

C6840_18 11/19/08 11:45 AM Page 772

May not be copied, scanned, or duplicated, in whole or in part.

Following is the code for the pop method:

defƒpop(self):
ƒƒƒƒifƒself.isEmpty():
ƒƒƒƒƒƒƒƒraiseƒException,ƒ“Heapƒisƒempty”

ƒƒƒƒtopItemƒ=ƒself._heap[0]
ƒƒƒƒbottomItemƒ=ƒself._heap.pop(len(self._heap)ƒ-ƒ1)
ƒƒƒƒifƒlen(self._heap)ƒ==ƒ0:
ƒƒƒƒƒƒƒƒreturnƒbottomItem
ƒƒƒƒƒƒƒƒƒƒƒ
ƒƒƒƒself._heap[0]ƒ=ƒbottomItem
ƒƒƒƒlastIndexƒ=ƒlen(self._heap)ƒ-ƒ1
ƒƒƒƒcurPosƒ=ƒ0
ƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒleftChildƒ=ƒ2ƒ*ƒcurPosƒ+ƒ1ƒ
ƒƒƒƒƒƒƒƒrightChildƒ=ƒ2ƒ*ƒcurPosƒ+ƒ2
ƒƒƒƒƒƒƒƒifƒleftChildƒ>ƒlastIndex:
ƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒifƒrightChildƒ>ƒlastIndex:
ƒƒƒƒƒƒƒƒƒƒƒƒmaxChildƒ=ƒleftChild;
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒleftItemƒƒ=ƒself._heap[leftChild]
ƒƒƒƒƒƒƒƒƒƒƒƒrightItemƒ=ƒself._heap[rightChild]
ƒƒƒƒƒƒƒƒƒƒƒƒifƒleftItemƒ<ƒrightItem:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒmaxChildƒ=ƒleftChild
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒmaxChildƒ=ƒrightChild
ƒƒƒƒƒƒƒƒmaxItemƒ=ƒself._heap[maxChild]
ƒƒƒƒƒƒƒƒifƒbottomItemƒ<=ƒmaxItem:
ƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._heap[curPos]ƒ=ƒself._heap[maxChild]
ƒƒƒƒƒƒƒƒƒƒƒƒself._heap[maxChild]ƒ=ƒbottomItem
ƒƒƒƒƒƒƒƒƒƒƒƒcurPosƒ=ƒmaxChild
ƒƒƒƒreturnƒtopItem

Once again, analysis shows that the number of comparisons required for a
removal is at most log2n, so the pop operation is O(logn). The method pop occa-
sionally triggers a halving in the size of the underlying array. When halving
occurs, this operation is O(n), but amortized over all removals, the operation is
O(1) per removal.

18.10 Implementing Heaps [773]

C6840_18 11/19/08 11:45 AM Page 773

May not be copied, scanned, or duplicated, in whole or in part.

18.10 Exercises
1 How do the run times of the heap operations differ from their counter-

parts in binary search trees?

2 What is the advantage of using a list over using an array to implement
a heap?

3 The heap sort uses a heap to sort a list of items. The strategy of this sort
is to add the items in the list to a heap, and then remove them all from
the heap as they are transferred back to the list. What is the run time
and memory complexity of the heap sort?

18.11 Using a Heap to Implement a Priority Queue
Recall the discussion of priority queues in Chapter 15, where we implemented a
priority queue ADT with a sorted linked list. Another common implementation of
priority queues uses a heap. Items with the highest priority (the lexically smallest
items) are located near the top of the heap. The following code segment shows the
class HeapPriorityQueue, which extends the ArrayHeap class developed in the
previous section. The new class includes implementations of the methods enqueue
and dequeue to adhere to the queue interface discussed in Chapter 15. All other
methods, except for str, are inherited from ArrayHeap. This last method is over-
ridden to return a string of the queue’s items in priority order.

fromƒheapƒimportƒArrayHeap

classƒHeapPriorityQueue(ArrayHeap):
ƒƒƒƒ“””Heap-basedƒimplementationƒofƒaƒpriorityƒqueue.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒArrayHeap.__init__(self)

ƒƒƒƒdefƒenqueue(self,ƒitem):
ƒƒƒƒƒƒƒƒself.add(item)

ƒƒƒƒdefƒdequeue(self):
ƒƒƒƒƒƒƒƒreturnƒself.pop()

continued

CHAPTER 18 Hierarchical Collections: Trees[774]

C6840_18 11/19/08 11:45 AM Page 774

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒresultƒ=ƒ“”
ƒƒƒƒƒƒƒƒforƒitemƒinƒself:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒstr(item)ƒ+ƒ“ƒ“
ƒƒƒƒƒƒƒƒreturnƒresult

Summary
� Trees are hierarchical collections. The topmost node in a tree is called

its root. In a general tree, each node below the root has at most one
predecessor, or parent node, and zero or more successors, or child
nodes. Nodes without children are called leaves. Nodes that have chil-
dren are called interior nodes. The root of a tree is at level 0, its chil-
dren are at level 1, and so on.

� In a binary tree, a node can have at most two children. A complete
binary tree fills each level of nodes before moving to the next level. A
full binary tree includes all the possible nodes at each level.

� There are four standard types of tree traversals: preorder, inorder,
postorder, and levelorder.

� An expression tree is a type of binary tree in which the interior nodes
contain operators and the successor nodes contain their operands.
Atomic operands are contained in the leaf nodes. Expression trees are
used to represent the structure of expressions in programming lan-
guage parsers and interpreters.

� A binary search tree is a type of binary tree in which each nonempty
left subtree contains data that are less than the datum in its parent
node and each nonempty right subtree contains data that are greater
than the datum in its parent node.

� A binary search tree supports logarithmic searches and insertions if it
is close to complete.

� A heap is a type of binary tree in which smaller data items are located
near the root. A heap can be used to implement the n log n heap sort
algorithm and a priority queue.

Summary [775]

C6840_18 11/19/08 11:45 AM Page 775

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 18 Hierarchical Collections: Trees[776]

REVIEW QUESTIONS
1 The distinguished node at the beginning or top of a tree is called the

a head node
b root node
c leaf node

2 A node without children is called a

a single node
b leaf node

3 Each level k in a full binary tree contains

a 2k nodes
b 2k nodes
c 2k – 1 nodes

4 Assume that data are inserted into a binary search tree in the order D B
A C F E G. A preorder traversal would return these data in the order

a D B A C F E G
b A B C D E F G

5 Assume that data are inserted into a binary search tree in the order D B
A C F E G. An inorder traversal would return these data in the order

a D B A C F E G
b A B C D E F G

6 Assume that data are inserted into a binary search tree in the order A B
C D E F G. The structure of this tree resembles that of a

a full binary tree
b list

7 The item removed from a min-heap is always the

a smallest item
b largest item

C6840_18 11/19/08 11:45 AM Page 776

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [777]

8 A postorder traversal of an expression tree returns the expression in

a infix form
b prefix form
c postfix form

9 The worst-case behavior of the search of a binary search tree is

a O(logn)
b O(n)
c O(n2)

10 Insertions and removals from a heap are

a linear operations
b logarithmic operations

PROJECTS
1 Complete the implementation of the BinaryTree and BST classes dis-

cussed in this chapter and test them with tester programs.

2 Add a method to the BST class to write the data in a binary search tree to
a text file. The method expects an opened text file object as an argument
and outputs the tree’s data to the file in such a manner that the original
shape of the tree is restored when the data are input. (Hint: One of the
traversals accomplishes this.)

3 Add an optional argument to the __init__ method of BST. This argu-
ment is another collection. Its default value is None. If the argument is
not None, add the data from the argument to the new tree.

4 Add the methods height and leaves to the BinaryTree ADT. The
height method returns the number of levels in the tree. The leaves
method returns a list of the leaves in the tree.

5 Add the methods successor and predecessor to the BST class. Each
method expects an item as an argument and returns an item or None. A
successor is the smallest item in the tree that is greater than the given
item. A predecessor is the largest item in the tree that is less than the
given item. Note that the successor may exist even if the given item is
not present in the tree.

C6840_18 11/19/08 11:45 AM Page 777

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 18 Hierarchical Collections: Trees[778]

6 Add a method rangeFind to the BST class. This method expects two
items as arguments that specify the bounds of a range of items to be
found in the tree. The method traverses the tree and builds and returns a
list of the items found within the specified range.

7 Complete and test the node classes for the expression tree developed in
this chapter.

8 Add and test the ^ operator for exponentiation to the expression tree
developed in this chapter.

9 Complete the parser developed in the case study of this chapter. The
parser should also handle the exponentiation operator ^. Recall that this
operator has a higher precedence than * and /, and is right associative
(see Chapter 17, Programming Project 10, for details).

10 Implement and test a heapSort function that is based on the heap class
developed in this chapter. Profile this function using the technology
developed in Chapter 11 to verify its runtime complexity.

11 Modify the emergency room scheduler case study program from Chapter 15
so that it uses a heap-based priority queue.

C6840_18 11/19/08 11:45 AM Page 778

May not be copied, scanned, or duplicated, in whole or in part.

[CHAPTER]
UNORDERED COLLECTIONS:

Sets and Dictionaries19
After completing this chapter, you will be able to:

� Implement a set type and a dictionary type using lists
� Explain how hashing can help a programmer achieve constant

access time to unordered collections
� Explain strategies for resolving collisions during hashing, such

as linear probing, quadratic probing, and bucket/chaining
� Use a hashing strategy to implement a set type and a

dictionary type
� Use a binary search tree to implement a sorted set type and

a sorted dictionary type
The collection ADTs we have covered thus far are all ordered.

In an ordered collection, both the value and the position of each
item are significant, and each item is accessed by its position. In this
chapter, we look at unordered collections and focus particularly on
their implementation. From the user’s perspective, only the items’
values matter; to the user, an item’s position is not an issue. Thus,
none of the operations on an unordered collection are position
based. Once added, an item is accessed by its value. Users can insert,
retrieve, or remove items from unordered collections, but they can-
not access the ith item, the next item, or the previous item. Some
examples of unordered collections are sets and dictionaries. You
already have experience working with Python sets and dictionaries.
This chapter introduces some implementation strategies for sets and
dictionaries.

C6840_19 11/19/08 11:45 AM Page 779

May not be copied, scanned, or duplicated, in whole or in part.

19.1 Using Sets
As you have learned from your study of mathematics, a set is a collection of items
in no particular order. From the user’s perspective, the items in a set are unique.
That is, there are no duplicate items in a set. In mathematics, we perform many
operations on sets. Some of the most typical operations are the following:

1 Return the number of items in the set.

2 Test for the empty set (a set that contains no items).

3 Add an item to the set.

4 Remove an item from the set.

5 Test for set membership (whether or not a given item is in the set).

6 Obtain the union of two sets. The union of two sets A and B is a set that
contains all of the items in A and all of the items in B.

7 Obtain the intersection of two sets. The intersection of two sets A and B
is the set of items in A that are also items in B.

8 Obtain the difference of two sets. The difference of two sets A and B is
the set of items in A that are not also items in B.

9 Test a set to determine whether or not another set is its subset. The set B
is a subset of set A if and only if B is an empty set or all of the items in B
are also in A.

Note that the difference and subset operations (8 and 9) are not symmetric. For
example, the difference of sets A and B is not always the same as the difference of
sets B and A.

To describe the contents of a set, we use the notation {<item-1> ...
<item-n>}, but assume that the items are in no particular order. Table 19.1
shows the results of some operations on example sets.

CHAPTER 19 Unordered Collections: Sets and Dictionaries[780]

C6840_19 11/19/08 11:45 AM Page 780

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 19.1] Results of some typical set operations

19.1.1 The Python set Class

Python includes a set class. The most commonly used methods in this class are
listed in Table 19.2.

continued

METHOD WHAT IT DOES

s = set() Creates an empty set and assigns it to s.

s = set(anIterable) Creates a set that contains the unique items in
anIterable object (such as a string, a list, or a
dictionary) and assigns it to s.

s.add(item) Adds item to s if it is not already in s.

s.remove(item) Removes item from s. Precondition: item must be
in s.

s.__len__() Same as len(s). Returns the number of items
currently in s.

s.__iter__() Returns an iterator on s. Supports a for loop with s.
Items are visited in an unspecified order.

SETS A AND B UNION INTERSECTION DIFFERENCE SUBSET

{12 5 17 6} {12 5 42 17 6} {17 6} {12 5} False
{42 17 6}

{21 76 10 3 9} {21 76 10 3 9} { } {21 76 10 3 9} True
{}

{87} {22 87 23} {87} {} False
{22 87 23}

{22 87 23} {22 87 23} {87} {22 23} True
{87}

19.1 Using Sets [781]

C6840_19 11/19/08 11:45 AM Page 781

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 19.2] Commonly used methods in Python’s set class

Because a set, unlike a list, allows for no index-based access, you might won-
der how a programmer can visit all of the items in a set after they have been
added. Note that the set class includes an iterator, which was first introduced in
Chapter 16. The iterator allows the programmer to use a for loop on a set to
visit its items in an unspecified order.

19.1.2 A Sample Session with Sets

In the next example, we create two sets named A and B and perform some opera-
tions on them. When the set constructor receives a list as an argument, the list’s
elements are copied to the set, omitting duplicate items. Note that Python prints a
set value using the type name, parentheses, and brackets enclosing the elements.

>>>ƒAƒ=ƒset([0,ƒ1,ƒ2])
>>>ƒBƒ=ƒset()
>>>ƒ1ƒinƒA
True
>>>ƒA.intersection(B)
set([])
>>>ƒB.add(1)
>>>ƒB.add(1)
>>>ƒB.add(5)
>>>ƒB
set([1,ƒ5])
>>>ƒA.intersection(B)
set([1])

continued

s.__str__() Same as str(s). Returns a string containing the
string representation of the items in s.

s.__contains__(item) Same as item in s. Returns True if item is in s,
or False otherwise.

s1.union(s2) Returns a set containing the items in s1 and s2.

s1.intersection(s2) Returns a set containing the items in s1 that are
also in s2.

s1.difference(s2) Returns a set containing the items in s1 that are not
in s2.

s1.issubset(s2) Returns True if s1 is a subset of s2, or False
otherwise.

CHAPTER 19 Unordered Collections: Sets and Dictionaries[782]

C6840_19 11/19/08 11:45 AM Page 782

May not be copied, scanned, or duplicated, in whole or in part.

>>>ƒA.union(B)
set([0,ƒ1,ƒ2,ƒ5])
>>>ƒA.difference(B)
set([0,ƒ2])
>>>ƒB.remove(5)
>>>ƒB
set([1])
>>>ƒB.issubset(A)
True
>>>ƒforƒitemƒinƒA:
ƒƒƒƒƒƒƒƒprintƒitem,

0ƒ1ƒ2
>>>

19.1.3 Applications of Sets

Aside from their role in mathematics, sets have many applications in the area of
data processing. For example, in the field of database management, the answer to
a query that contains the conjunction of two keys could be constructed from the
intersection of the sets of items associated with those keys.

19.1.4 Implementations of Sets

Arrays and lists may be used to contain the data items of a set. A linked list has
the advantage of supporting constant-time removals of items, once they are
located in the structure. However, as we shall see shortly, adding and removing
items requires linear searches. Another strategy, called hashing, attempts to
approximate random access into an array for insertions, removals, and searches.
We explore both implementation strategies in detail in later sections.

19.1.5 Relationship Between Sets and Dictionaries

As you learned in Chapter 5, a dictionary is an unordered collection of elements
called entries. Each entry consists of a key and an associated value. Operations for
adding, modifying, and removing entries use a key to locate an entry and its value.
A dictionary’s keys must be unique, but its values may be duplicated. Thus, one
can think of a dictionary as having a set of keys. The differences and similarities
between dictionaries and sets will come into play as we examine implementation
strategies in following sections.

19.1 Using Sets [783]

C6840_19 11/19/08 11:45 AM Page 783

May not be copied, scanned, or duplicated, in whole or in part.

19.1 Exercises
1 In what ways does a set differ from a list?

2 Assume that the set s contains the number 3. Write the sequence of sets
resulting from the following operations:

a s.add(4)

b s.add(4)

c s.add(5)

d s.remove(3)

3 How do you visit all of the items in a set?

19.2 List Implementations of Sets and Dictionaries
The simplest implementations of sets and dictionaries use lists. This section pres-
ents these implementations and assesses their run-time performance.

19.2.1 Sets

Our first implementation of sets is called ListSet. This class includes the meth-
ods listed in Table 19.2. The ListSet class contains a Python list. Because we do
not have to worry about ordering the elements, they can be added at the end of
the list. Several of the ListSet methods simply call the corresponding list
methods to accomplish their tasks. One important exception is the ListSet
method add, which must prevent a duplicate item from being inserted into the
set. Here is the code for a partial implementation, which includes the methods
add, __iter__, and union:

“””
File:ƒsets.py
“””

classƒListSet(object):
ƒƒƒƒ“””Aƒlist-basedƒimplementationƒofƒaƒset.”””

continued

CHAPTER 19 Unordered Collections: Sets and Dictionaries[784]

C6840_19 11/19/08 11:45 AM Page 784

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._itemsƒ=ƒ[]

ƒƒƒƒdefƒadd(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””Addsƒitemƒtoƒtheƒsetƒifƒitƒisƒnotƒinƒtheƒset.”””
ƒƒƒƒƒƒƒƒifƒnotƒitemƒinƒself._items:
ƒƒƒƒƒƒƒƒƒƒƒƒself._items.append(item)

ƒƒƒƒdefƒ__iter__(self):
ƒƒƒƒƒƒƒƒreturnƒiter(self._items)

ƒƒƒƒdefƒunion(self,ƒother):
ƒƒƒƒƒƒƒƒresultƒ=ƒListSet()
ƒƒƒƒƒƒƒƒforƒitemƒinƒself:
ƒƒƒƒƒƒƒƒƒƒƒƒresult.add(item)
ƒƒƒƒƒƒƒƒforƒitemƒinƒother:
ƒƒƒƒƒƒƒƒƒƒƒƒresult.add(item)
ƒƒƒƒƒƒƒƒreturnƒresult

The completion of the remaining methods in ListSet are left as exercises
for you.

19.2.2 Dictionaries

Our list-based implementation of a dictionary is called ListDict. The entries in
a dictionary consist of two parts, a key and a value. Figure 19.1 shows one such
entry, whose key is “age” and whose value is 39.

[FIGURE 19.1] An entry for a dictionary

A list implementation of a dictionary contains entries and behaves in many
ways like a list implementation of a set. Each key/value pair is packaged in an
Entry object. The Entry class includes the method __eq__, which compares the
keys of two entries for equality. The basic access methods in the ListDict class
are __getitem__, __setitem__, and pop. When the programmer uses the sub-
script [] operator with a dictionary, Python automatically calls the method
__getitem__ or __setitem__, depending on the context. The three methods
behave almost like those in Python’s dict class, with the exception that the

key “age”

value 39

19.2 List Implementations of Sets and Dictionaries [785]

C6840_19 11/19/08 11:45 AM Page 785

May not be copied, scanned, or duplicated, in whole or in part.

__getitem__ and pop methods automatically return None if the key is absent
from the dictionary. The method __setitem__ adds the key and value to the
dictionary if the key is absent, but __setitem__ replaces the associated value if
the key is present. The interface for the ListDict class is shown in Table 19.3.

[TABLE 19.3] The interface of the ListDict class

The next code segment illustrates a short test of some of the basic access methods:

fromƒdictionaryƒimportƒListDict

dƒ=ƒListDict()
d[“Name”]ƒ=ƒ“Ken”
d[“Age”]ƒ=ƒ39
printƒ“ExpectƒKen:”,ƒd[“Name”]
printƒ“ExpectƒNone:”,ƒd[“Address”]
d[“Age”]ƒ=ƒ40
printƒ“Expectƒ40:”,ƒd[“Age”]
printƒ“ExpectƒKen:”,ƒd.pop(“Name”)
printƒ“ExpectƒNone:”,ƒd.pop(“Address”)

METHOD WHAT IT DOES

d = ListDict() Creates and returns an empty dictionary.

d.__getitem__(key) Same as d[key]. Returns the value associated with
key if key exists, or returns None otherwise.

d._setitem__(key, Same as d[key] = value. If key exists, replaces its
ƒƒƒƒƒƒƒƒƒƒƒƒƒvalue) associated value with value; otherwise, inserts a new

key/value entry.

d.pop(key) Removes the key/value entry and returns the associated
value if key exists, or returns None otherwise.

d.__contains__(key) Same as key in d. Returns True if key is a key in d,
or returns False otherwise.

d.__len__() Same as len(d). Returns the number of entries
currently in d.

d.__iter__() Returns an iterator on the keys of d. Supports a for
loop with d. Keys are visited in an unspecified order.

d.__str__() Same as str(d). Returns a string containing the
string representations of the key/value pairs in d.

CHAPTER 19 Unordered Collections: Sets and Dictionaries[786]

C6840_19 11/19/08 11:45 AM Page 786

May not be copied, scanned, or duplicated, in whole or in part.

When the ListDict methods __getitem__, __setitem__, and pop receive a
key as an argument, they create an entry with the key and search the list of
entries for an entry that matches it. The methods then use index-based list
methods to manipulate the list’s entry if it is found. Here is the common pattern
of each of these operations:

Find the index of the entry in the list of entries
If the index exists

Manipulate the entry at the index in the list
Else

Do what is needed when the entry does not exist

Our implementation uses a Python list. A list’s index method returns the index
of an item if it exists, but raises an exception otherwise. Therefore, each basic
accessing method uses a try/except statement to manage these possibilities.
The try clause handles the case where the index exists, whereas the except
clause handles the case where the index does not exist. Here is the code for the
methods __getitem__, pop, and __setitem__ in the ListDict class:

“””
File:ƒdictionary.py
“””

classƒEntry(object):
ƒƒƒƒ“””Aƒkey/valueƒpair.”””

ƒƒƒƒdefƒ__init__(self,ƒkey,ƒvalue):
ƒƒƒƒƒƒƒƒself.keyƒ=ƒkey
ƒƒƒƒƒƒƒƒself.valueƒ=ƒvalue

ƒƒƒƒdefƒ__eq__(self,ƒother):
ƒƒƒƒƒƒƒƒreturnƒself.keyƒ==ƒother.key

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒreturnƒstr(self.key)ƒ+ƒ“:”ƒ+ƒstr(self.value)

classƒListDict(object):
ƒƒƒƒ“””Aƒlist-basedƒimplementationƒofƒaƒdictionary.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._tableƒ=ƒ[]

ƒƒƒƒdefƒ__getitem__(self,ƒkey):

19.2 List Implementations of Sets and Dictionaries [787]

continued

C6840_19 11/19/08 11:45 AM Page 787

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒvalueƒassociatedƒwithƒkeyƒor
ƒƒƒƒƒƒƒƒreturnsƒNoneƒifƒkeyƒdoesƒnotƒexist.”””
ƒƒƒƒƒƒƒƒentryƒ=ƒEntry(key,ƒNone)
ƒƒƒƒƒƒƒƒtry:
ƒƒƒƒƒƒƒƒƒƒƒƒindexƒ=ƒself._table.index(entry)
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒself._table[index].value
ƒƒƒƒƒƒƒƒexcept:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒNone

ƒƒƒƒdefƒpop(self,ƒkey):
ƒƒƒƒƒƒƒƒ“””Removesƒtheƒentryƒassociatedƒwithƒkeyƒand
ƒƒƒƒƒƒƒƒreturnsƒitsƒvalueƒorƒreturnsƒNoneƒifƒkey
ƒƒƒƒƒƒƒƒdoesƒnotƒexist.”””
ƒƒƒƒƒƒƒƒentryƒ=ƒEntry(key,ƒNone)
ƒƒƒƒƒƒƒƒtry:
ƒƒƒƒƒƒƒƒƒƒƒƒindexƒ=ƒself._table.index(entry)
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒself._table.pop(index).value
ƒƒƒƒƒƒƒƒexcept:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒNone

ƒƒƒƒdefƒ__setitem__(self,ƒkey,ƒvalue):
ƒƒƒƒƒƒƒƒ“””Insertsƒanƒentryƒwithƒkey/valueƒifƒkey
ƒƒƒƒƒƒƒƒdoesƒnotƒexistƒorƒreplacesƒtheƒexistingƒvalue
ƒƒƒƒƒƒƒƒwithƒvalueƒifƒkeyƒexists.”””
ƒƒƒƒƒƒƒƒentryƒ=ƒEntry(key,ƒvalue)
ƒƒƒƒƒƒƒƒtry:
ƒƒƒƒƒƒƒƒƒƒƒƒindexƒ=ƒself._table.index(entry)
ƒƒƒƒƒƒƒƒƒƒƒƒself._table[index]ƒ=ƒentry
ƒƒƒƒƒƒƒƒexcept:
ƒƒƒƒƒƒƒƒƒƒƒƒself._table.append(entry)

The completion of the ListDict class is left as an exercise for you.

19.2.3 Complexity Analysis of the List Implementations of
Sets and Dictionaries

The list implementations of sets and dictionaries require little programmer effort,
but unfortunately do not perform well. A quick inspection of the basic accessing
methods shows that each one must perform a linear search of the underlying list,
so each basic accessing method is O(n).

Because items are in no particular order from the user’s perspective, we can-
not resort to implementations that support logarithmic access and insertions,
such as the binary search trees discussed in Chapter 18. However, as we shall see

CHAPTER 19 Unordered Collections: Sets and Dictionaries[788]

C6840_19 11/19/08 11:45 AM Page 788

May not be copied, scanned, or duplicated, in whole or in part.

in the next section, there are strategies for implementations of sets and dictionar-
ies that are faster than linear implementations.

19.2 Exercises
1 The ListSet method add searches the entire set. Discuss the conse-

quences of this search of the entire set for the performance of the meth-
ods union, intersection, and difference and give the big-O
complexity of each of these methods.

2 Janine proposes a more efficient strategy for the ListSet method add.
Her strategy is to not check for a duplicate, but simply adds it to the list.
Discuss the consequences of this strategy for the other ListSet methods.

3 Describe how you would design methods to return lists of the keys and
values in a list-based dictionary.

19.3 Hashing Strategies
As you learned in Chapter 13, the fastest way to access items in a collection is via
random access supported by arrays and array-based lists. Let’s start with the
assumption, then, that the underlying data structure for a set or a dictionary is an
array and see if we can find a way to approximate random access to the items or
keys in the set or dictionary. In an ideal world, the items or keys in a set or dic-
tionary are consecutive numbers from 0 to the size of the structure minus 1.
Then, their positions in an underlying array are accessible in constant time. In
the actual world of data processing, where the keys are very large numbers or
people’s names or other attributes, this is rarely the case.

However, suppose the first key is the number 15,000, and the following keys
are numbered consecutively. The position of a given key in an array could then
be computed with the expression key - 15000. This type of computation is
known as a key-to-address transformation or a hashing function. A hashing
function acts on a given key by returning its relative position in an array. The
array used with a hashing strategy is called a hash table. If the hashing function
runs in constant time, then insertions, accesses, and removals of the associated
keys are O(1).

19.3 Hashing Strategies [789]

C6840_19 11/19/08 11:45 AM Page 789

May not be copied, scanned, or duplicated, in whole or in part.

Our first example of a hashing function is still rather unrealistic. Let’s sup-
pose that the keys are not consecutive numbers, and that the length of the array
structure is 4. Then, the hashing function key % 4 produces a distinct index into
the array for each of the keys 3, 5, 8, and 10, as shown in Figure 19.2.

[FIGURE 19.2] Placement of the keys 3, 5, 8, and 10 using the hashing function key % 4

Unfortunately, the keys 3, 4, 8, and 10 do not find unique positions in the array,
because both 4 and 8 hash to an index of 0 (Figure 19.3).

[FIGURE 19.3] Placement of the keys 3, 4, 8, and 10 using the hashing function key % 4

The hashing of the keys 4 and 8 to the same index is called a collision.
In the rest of this section, we explore the development of techniques related

to hashing that minimize collisions and increase the potential for constant-time
access to items in unordered collections. We also examine strategies for dealing
with collisions when they occur.

19.3.1 The Relationship of Collisions to Density

In Figure 19.3, you saw an example of data collision during hashing into an array
that becomes full. Do collisions occur when extra cells (beyond those needed for
the data) are available in the array? To answer this question, let’s write a Python
function, keysToIndexes, which generates the indexes in an array of size N from
a list of keys. A key in this context is just a positive integer. The array index

0 ?

1 5

2 10

3 3

3

4

8

10

0 8

1 5

2 10

3 3

3

5

8

10

CHAPTER 19 Unordered Collections: Sets and Dictionaries[790]

C6840_19 11/19/08 11:45 AM Page 790

May not be copied, scanned, or duplicated, in whole or in part.

corresponding to the key is the remainder after dividing the key by the length of
the array (for any positive number c, c % n is a number from 0 through n - 1).
The definition of keysToIndexes follows, and then a following session
shows the indexes for the two data sets discussed earlier:

defƒkeysToIndexes(keys,ƒn):
ƒƒƒƒ“””Returnsƒtheƒindexesƒcorrespondingƒto
ƒƒƒƒtheƒkeysƒforƒanƒarrayƒofƒlengthƒn.”””
ƒƒƒƒreturnƒmap(lambdaƒkey:ƒkeyƒ%ƒn,ƒkeys)

>>>ƒkeysToIndexes([3,ƒ5,ƒ8,ƒ10],ƒ4)ƒƒƒ#ƒNoƒcollisions
[3,ƒ1,ƒ0,ƒ2]
>>>ƒkeysToIndexes([3,ƒ4,ƒ8,ƒ10],ƒ4)ƒƒƒ#ƒOneƒcollision
[3,ƒ0,ƒ0,ƒ2]

Runs of both sets of keys with increasing array lengths show that no collisions
occur when the array length reaches 8:

>>>ƒkeysToIndexes([3,ƒ5,ƒ8,ƒ10],ƒ8)
[3,ƒ5,ƒ0,ƒ2]
>>>ƒkeysToIndexes([3,ƒ4,ƒ8,ƒ10],ƒ8)
[3,ƒ4,ƒ0,ƒ2]

There might be other sets of four keys that would cause collisions with an array
of length 8, but it’s clear that if we’re willing to waste some array memory, the
likelihood of collisions during hashing decreases. Put another way, as the density,
or number of keys relative to the length of an array decreases, so does the proba-
bility of collisions. The load factor of an array, introduced in Chapter 13, is a
measure of its data density (number of items / length of the array). For example,
when the load factor in the examples just discussed exceeds .5, a collision occurs.
Keeping the load factor even lower (say, below .2) seems like a good way to avoid
collisions, but the cost of memory incurred by load factors below .5 is probably
prohibitive for data sets of millions of items.

Even load factors below .5 cannot prevent many collisions from occurring for
some data sets. Consider the set of seven keys 10, 20, 30, 40, 50, 60, and 70. If
you hash them into an array of length 15, none of them finds a unique index, as
shown in the next session:

>>>ƒkeysToIndexes([10,ƒ20,ƒ30,ƒ40,ƒ50,ƒ60,ƒ70],ƒ15)
[10,ƒ5,ƒ0,ƒ10,ƒ5,ƒ0,ƒ10]

19.3 Hashing Strategies [791]

C6840_19 11/19/08 11:45 AM Page 791

May not be copied, scanned, or duplicated, in whole or in part.

However, if you choose a prime number, such as 11, for the array length, the
results are much better:

>>>ƒkeysToIndexes([10,ƒ20,ƒ30,ƒ40,ƒ50,ƒ60,ƒ70],ƒ11)
[10,ƒ9,ƒ8,ƒ7,ƒ6,ƒ5,ƒ4]

A small load factor and an array length that is a prime number help, but
other techniques must be developed to handle collisions when they occur.

19.3.2 Hashing with Non-Numeric Keys

The preceding examples all used integer keys for data. How do we generate inte-
ger keys for other types of data, such as names or item codes with letters in them?

Let’s consider strings in general. The goal is to obtain a unique integer key
from each unique string. We might try returning the sum of the ASCII values in
the string. However, this method has the effect of producing the same keys for
anagrams, or strings that contain the same characters, but in different order,
such as “cinema” and “iceman.” Another problem is that the first letters of many
words in English are unevenly distributed; more words begin with the letter S,
rather than the letter X, for example. This might have the effect of weighting or
biasing the sums generated so that the keys will be clustered in certain ranges
within the entire key set. These clusters can, in turn, result in clusters of keys in
the array, when ideally it would be best to evenly distribute the keys in the array.
To reduce the potential bias of the first letters and reduce the effect produced by
anagrams, if the length of the string is greater than a certain threshold, we could
drop the first character from the string before computing the sum. In addition,
we could subtract the ASCII value of the last character if the string exceeds a cer-
tain length. The definition of this function, called stringHash, follows and is, in
turn, followed by a demonstration of how it handles our anagrams:

defƒstringHash(item):
ƒƒƒƒ“””Generatesƒanƒintegerƒkeyƒfromƒaƒstring.”””
ƒƒƒƒifƒlen(item)ƒ>ƒ4ƒandƒ\
ƒƒƒƒƒƒƒ(item[0].islower()ƒorƒitem[0].isupper()):
ƒƒƒƒƒƒƒƒitemƒ=ƒitem[1:]ƒƒƒƒƒƒƒƒƒƒƒ#ƒDropƒfirstƒletter
ƒƒƒƒsumƒ=ƒ0

continued

CHAPTER 19 Unordered Collections: Sets and Dictionaries[792]

C6840_19 11/19/08 11:45 AM Page 792

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒforƒchƒinƒitem:
ƒƒƒƒƒƒƒƒsumƒ+=ƒord(ch)
ƒƒƒƒifƒlen(item)ƒ>ƒ2:
ƒƒƒƒƒƒƒƒsumƒ-=ƒ2ƒ*ƒord(item[-1])ƒƒ#ƒSubtractƒlastƒASCII
ƒƒƒƒreturnƒsum

>>>ƒstringHash(“cinema”)
328
>>>ƒstringHash(“iceman”)
296

To test the adequacy of our new hashing function, we can update the
keysToIndexes function to receive a hashing function as an optional third argu-
ment. The default of this hashing function, which covers the cases of integer keys
seen earlier, is to simply return the key.

defƒkeysToIndexes(keys,ƒn,ƒhashƒ=ƒlambdaƒkey:ƒkey):
ƒƒƒƒ“””Returnsƒtheƒarrayƒindexesƒcorrespondingƒtoƒthe
ƒƒƒƒhashedƒkeysƒforƒanƒarrayƒofƒlengthƒn.”””
ƒƒƒƒreturnƒmap(lambdaƒkey:ƒhash(key)ƒ%ƒn,ƒkeys)

The tester function now works as before with lists of integer keys, but also with a
list of strings, as shown in the next session:

>>>ƒkeysToIndexes([3,ƒ5,ƒ8,ƒ10],ƒ4)ƒƒƒ#ƒFirstƒexample
[3,ƒ1,ƒ0,ƒ2]
>>>ƒkeysToIndexes([“cinema”,ƒ“iceman”],ƒ2,ƒstringHash)ƒ#Collision
[0,ƒ0]
>>>ƒkeysToIndexes([“cinema”,ƒ“iceman”],ƒ3,ƒstringHash)ƒ#nƒisƒprime
[1,ƒ2]

Python also includes a standard hash function for use in hashing applica-
tions. This function can receive any Python object as an argument and returns a
unique integer. Because the integer might be negative, you must take its absolute

19.3 Hashing Strategies [793]

C6840_19 11/19/08 11:45 AM Page 793

May not be copied, scanned, or duplicated, in whole or in part.

value before applying the remainder operator to the integer to compute an index.
Let’s compare the results of using hash with those of our stringHash function:

>>>ƒmap(lambdaƒx:ƒabs(hash(x)),ƒ[“cinema”,ƒ“iceman”])
[1338503047,ƒ1166902005]
>>>ƒmap(stringHash,ƒ[“cinema”,ƒ“iceman”])
[328,ƒ296]
>>>ƒkeysToIndexes([“cinema”,ƒ“iceman”],ƒ3,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒlambdaƒx:ƒabs(hash(x)))
[1,ƒ0]
>>>ƒkeysToIndexes([“cinema”,ƒ“iceman”],ƒ3,ƒstringHash)
[1,ƒ2]
>>>

More sophisticated hashing functions are the subject of advanced courses and
are beyond the scope of this book. In the rest of this chapter, we use Python’s
hash function and the remainder method.

No matter how advanced the hashing functions, the potential remains for
collisions in a hash table. Computer scientists have developed many methods for
resolving collisions. In the following subsections, we examine some of them.

19.3.3 Linear Probing

For insertions, the simplest way to resolve a collision is to search the array, start-
ing from the collision spot, for the first available position; this process is referred
to as linear probing. Each position in the array is in one of three distinguishable
states: occupied, never occupied, or previously occupied. A position is considered
to be available for the insertion of a key if it has never been occupied or if a key
has been deleted from it (previously occupied). We let the values EMPTY and
DELETED designate these two states, respectively. At start-up, the array cells are
filled with the EMPTY value. The value of a cell is set to DELETED when a key is
removed. At the start of an insertion, the hashing function is run to compute the
home index of the item. The home index is the position where the item should
go if the hash function works perfectly (this position will be unoccupied in this
case). If the cell at the home index is not available, the algorithm moves the index
to the right to probe for an available cell. When the search reaches the last posi-
tion of the array, the probing wraps around to continue from the first position. If

CHAPTER 19 Unordered Collections: Sets and Dictionaries[794]

C6840_19 11/19/08 11:45 AM Page 794

May not be copied, scanned, or duplicated, in whole or in part.

you assume the array does not become full and there are no duplicate items, the
code for insertions into an array named table is as follows:

#ƒGetƒtheƒhomeƒindex
indexƒ=ƒabs(hash(item))ƒ%ƒlen(table)

#ƒStopƒsearchingƒwhenƒanƒemptyƒcellƒisƒencountered
whileƒnotƒtable[index]ƒinƒ(EMPTY,ƒDELETED):

ƒƒƒƒ#ƒIncrementƒtheƒindexƒandƒwrapƒaroundƒtoƒfirst
ƒƒƒƒ#ƒpositionƒifƒnecessary
ƒƒƒƒindexƒ=ƒ(indexƒ+ƒ1)ƒ%ƒlen(table)

#ƒAnƒemptyƒcellƒisƒfound,ƒsoƒstoreƒtheƒitem
table[index]ƒ=ƒitem

Retrievals and removals work in a similar manner. For retrievals, you stop the
probing process when the current array cell is empty or it contains the target
item. This allows you to step over the previously occupied cells as well as the cur-
rently occupied cells. For removals, you also probe as in retrievals. If the target
item is found, its cell is set to DELETED.

One problem with this method of resolving collisions is that after several
insertions and removals, a number of cells marked DELETED may lie between a
given item and its home index. This means that this item is farther away from its
home index than it really needs to be, thus increasing the average overall access
time. There are two ways to deal with this problem:

1 After a removal, shift the items that are on the cell’s right over to the
cell’s left until an empty cell, a currently occupied cell, or the home
indexes for each item are reached. If removing items leaves gaps, this
process closes those gaps.

2 Regularly rehash the table, say, when its load factor becomes .5. This has
the effect of converting all previously occupied cells into either currently
occupied cells or empty cells. If the table has some way to track the fre-
quency of accesses to given items, the items can be reinserted in decreas-
ing order of frequency. This has the effect of placing more frequently
accessed items closer to their home indexes.

Because the table has to be rehashed when the array becomes full (or its load factor
exceeds an acceptable limit) in any case, the second strategy might be preferred.

Linear probing is prone to a second problem known as clustering. This situ-
ation occurs when the items that cause a collision are relocated to the same

19.3 Hashing Strategies [795]

C6840_19 11/19/08 11:45 AM Page 795

May not be copied, scanned, or duplicated, in whole or in part.

region (a cluster) within the array. Figure 19.4 shows an example of this situation
after several insertions of keys, for the data set 20, 30, 40, 50, 60, 70. Note that
probing is not done until the keys 60 and 70 are inserted, but a cluster has
formed at the bottom of the array.

[FIGURE 19.4] Clustering during linear probing

This clustering usually leads to other collisions with other relocated items.
During the course of an application, several clusters may develop and coalesce
into larger clusters. As the clusters become larger, the average distance incurred
by probing from a home index to an available position becomes greater, and so
does the average running time.

19.3.4 Quadratic Probing

One way to avoid the clustering associated with linear probing is to advance the
search for an empty position a considerable distance from the collision point.
Quadratic probing accomplishes this by incrementing the home index by the
square of a distance on each attempt. If the attempt fails, you increment the dis-
tance and try again. Put another way, if you begin with home index k and a dis-
tance d, the formula used on each pass is k + d2. Thus, if probing is necessary, the
probe starts at the home index plus 1 and then moves distances of 4, 9, 25, and so
on from the home index.

0 Empty

1 Empty

2 Empty

3 Empty

4 20

5 Empty

6 Empty

7 Empty

20 % 8 = 4

Insert 20

0 Empty

1 Empty

2 Empty

3 Empty

4 20

5 Empty

6 30

7 Empty

30 % 8 = 6

Insert 30

0 40

1 Empty

2 Empty

3 Empty

4 20

5 Empty

6 30

7 Empty

40 % 8 = 0

Insert 40

0 40

1 Empty

2 50

3 Empty

4 20

5 Empty

6 30

7 Empty

50 % 8 = 2

Insert 50

0 40

1 Empty

2 50

3 Empty

4 20

5 60

6 30

7 Empty

60 % 8 = 4
Collision!

Insert 60

0 40

1 Empty

2 50

3 Empty

4 20

5 60

6 30

7 70

70 % 8 = 6
Collision!

Insert 70

CHAPTER 19 Unordered Collections: Sets and Dictionaries[796]

C6840_19 11/19/08 11:45 AM Page 796

May not be copied, scanned, or duplicated, in whole or in part.

Here is the code for insertions, updated to use quadratic probing:

#ƒSetƒtheƒinitialƒkey,ƒindex,ƒandƒdistance
keyƒ=ƒabs(hash(item))
distanceƒ=ƒ1
homeIndexƒ=ƒkeyƒ%ƒlen(table)
indexƒ=ƒhomeIndex

#ƒStopƒsearchingƒwhenƒanƒunoccupiedƒcellƒisƒencountered
whileƒnotƒtable[index]ƒinƒ(EMPTY,ƒDELETED):

ƒƒƒƒ#ƒIncrementƒtheƒindexƒandƒwrapƒaroundƒtoƒthe
ƒƒƒƒ#ƒfirstƒpositionƒifƒnecessary
ƒƒƒƒindexƒ=ƒ(homeIndexƒ+ƒdistanceƒ**ƒ2)ƒ%ƒlen(table)
ƒƒƒƒdistanceƒ+=ƒ1

#ƒAnƒemptyƒcellƒisƒfound,ƒsoƒstoreƒtheƒitem
table[index]ƒ=ƒitem

The major problem with this strategy is that by jumping over some cells, one
or more of them might be missed. This can lead to some wasted space.

19.3.5 Chaining

In a collision-processing strategy known as chaining, the items are stored in an
array of linked lists, or chains. Each item’s key locates the bucket, or index, of
the chain in which the item already resides or is to be inserted. The retrieval and
removal operations each perform the following steps:

1 Compute the item’s home index in the array.

2 Search the linked list at that index for the item.

If the item is found, it can be returned or removed. Figure 19.5 shows an
array of linked lists with five buckets and eight items.

19.3 Hashing Strategies [797]

C6840_19 11/19/08 11:45 AM Page 797

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 19.5] Chaining with five buckets

The home index of each item is the index of its linked list in the array. For
example, the items D7, D3, and D1 have the home index of 4.

To insert an item into this structure, we perform the following steps:

1 Compute the item’s home index in the array.

2 If the array cell is empty, create a node with the item and assign the node
to the cell. Otherwise, a collision occurs. The existing item is the head of
a linked list or chain of items at that position. Insert the new item at the
head of this list.

Borrowing the Node class discussed in Chapter 13, following is the code for
inserting an item using chaining:

#ƒGetƒtheƒhomeƒindex
indexƒ=ƒabs(hash(item))ƒ%ƒlen(table)

#ƒAccessƒaƒbucketƒandƒstoreƒtheƒitemƒatƒtheƒhead
#ƒofƒitsƒlinkedƒlist
table[index]ƒ=ƒNode(item,ƒtable[index])

19.3.6 Complexity Analysis

As you have seen, the complexity of linear collision processing depends on the
load factor as well as the tendency of relocated items to cluster. In the worst
case, when the method must traverse the entire array before locating an item’s

D50 D2

D61 D4

2

D83

D74 D3 D1

index

CHAPTER 19 Unordered Collections: Sets and Dictionaries[798]

C6840_19 11/19/08 11:45 AM Page 798

May not be copied, scanned, or duplicated, in whole or in part.

position, the behavior is linear. One study of the linear method (Donald E.
Knuth, The Art of Computer Programming, Volume 3, Searching and Sorting, Menlo
Park, CA: Addison-Wesley, 1973) showed that its average behavior in searching
for an item that cannot be found is

(1/2) [1 + 1/(1 – D)2]

where D is the density ratio or load factor.
Because the quadratic method tends to mitigate clustering, we can expect its

average performance to be better than that of the linear method. According to
Knuth (cited earlier), the average search complexity for the quadratic method is

1 – loge(1 – D) – (D / 2)

for the successful case and

1 / (1 – D) – D – loge(1 – D)

for the unsuccessful case.
Analysis of the bucket/chaining method shows that the process of locating an

item consists of two parts:

1 Computing the home index

2 Searching a linked list when collisions occur

The first part has constant-time behavior. The second part has linear behav-
ior. The amount of work is O(n) in the worst case. In this case, all of the items
that have collided with each other are in one chain, which is a linked list.
However, if the lists are evenly distributed throughout the array and the array is
fairly large, the second part can be close to constant as well. In the best case, a
chain of length 1 occupies each array cell, so the performance is exactly O(1).
Random insertion of items tends to result in an even distribution. As the load fac-
tor increases past 1, however, the lengths of the chains also increase, resulting in
degraded performance. Unlike the other methods, chaining need not resize and
rehash the array.

Other trade-offs and optimizations of various hashing strategies are the sub-
ject of later courses in computer science and are beyond the scope of this book.

19.3 Hashing Strategies [799]

C6840_19 11/19/08 11:45 AM Page 799

May not be copied, scanned, or duplicated, in whole or in part.

19.3 Exercises
1 Explain how hashing can provide constant-time access to a data structure.

2 What is a home index?

3 What causes collisions?

4 How does the linear method of resolving collisions work?

5 What causes clustering?

6 How does the quadratic method of resolving collisions work, and how
does it mitigate clustering?

7 Compute the load factors for the following situations:

a An array of length 30 with 10 items.
b An array of length 30 with 30 items.
c An array of length 30 with 100 items.

8 Explain how chaining works.

19.4 Case Study: Profiling Hashing Strategies
In the Chapter 11 case study, we developed a profiler, or software tool, to help
measure the performance of some sort algorithms. We now develop a similar tool
to assess the performance of some of the hashing strategies discussed in the last
section.

19.4.1 Request

Write a program that allows a programmer to profile different hashing strategies.

19.4.2 Analysis

The profiler should allow a programmer to gather statistics on the number of
collisions caused by different hashing strategies. Other useful information to be
obtained includes a hash table’s load factor and the number of probes needed to
resolve collisions during linear probing or quadratic probing. The profiler

CHAPTER 19 Unordered Collections: Sets and Dictionaries[800]

C6840_19 11/19/08 11:45 AM Page 800

May not be copied, scanned, or duplicated, in whole or in part.

assumes that a programmer has defined a HashTable class that includes the
methods listed in Table 19.4.

[TABLE 19.4] The methods of the HashTable class

For purposes of this case study, this simple table allows the programmer to insert
items and determine the array’s length and load factor, the most recent insertion’s
home index and actual index, and the number of probes required following a col-
lision. Note that when a table is created, the programmer can supply its initial
capacity and a hash function. The programmer can also state whether or not a

HashTable METHOD WHAT IT DOES

Tƒ=ƒHashTable(capacityƒ=ƒ29, Creates and returns a hash table
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒhashFunction = hash, with the given initial capacity, hash
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒlinear = True) function, and collision resolution

strategy. If linear is False, uses a
quadratic probing strategy.

T.insert(item) Inserts item into the table.

T.__len__() Same as len(T). Returns the
number of items in the table.

T.loadFactor() Returns the table’s current load
factor (number of items divided by
the table’s capacity).

T.homeIndex() Returns the home index of the item
most recently inserted, removed, or
accessed.

T.actualIndex() Returns the actual index of the item
most recently inserted, removed, or
accessed.

T.probeCount() Returns the number of probes
required to resolve a collision
during the most recent insertion,
removal, or access.

T.__str__() Same as str(T). Returns a string
representation of the table’s array.
Cells that are empty show the value
None. Cells that have been previously
occupied show the value True.

19.4 Case Study: Profiling Hashing Strategies [801]

C6840_19 11/19/08 11:45 AM Page 801

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 19 Unordered Collections: Sets and Dictionaries[802]

linear probing strategy should be used. The default hashing function is Python’s
own hash function, but the programmer can supply a different hash function
during instantiation of the table. If linear probing is not desired, the table uses
quadratic probing. The default capacity of a table is 29 cells, but the programmer
can adjust this capacity when the table is created.

The information supplied to the profiler is a hash table and a list of items in its
data set. The information returned is a string. This string represents a formatted
table whose columns list the load factor, item inserted, home index and eventual
position of the insertion in the hash table, and number of probes required. The
total number of collisions, the total number of probes, and the average probes per
collision follow this table in the string. The programmer runs the profiler on a
hash table and its data set by supplying these data as arguments to a test method.
The total collisions and probes can be obtained individually by calling the appro-
priate profiler methods or by printing the profiler object. Table 19.5 lists the meth-
ods in the Profiler class.

[TABLE 19.5] The methods in the Profiler class

The following main function profiles the table used in an earlier example with
linear probing:

defƒmain():
ƒƒƒƒ#ƒCreateƒaƒtableƒwithƒ8ƒcells,ƒanƒidentityƒhashƒfunction,
ƒƒƒƒ#ƒandƒlinearƒprobing.
ƒƒƒƒtableƒ=ƒHashTable(8,ƒlambdaƒx:ƒx)
ƒƒƒƒ#ƒTheƒdataƒareƒtheƒnumbersƒfromƒ10ƒthroughƒ70,ƒbyƒ10s
ƒƒƒƒdataƒ=ƒrange(10,ƒ71,ƒ10)
ƒƒƒƒprofilerƒ=ƒProfiler()
ƒƒƒƒprofiler.test(table,ƒdata)
ƒƒƒƒprintƒprofiler

Profiler METHOD WHAT IT DOES

p = Profiler() Creates and returns a profiler object.

p.test(aTable, aList) Runs the profiler on a table with the given data set.

p.__str__() Same as str(p). Returns a formatted table of results.

p.collisions() Returns the total number of collisions.

p.probeCount() Returns the total number of probes required to
resolve the collisions.

C6840_19 11/19/08 11:45 AM Page 802

May not be copied, scanned, or duplicated, in whole or in part.

19.4 Case Study: Profiling Hashing Strategies [803]

Here are the profiler’s results:

LoadƒFactorƒƒItemƒInsertedƒƒHomeƒIndexƒƒActualƒIndexƒƒƒProbes
ƒƒƒ0.000ƒƒƒƒƒƒƒƒƒƒƒƒ10ƒƒƒƒƒƒƒƒƒƒƒ2ƒƒƒƒƒƒƒƒƒƒƒ2ƒƒƒƒƒƒƒƒƒƒƒƒƒ0
ƒƒƒ0.125ƒƒƒƒƒƒƒƒƒƒƒƒ20ƒƒƒƒƒƒƒƒƒƒƒ4ƒƒƒƒƒƒƒƒƒƒƒ4ƒƒƒƒƒƒƒƒƒƒƒƒƒ0
ƒƒƒ0.250ƒƒƒƒƒƒƒƒƒƒƒƒ30ƒƒƒƒƒƒƒƒƒƒƒ6ƒƒƒƒƒƒƒƒƒƒƒ6ƒƒƒƒƒƒƒƒƒƒƒƒƒ0
ƒƒƒ0.375ƒƒƒƒƒƒƒƒƒƒƒƒ40ƒƒƒƒƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒƒƒƒƒƒƒ0
ƒƒƒ0.500ƒƒƒƒƒƒƒƒƒƒƒƒ50ƒƒƒƒƒƒƒƒƒƒƒ2ƒƒƒƒƒƒƒƒƒƒƒ3ƒƒƒƒƒƒƒƒƒƒƒƒƒ1
ƒƒƒ0.625ƒƒƒƒƒƒƒƒƒƒƒƒ60ƒƒƒƒƒƒƒƒƒƒƒ4ƒƒƒƒƒƒƒƒƒƒƒ5ƒƒƒƒƒƒƒƒƒƒƒƒƒ1
ƒƒƒ0.750ƒƒƒƒƒƒƒƒƒƒƒƒ70ƒƒƒƒƒƒƒƒƒƒƒ6ƒƒƒƒƒƒƒƒƒƒƒ7ƒƒƒƒƒƒƒƒƒƒƒƒƒ1
Totalƒcollisions:ƒ3
Totalƒprobes:ƒ3
Averageƒprobesƒperƒcollision:ƒ1.0

19.4.3 Design

The HashTable class requires instance variables for its array of cells, its size, its
hash function, its collision strategy, the most recent home and actual indexes, and
the probe count. The insert method employs the strategy discussed in the pre-
vious section, with the following two embellishments:

� The home index and probe count are updated.
� When the index is incremented during probing, the method used is deter-

mined by the strategy assigned to the table, either linear or quadratic.

As before, the insert method assumes that there is room for the new item in the
array and that the new item does not duplicate an existing item. The remaining
HashTable methods call for no comment.

The Profiler class requires instance variables to track a table, the total num-
ber of collisions, and the total number of probes. The test method inserts the
items in the order given and accumulates the statistics following each insertion.
This method also creates and builds a formatted string with the results. This string
is saved in another instance variable, for reference when the str function is called
on the profiler. The remaining methods simply return individual statistics.

19.4.4 Implementation

Here are partial listings of the code for the two classes. We leave their comple-
tion as an exercise for you.

C6840_19 11/19/08 11:45 AM Page 803

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 19 Unordered Collections: Sets and Dictionaries[804]

“””
File:ƒhashtable.py

CaseƒstudyƒforƒChapterƒ19.
“””

fromƒarraysƒimportƒArray

classƒHashTable(object):
ƒƒƒƒ“Representsƒaƒhashƒtable.”””

ƒƒƒƒEMPTYƒ=ƒNone
ƒƒƒƒDELETEDƒ=ƒTrue

ƒƒƒƒdefƒ__init__(self,ƒcapacityƒ=ƒ29,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒhashFunctionƒ=ƒhash,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒlinearƒ=ƒTrue):
ƒƒƒƒƒƒƒƒself._tableƒ=ƒArray(capacity,ƒHashTable.EMPTY)
ƒƒƒƒƒƒƒƒself._sizeƒ=ƒ0
ƒƒƒƒƒƒƒƒself._hashƒ=ƒhashFunction
ƒƒƒƒƒƒƒƒself._homeIndexƒ=ƒ-1
ƒƒƒƒƒƒƒƒself._actualIndexƒ=ƒ-1
ƒƒƒƒƒƒƒƒself._linearƒ=ƒlinear
ƒƒƒƒƒƒƒƒself._probeCountƒ=ƒ0

ƒƒƒƒdefƒinsert(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””Insertsƒitemƒintoƒtheƒtable
ƒƒƒƒƒƒƒƒPreconditions:ƒThereƒisƒatƒleastƒoneƒemptyƒcellƒor
ƒƒƒƒƒƒƒƒoneƒpreviouslyƒoccupiedƒcell.
ƒƒƒƒƒƒƒƒThereƒisƒnotƒaƒduplicateƒitem.”””
ƒƒƒƒƒƒƒƒself._probeCountƒ=ƒ0
ƒƒƒƒƒƒƒƒ#ƒGetƒtheƒhomeƒindex
ƒƒƒƒƒƒƒƒself._homeIndexƒ=ƒabs(self._hash(item))ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒlen(self._table)
ƒƒƒƒƒƒƒƒdistanceƒ=ƒ1
ƒƒƒƒƒƒƒƒindexƒ=ƒself._homeIndex

ƒƒƒƒƒƒƒƒ#ƒStopƒsearchingƒwhenƒanƒemptyƒcellƒisƒencountered
ƒƒƒƒƒƒƒƒwhileƒnotƒself._table[index]ƒinƒ(HashTable.EMPTY,
ƒƒƒHashTable.DELETED):

ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒIncrementƒtheƒindexƒandƒwrapƒaroundƒtoƒfirst
ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒpositionƒifƒnecessary
ƒƒƒƒƒƒƒƒƒƒƒƒifƒself._linear:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒincrementƒ=ƒindexƒ+ƒ1

continued

C6840_19 11/19/08 11:45 AM Page 804

May not be copied, scanned, or duplicated, in whole or in part.

19.4 Case Study: Profiling Hashing Strategies [805]

ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒQuadraticƒprobing
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒincrementƒ=ƒself._homeIndexƒ+ƒdistanceƒ**ƒ2
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒdistanceƒ+=ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒindexƒ=ƒincrementƒ%ƒlen(self._table)
ƒƒƒƒƒƒƒƒƒƒƒƒself._probeCountƒ+=ƒ1

ƒƒƒƒƒƒƒƒ#ƒAnƒemptyƒcellƒisƒfound,ƒsoƒstoreƒtheƒitem
ƒƒƒƒƒƒƒƒself._table[index]ƒ=ƒitem
ƒƒƒƒƒƒƒƒself._sizeƒ+=ƒ1
ƒƒƒƒƒƒƒƒself._actualIndexƒ=ƒindex

“””
File:ƒprofiler.py

CaseƒstudyƒforƒChapterƒ19.
“””

fromƒhashtableƒimportƒHashTable

classƒProfiler(object):
ƒƒƒƒ“Representsƒaƒprofilerƒforƒhashƒtables.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._tableƒ=ƒNone
ƒƒƒƒƒƒƒƒself._collisionsƒ=ƒ0
ƒƒƒƒƒƒƒƒself._probeCountƒ=ƒ0

ƒƒƒƒdefƒtest(self,ƒtable,ƒdata):
ƒƒƒƒƒƒƒƒ“””Insertsƒtheƒdataƒintoƒtableƒandƒgathersƒstatistics.”””
ƒƒƒƒƒƒƒƒself._tableƒ=ƒtable
ƒƒƒƒƒƒƒƒself._collisionsƒ=ƒ0
ƒƒƒƒƒƒƒƒself._probeCountƒ=ƒ0
ƒƒƒƒƒƒƒƒself._resultƒ=ƒ“LoadƒFactorƒƒItemƒInsertedƒƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“HomeƒIndexƒƒƒActualƒIndexƒƒƒProbes\n”
ƒƒƒƒƒƒƒƒforƒitemƒinƒdata:
ƒƒƒƒƒƒƒƒƒƒƒƒloadFactorƒ=ƒtable.loadFactor()
ƒƒƒƒƒƒƒƒƒƒƒƒtable.insert(item)
ƒƒƒƒƒƒƒƒƒƒƒƒhomeIndexƒ=ƒtable.homeIndex()
ƒƒƒƒƒƒƒƒƒƒƒƒactualIndexƒ=ƒtable.actualIndex()
ƒƒƒƒƒƒƒƒƒƒƒƒprobesƒ=ƒtable.probeCount()
ƒƒƒƒƒƒƒƒƒƒƒƒself._probeCountƒ+=ƒprobes
ƒƒƒƒƒƒƒƒƒƒƒƒifƒprobesƒ>ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._collisionsƒ+=ƒ1

continued

C6840_19 11/19/08 11:45 AM Page 805

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 19 Unordered Collections: Sets and Dictionaries[806]

ƒƒƒƒƒƒƒƒƒƒƒƒlineƒ=ƒ“%8.3f%14d%12d%12d%14d”ƒ%ƒ(loadFactor,
ƒƒitem,
ƒƒhomeIndex,
ƒƒactualIndex,
ƒƒprobes)
ƒƒƒƒƒƒƒƒƒƒƒƒself._resultƒ+=ƒlineƒ+ƒ“\n”
ƒƒƒƒƒƒƒƒself._resultƒ+=ƒ“Totalƒcollisions:ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(self._collisions)ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“\nTotalƒprobes:ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(self._probeCount)ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“\nAverageƒprobesƒperƒcollision:ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(self._probeCountƒ/ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒfloat(self._collisions))

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒifƒself._tableƒisƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Noƒtestƒhasƒbeenƒrunƒyet.”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒself._result

19.5 Hashing Implementation of Dictionaries
In this section and the next one, we use hashing to construct efficient implementa-
tions of unordered collections. Our hashing implementation of a dictionary is called
HashDict. It uses the bucket/chaining strategy described earlier. Thus, the imple-
mentation must maintain an array and represent entries in such a manner as to allow
chaining. To manage the array, you declare three instance variables: _table (the
array), _size (the number of entries in the dictionary), and _capacity (the number
of cells in the array). To represent an entry, you use an extension of the Entry class
defined earlier in the list-based implementation. The attributes of an entry are simi-
lar to those of the singly linked node classes of earlier chapters: a key, a value, and a
pointer to the next entry in a chain. The value of _capacity is by default a con-
stant, which we define as 3 to ensure frequent collisions.

Because the same technique is used to locate the position of an entry for
insertions, retrievals, and removals, you can implement it in one method,
__contains__. From the user’s perspective, this method just searches for a given
key and returns True or False. From the implementer’s perspective, this method
also sets the values of some instance variables to information that can be used
during insertions, retrievals, and removals. Table 19.6 gives the variables and
their roles in the implementation.

C6840_19 11/19/08 11:45 AM Page 806

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 19.6] The variables used for accessing entries in the class HashDict

We now examine how __contains__ locates an entry’s position and sets
these variables. Following is the pseudocode for this process:

__contains__ (key)
Set index to the hash code of the key
Set priorEntry to None
Set foundEntry to table[index]
while foundEntry != None

if foundEntry.key == key
return true

else
Set priorEntry to foundEntry
Set foundEntry to foundEntry.next

return false

As you can see, the algorithm uses index, foundEntry, and priorEntry
during the search. If the algorithm hashes to an empty array cell, then no entry
was found, but index contains the bucket for a subsequent insertion of the first
entry. If the algorithm hashes to a nonempty array cell, then the algorithm loops
down the chain of entries until it finds a matching entry or runs off the chain. In
either case, the algorithm leaves foundEntry and priorEntry set to the appro-
priate values for a subsequent retrieval, insertion, or removal of the entry.

The method __getitem__ simply calls __contains__ and returns the value
contained in foundEntry if the key was found, or returns None otherwise:

__getitem__(key)
if key in self

return foundEntry.value
else

return None

INSTANCE VARIABLE PURPOSE

foundEntry Refers to the entry just located, or is None
otherwise.

priorEntry Refers to the entry prior to the one just
located, or is None otherwise.

index Refers to the index of the chain in which the
entry was just located, or is None otherwise.

19.5 Hashing Implementation of Dictionaries [807]

C6840_19 11/19/08 11:45 AM Page 807

May not be copied, scanned, or duplicated, in whole or in part.

The method __setitem__ calls __contains__ to determine whether or not
an entry exists at the target key’s position. If the entry is found, __setitem__
replaces its value with the new value and returns the old value. Otherwise,
__setitem__ does the following:

1 Creates a new entry whose next pointer is the entry at the head of the
chain.

2 Sets the head of the chain to the new entry.

3 Increments the size.

4 Returns None.

Following is the pseudocode for __setitem__:

__setitem__(key, value)
if not containsKey (key)

newEntry = HashEntry (key, value, table[index])
table[index] = newEntry
size = size + 1
return None

else
returnValue = foundEntry.value
foundEntry.value = value
return returnValue

The strategy of the method pop is similar. The major difference is that pop
uses the variable priorEntry when the entry to be removed comes after the
head of the chain. Following is the partially completed code of the class
HashDict:

fromƒarraysƒimportƒArray

classƒHashEntry(Entry):
ƒƒƒƒ“””LikeƒEntry,ƒbutƒwithƒaƒpointerƒtoƒtheƒnext
ƒƒƒƒoneƒinƒtheƒchain.”””

ƒƒƒƒdefƒ__init__(self,ƒkey,ƒvalue,ƒnext):
ƒƒƒƒƒƒƒƒEntry.__init__(self,ƒkey,ƒvalue)
ƒƒƒƒƒƒƒƒself.nextƒ=ƒnext

classƒHashDict(object):
ƒƒƒƒ“””Aƒhashingƒimplementationƒofƒaƒdictionary.”””

ƒƒƒƒDEFAULT_CAPACITYƒ=ƒ3
continued

CHAPTER 19 Unordered Collections: Sets and Dictionaries[808]

C6840_19 11/19/08 11:45 AM Page 808

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒ__init__(self,ƒcapacityƒ=ƒNone):
ƒƒƒƒƒƒƒƒifƒcapacityƒisƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒself._capacityƒ=ƒHashDict.DEFAULT_CAPACITY
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._capacityƒ=ƒcapacity
ƒƒƒƒƒƒƒƒself._tableƒ=ƒArray(self._capacity)
ƒƒƒƒƒƒƒƒself._sizeƒ=ƒ0
ƒƒƒƒƒƒƒƒself._priorEntryƒ=ƒNone
ƒƒƒƒƒƒƒƒself._foundEntryƒ=ƒNone
ƒƒƒƒƒƒƒƒself._indexƒ=ƒNone

ƒƒƒƒdefƒ__contains__(self,ƒkey):
ƒƒƒƒƒƒƒƒ“””ReturnsƒTrueƒifƒkeyƒisƒinƒtheƒdictionaryƒor
ƒƒƒƒƒƒƒƒFalseƒotherwise.”””
ƒƒƒƒƒƒƒƒself._indexƒ=ƒabs(hash(key))ƒ%ƒself._capacity
ƒƒƒƒƒƒƒƒself._priorEntryƒ=ƒNone
ƒƒƒƒƒƒƒƒself._foundEntryƒ=ƒself._table[self._index]
ƒƒƒƒƒƒƒƒwhileƒself._foundEntryƒ!=ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒself._foundEntry.keyƒ==ƒkey:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._priorEntryƒ=ƒself._foundEntry
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._foundEntryƒ=ƒself._foundEntry.next
ƒƒƒƒƒƒƒƒreturnƒFalse

ƒƒƒƒdefƒ__getitem__(self,ƒkey):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒvalueƒassociatedƒwithƒkeyƒor
ƒƒƒƒƒƒƒƒreturnsƒNoneƒifƒkeyƒdoesƒnotƒexist.”””
ƒƒƒƒƒƒƒƒifƒkeyƒinƒself:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒself._foundEntry.value
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒNone

ƒƒƒƒdefƒpop(self,ƒkey):
ƒƒƒƒƒƒƒƒ“””Removesƒtheƒentryƒassociatedƒwithƒkeyƒand
ƒƒƒƒƒƒƒƒreturnsƒitsƒvalueƒorƒreturnsƒNoneƒifƒkey
ƒƒƒƒƒƒƒƒdoesƒnotƒexist.”””
ƒƒƒƒƒƒƒƒ#ƒExercise

ƒƒƒƒdefƒ__setitem__(self,ƒkey,ƒvalue):
ƒƒƒƒƒƒƒƒ“””Insertsƒanƒentryƒwithƒkey/valueƒifƒkey
ƒƒƒƒƒƒƒƒdoesƒnotƒexistƒorƒreplacesƒtheƒexistingƒvalue
ƒƒƒƒƒƒƒƒwithƒvalueƒifƒkeyƒexists.”””
ƒƒƒƒƒƒƒƒifƒnotƒkeyƒinƒself:
ƒƒƒƒƒƒƒƒƒƒƒƒnewEntryƒ=ƒHashEntry(key,ƒvalue,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._table[self._index])
ƒƒƒƒƒƒƒƒƒƒƒƒself._table[self._index]ƒ=ƒnewEntry
ƒƒƒƒƒƒƒƒƒƒƒƒself._sizeƒ+=ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒNone

19.5 Hashing Implementation of Dictionaries [809]

continued

C6840_19 11/19/08 11:45 AM Page 809

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnValueƒ=ƒself._foundEntry.value
ƒƒƒƒƒƒƒƒƒƒƒƒself._foundEntry.valueƒ=ƒvalue
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒreturnValue

ƒƒƒƒdefƒ__len__(self):
ƒƒƒƒƒƒƒƒreturnƒself._size

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒresultƒ=ƒ“HashDict:ƒcapacityƒ=ƒ“ƒ+ƒƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(self._capacity)ƒ+ƒ“,ƒloadƒfactorƒ=ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(len(self)ƒ/ƒfloat(self._capacity))
ƒƒƒƒƒƒƒƒforƒiƒinƒxrange(self._capacity):
ƒƒƒƒƒƒƒƒƒƒƒƒrowStrƒ=ƒ“”
ƒƒƒƒƒƒƒƒƒƒƒƒentryƒ=ƒself._table[i]
ƒƒƒƒƒƒƒƒƒƒƒƒwhileƒentryƒ!=ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrowStrƒ+=ƒstr(entry)ƒ+ƒ“ƒ“
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒentryƒ=ƒentry.next
ƒƒƒƒƒƒƒƒƒƒƒƒifƒrowStrƒ!=ƒ“”:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒresultƒ+=ƒ“\nRowƒ“ƒ+ƒstr(i)ƒ+ƒ“:ƒ“ƒ+ƒrowStr
ƒƒƒƒƒƒƒƒreturnƒresult

Note that the method str returns not only the string representations of each
key/value pair, but also the current capacity and load factor of the dictionary.
This information allows the user to examine the complexity of the dictionary at
run time.

19.5 Exercises
1 The method keys() in the class HashDict returns a list that contains

the keys in the dictionary. Suggest a strategy for implementing this
method.

2 As the load factor of a dictionary’s array increases, so does the likelihood of
collisions during hashing. Suggest a strategy for mitigating this problem.

3 The __setitem__ method can be modified to take advantage of the
dictionary’s knowledge of the current load factor. Suggest a strategy for
implementing this change in __setitem__.

CHAPTER 19 Unordered Collections: Sets and Dictionaries[810]

C6840_19 11/19/08 11:45 AM Page 810

May not be copied, scanned, or duplicated, in whole or in part.

19.6 Hashing Implementation of Sets
The design of the class HashSet is quite similar to the design of the class
HashDict. Because we use the same hashing strategy, the instance variables are
the same. The Node class is used to represent an item and a pointer to the next
item in a chain.

The design of the methods for HashSet is also virtually the same as the cor-
responding methods in HashDict. Following are the differences:

1 The method __contains__ searches for an item instead of a key.

2 The method add inserts an item only if it is not already present in
the set.

3 A single iterator method is included instead of separate methods that
return keys and values.

Following is a partial implementation of the class HashSet:

fromƒnodeƒimportƒNode
fromƒarraysƒimportƒArray

classƒHashSet(object):
ƒƒƒƒ“””Aƒhashingƒimplementationƒofƒaƒset.”””

ƒƒƒƒDEFAULT_CAPACITYƒ=ƒ3

ƒƒƒƒdefƒ__init__(self,ƒcapacityƒ=ƒNone):
ƒƒƒƒƒƒƒƒifƒcapacityƒisƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒself._capacityƒ=ƒHashSet.DEFAULT_CAPACITY
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._capacityƒ=ƒcapacity
ƒƒƒƒƒƒƒƒself._tableƒ=ƒArray(self._capacity)
ƒƒƒƒƒƒƒƒself._sizeƒ=ƒ0
ƒƒƒƒƒƒƒƒself._priorEntryƒ=ƒNone
ƒƒƒƒƒƒƒƒself._foundEntryƒ=ƒNone
ƒƒƒƒƒƒƒƒself._indexƒ=ƒNone

ƒƒƒƒdefƒ__contains__(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””ReturnsƒTrueƒifƒitemƒisƒinƒtheƒsetƒor
ƒƒƒƒƒƒƒƒFalseƒotherwise.”””
ƒƒƒƒƒƒƒƒself._indexƒ=ƒabs(hash(item))ƒ%ƒself._capacity
ƒƒƒƒƒƒƒƒself._priorEntryƒ=ƒNone
ƒƒƒƒƒƒƒƒself._foundEntryƒ=ƒself._table[self._index]

19.6 Hashing Implementation of Sets [811]

continued

C6840_19 11/19/08 11:45 AM Page 811

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒƒƒƒƒwhileƒself._foundEntryƒ!=ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒself._foundEntry.dataƒ==ƒitem:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._priorEntryƒ=ƒself._foundEntry
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._foundEntryƒ=ƒself._foundEntry.next
ƒƒƒƒƒƒƒƒreturnƒFalse

ƒƒƒƒdefƒremove(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””RemovesƒtheƒitemƒorƒreturnsƒNoneƒifƒitem
ƒƒƒƒƒƒƒƒdoesƒnotƒexist.”””
ƒƒƒƒƒƒƒƒ#ƒExercise

ƒƒƒƒdefƒadd(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””Addsƒitemƒtoƒtheƒsetƒifƒitƒisƒnotƒinƒtheƒset.”””
ƒƒƒƒƒƒƒƒifƒnotƒitemƒinƒself:
ƒƒƒƒƒƒƒƒƒƒƒƒnewEntryƒ=ƒNode(item,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._table[self._index])
ƒƒƒƒƒƒƒƒƒƒƒƒself._table[self._index]ƒ=ƒnewEntry
ƒƒƒƒƒƒƒƒƒƒƒƒself._sizeƒ+=ƒ1

ƒƒƒƒdefƒ__len__(self):
ƒƒƒƒƒƒƒƒreturnƒself._size

ƒƒƒƒdefƒ__iter__(self):
ƒƒƒƒƒƒƒƒ#ƒExercise

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ#ƒExercise

ƒƒƒƒ#ƒintersection,ƒunion,ƒdifferenceƒsameƒasƒbefore,
ƒƒƒƒ#ƒbutƒcreateƒHashSetƒratherƒthanƒListSet

19.6 Exercises
1 How does the implementation of HashSet differ from the implementa-

tion of HashDict?

2 Describe a design strategy for the iterator for the class HashSet.

3 Write a constructor method for HashSet that expects a collection as an
optional parameter. The constructor should copy the items from the col-
lection to the new set.

CHAPTER 19 Unordered Collections: Sets and Dictionaries[812]

C6840_19 11/19/08 11:45 AM Page 812

May not be copied, scanned, or duplicated, in whole or in part.

19.7 Sorted Sets and Dictionaries
Although the data in sets and dictionaries are not ordered by position, it is possible
and often convenient to be able to view them in sorted order. A sorted set and a
sorted dictionary have the behavior of a set and a dictionary, respectively, but the
user can visit their data in sorted order. Each item added to a sorted set must be com-
parable with its other items, and each key added to a sorted dictionary must be com-
parable with its other keys. The iterator for each type of collection guarantees its
users access to the items or the keys in sorted order. In the discussion that follows, we
focus on sorted sets, but everything we say also applies to sorted dictionaries.

The requirement that the data be sorted has important consequences for the two
implementations discussed in this chapter. A list-based implementation must now
maintain a sorted list of the items. This has the effect of improving the run-time per-
formance of the __contains__ method from linear to logarithmic, because it can do a
binary search for a given item. Unfortunately, the hashing implementation must be
abandoned altogether, because there is no way to track the sorted order of a set’s items.

A common implementation of sorted sets uses a binary search tree. As discussed
in Chapter 18, this data structure supports logarithmic searches and insertions when
the tree remains balanced. Thus, sorted sets (and sorted dictionaries) that use a tree-
based implementation generally provide logarithmic access to data items.

The next code segment shows the use of the BST class from Chapter 18 in a
partially defined sorted set class called TreeSet. Its completion is left as an exer-
cise for you.

fromƒbstƒimportƒBST

classƒTreeSet(object):
ƒƒƒƒ“””Aƒtree-basedƒimplementationƒofƒaƒsortedƒset.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._itemsƒ=ƒBST()

ƒƒƒƒdefƒ__contains__(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””ReturnsƒTrueƒifƒitemƒisƒinƒtheƒsetƒor
ƒƒƒƒƒƒƒƒFalseƒotherwise.”””
ƒƒƒƒƒƒƒƒreturnƒself._items.find(item)ƒ!=ƒNone

ƒƒƒƒdefƒadd(self,ƒitem):
ƒƒƒƒƒƒƒƒ“””Addsƒitemƒtoƒtheƒsetƒifƒitƒisƒnotƒinƒtheƒset.”””
ƒƒƒƒƒƒƒƒifƒnotƒitemƒinƒself:
ƒƒƒƒƒƒƒƒƒƒƒƒself._items.add(item)

ƒƒƒƒ#ƒRemainingƒmethodsƒareƒexercises

19.7 Sorted Sets and Dictionaries [813]

C6840_19 11/19/08 11:45 AM Page 813

May not be copied, scanned, or duplicated, in whole or in part.

Summary
� A set is an unordered collection of items. Each item is unique. Items

may be added, removed, or tested for membership in the set. A set can
be traversed with an iterator.

� A list-based implementation of a set supports linear-time access. A
hashing implementation of a set supports constant-time access.

� The items in a sorted set can be visited in sorted order. A tree-based
implementation of a sorted set supports logarithmic-time access.

� A dictionary is an unordered collection of entries, where each entry
consists of a key and a value. Each key in a dictionary is unique, but
its values may be duplicated. Accesses, replacements, insertions, and
removals of values are accomplished by providing the associated keys.

� A sorted dictionary imposes an ordering by comparison on its keys.
� Implementations of both types of dictionaries are similar to those of sets.
� Hashing is a technique for locating an item in constant time. This tech-

nique uses a hash function to compute the index of an item in an array.
� When using hashing, the position of a new item can collide with the

position of an item already in an array. Several techniques exist to
resolve collisions. Among these are linear collision processing, quad-
ratic collision processing, and chaining.

� Chaining employs an array of buckets, which are linked structures
that contain the items.

� The run-time and memory aspects of hashing methods involve the
load factor of the array. When the load factor (logical size / physical
size) approaches 1, the likelihood of collisions, and thus of extra pro-
cessing, increases.

CHAPTER 19 Unordered Collections: Sets and Dictionaries[814]

C6840_19 11/19/08 11:45 AM Page 814

May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS [815]

REVIEW QUESTIONS
1 The run-time complexity of the union, intersection, and difference

methods for list-based sets is

a O(n)
b O(n log n)
c O(n2)

2 The intersection of the two sets {A, B, C} and {B, C, D} is

a {A, B, C, D}
b {B, C}

3 The load factor of an array of 10 positions that contains 3 items is

a 3.0
b 0.33
c 0.67

4 The linear method of resolving collisions

a searches for the next available empty position in the array
b selects a position at random until the position is empty

5 When the load factor is very small, a hashing implementation of a set or
a dictionary provides

a logarithmic-time access
b constant-time access

6 The best implementation of a sorted set uses a

a hash table
b sorted list
c balanced binary search tree

7 Assume that the function hash generates a large number (positive or nega-
tive) based on the content of its argument. The position of this argument in
an array of capacity positions can then be determined by the expression

a abs(hash(item)) / capacity

b abs(hash(item)) % capacity

C6840_19 11/19/08 11:45 AM Page 815

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 19 Unordered Collections: Sets and Dictionaries[816]

8 The worst-case access time of a chaining/hashing implementation of sets
or dictionaries is

a constant
b logarithmic
c linear

9 A dictionary has

a a single method that supports an iterator
b two methods that support iterators, one for the keys and one for the

values

10 A method to avoid clustering is

a linear probing
b quadratic probing

PROJECTS
1 Complete the profiler for hash tables begun in the case study.

2 Using a data set and load factor that cause several collisions, run the pro-
filer with three different hashing functions and linear collision processing
and compare the results.

3 Add the methods get and remove to the HashTable class developed in
the case study.

4 Modify the profiler class to allow the programmer to study the behavior
of the HashTable method get. Recall that this method must skip over
previously occupied cells when probing for a target item. This profiler
should insert a set of data items into the table, remove a specified num-
ber of them, and run get with the remaining items. The programmer
should be able to view results such as the total number of probes and
average number of probes for this process.

5 Complete the two implementations of sets and test them with an appro-
priate driver program.

C6840_19 11/19/08 11:45 AM Page 816

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [817]

6 Complete the two implementations of dictionaries and test them with an
appropriate driver program. Be sure to include methods that return the
keys and the values of a dictionary.

7 Complete the tree-based implementations of sorted sets and sorted dic-
tionaries and test them with an appropriate driver program.

8 Add an issubset method to the sets module. This method returns
True if the set on which it is called is a subset of the argument set, or
False otherwise.

9 Add an __eq__ method to the sets module. This method returns True
if the two objects are identical, or if they are the same type and contain
the same elements. Otherwise, the method returns False.

10 A bag is an unordered collection that can contain duplicate items.
Otherwise, it behaves like a set. Define a class HashBag, which does not
add multiple instances of the same datum to itself, but instead maintains a
counter for each unique datum. This class extends the class HashSet and
overrides the definitions of the methods add , remove, and __str__.
When the first instance of a datum is added to the bag, the bag wraps it in
a new object of the class BagNode. This class extends the Node class by
adding a field for the count of instances. The count is initially 1 and is
simply incremented each time the bag receives a duplicate instance of the
node’s datum for insertion. Likewise, when a datum is removed, its node’s
counter is simply decremented. When the counter becomes 0, the datum’s
node is also removed. The __str__ method should build a string that
includes the number of instances of each item.

C6840_19 11/19/08 11:45 AM Page 817

May not be copied, scanned, or duplicated, in whole or in part.

C6840_19 11/19/08 11:45 AM Page 818

This page intentionally left blank

[CHAPTER] Graphs20
After completing this chapter, you will be able to:

� Use the relevant terminology to describe the difference
between graphs and other types of collections

� Recognize applications for which graphs are appropriate
� Explain the structural differences between an adjacency matrix

representation of a graph and the adjacency list representation
of a graph

� Analyze the performance of basic graph operations using the
two representations of graphs

� Describe the differences between a depth-first traversal of a
graph and a breadth-first traversal of a graph

� Explain the results of the topological sort, minimum spanning
tree, and single-source shortest path algorithms

� Develop an ADT and implementation of a directed graph
using one or both of the graph representations

This chapter covers one of the most general and useful collec-
tions, the graph. We begin by introducing some terms used to talk
about graphs. We then consider two common representations of
graphs, the adjacency matrix representation and the adjacency list
representation. We next discuss some widely used and well-known
graph-based algorithms. The algorithms of principal interest deal
with graph traversals, minimal spanning trees, topological sorting,
and shortest-path problems. Finally, we introduce a class for graphs
and conclude with a case study.

C6840_20 11/19/08 12:54 PM Page 819

May not be copied, scanned, or duplicated, in whole or in part.

20.1 Graph Terminology
Mathematically, a graph is a set V of vertices and a set E of edges, such that each
edge in E connects two of the vertices in V. We also use the term node as a syn-
onym for vertex.

Vertices and edges can be labeled or unlabeled. When the edges are labeled with
numbers, the numbers can be viewed as weights and the graph is said to be a
weighted graph. Figure 20.1 shows examples of unlabeled, labeled, and
weighted graphs.

[FIGURE 20.1] Unlabeled, labeled, and weighted graphs

One vertex is adjacent to another vertex if there is an edge connecting the two
vertices. These two vertices are also called neighbors. A path is a sequence of edges
that allows one vertex to be reached from another vertex in a graph. Thus, a vertex
is reachable from another vertex if and only if there is a path between the two. The
length of a path is the number of edges on the path. A graph is connected if there
is a path from each vertex to every other vertex. A graph is complete if there is an
edge from each vertex to every other vertex. Figure 20.2 shows graphs that are dis-
connected, connected but not complete, and complete.

Unlabeled graph

E
A

D

B

E
A

D

B

C C

1

3

2

1

2

Labeled graph Weighted graph

CHAPTER 20 Graphs[820]

C6840_20 11/19/08 12:54 PM Page 820

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 20.2] Disconnected, connected but not complete, and complete graphs

The degree of a vertex is equal to the number of edges connected to it. For
example, the degree of each vertex in a complete graph (see Figure 20.2) is equal
to the number of vertices minus one.

A subgraph of a given graph consists of a subset of that graph’s vertices and
the edges connecting those vertices. A connected component is a subgraph con-
sisting of the set of vertices that are reachable from a given vertex. Figure 20.3
shows a disconnected graph with vertices A, B, C, D, and E and the connected
component that contains the vertex B.

[FIGURE 20.3] A connected component of a graph

A simple path is a path that does not pass through the same vertex more
than once. By contrast, a cycle is a path that begins and ends at the same vertex.
Figure 20.4 shows a graph with a simple path and a graph with a cycle.

Connected component

A

B

D

C

E

Disconnected graph Connected graph Complete graph

20.1 Graph Terminology [821]

C6840_20 11/19/08 12:54 PM Page 821

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 20.4] A simple path and a cycle

The graphs shown in Figures 20.1 through 20.4 are undirected, which
means that their edges indicate no direction. That is, a graph-processing algo-
rithm can move in either direction along an edge that connects two vertices.
There can be at most one edge connecting any two vertices in an undirected
graph. By contrast, the edges in a directed graph, or digraph, specify an explicit
direction, as shown in Figure 20.5.

[FIGURE 20.5] Directed graphs (digraphs)

Each edge in a digraph is called a directed edge. Such an edge has a source
vertex and a destination vertex. When there is only one directed edge connect-
ing two vertices, the vertices are in the relation of predecessor (the source vertex)
and successor (the destination vertex). However, the relation of adjacency
between them is asymmetric; the source vertex is adjacent to the destination ver-
tex, but the converse is not true. To convert an undirected graph to an equivalent
directed graph, you replace each edge in the undirected graph with a pair of
edges pointing in opposite directions, as shown in Figure 20.6. The edges ema-
nating from a given source vertex are called its incident edges.

A

B

D

A

B

C

D

Simple path: ABC

A

B

D

A

B

C

D

Cycle: BCD

CHAPTER 20 Graphs[822]

C6840_20 11/19/08 12:54 PM Page 822

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 20.6] Converting an undirected graph to a directed graph

A special case of digraph that contains no cycles is known as a directed
acyclic graph, or DAG. The second directed graph in the previous figure con-
tains a cycle. In the graph on the right side of Figure 20.7, the direction of one
edge (between B and C) is reversed to produce a DAG.

[FIGURE 20.7] A directed graph and a directed acyclic graph (DAG)

Lists and trees are special cases of directed graphs. The nodes in a list are
related as predecessors and successors, whereas the nodes in a tree are related as
parents and children.

Speaking informally, a graph that has relatively many edges is called a dense
graph, whereas one that has relatively few edges is called a sparse graph. There
are two limiting cases. The number of edges in a complete directed graph with
N vertices is N * (N – 1), and the number of edges in a complete undirected graph
is N * (N – 1) / 2. Thus, the limiting case of a dense graph has approximately N 2

edges. By contrast, the limiting case of a sparse graph has approximately N edges.
Hereafter, when we say “graph,” we mean an undirected graph, unless we

explicitly state otherwise. Also, when we say “component,” we mean a connected
component in an undirected graph.

A

B

C

D

A

B

C

D

Directed graph Directed acyclic graph

A

B

C

D

Undirected graph

A

B

C

D

Directed graph

20.1 Graph Terminology [823]

C6840_20 11/19/08 12:54 PM Page 823

May not be copied, scanned, or duplicated, in whole or in part.

20.1 Exercises
1 The course prerequisites for a computer science major at a local college

are numbered as follows: 111 is required for 112 and 210; 112 is required
for 312, 313, 209, and 211; and 210 is required for 312. Draw a directed
graph that represents this numbering structure.

2 How many edges are in a complete, undirected graph with six vertices?

3 A star configuration of a network represents its structure as a graph with
an edge from a single, central node to each remaining node. A point-to-
point configuration represents a network as a complete graph. Draw a
picture of an example of each kind of configuration with four nodes, and
use big-O notation to state the efficiency of adding or removing a given
node in each type of configuration. You may assume for now that remov-
ing each edge is a constant-time operation.

20.2 Why Use Graphs?
Graphs serve as models of a wide range of objects. Among them are the following:

� A roadmap
� A map of airline routes
� A layout of an adventure game world
� A schematic of the computers and connections that make up the Internet
� The links between pages on the Web
� The relationship between students and courses
� The prerequisite structure of courses in a computer science department
� A diagram of the flow capacities in a communications or transportation

network

CHAPTER 20 Graphs[824]

C6840_20 11/19/08 12:54 PM Page 824

May not be copied, scanned, or duplicated, in whole or in part.

20.3 Representations of Graphs
To represent graphs, you need a convenient way to store the vertices and the
edges that connect them. The two commonly used representations of graphs are
the adjacency matrix and the adjacency list.

20.3.1 Adjacency Matrix

The adjacency matrix representation stores the information about a graph in a
matrix or grid, as introduced in Chapter 13. Recall that a matrix has two dimen-
sions, and each cell is accessed at a given a row and column position. Assume that
a graph has N vertices labeled 0, 1, . . . , N – 1, and then the following applies:

� The adjacency matrix for the graph is a grid G with N rows and N
columns.

� The cell G[i][j] contains 1 if there is an edge from vertex i to vertex j in
the graph. Otherwise, there is no edge and that cell contains 0.

Figure 20.8 shows a directed graph and its adjacency matrix. Each node in
the graph is labeled with a letter. Next to each node is its row number in the
adjacency matrix.

[FIGURE 20.8] A directed graph and its adjacency matrix

The matrix itself is the 4-by-4 grid of cells containing the 1s and 0s in the lower-
right corner of the table. The two columns of numbers and letters to the left of
the matrix contain the row positions and the labels of the vertices, respectively.
The vertices represented in these two columns are considered the source vertices
of potential edges. The numbers and letters above the matrix represent the desti-
nation vertices of potential edges.

A

B

C

D

0

1

3

2

A B D

A

B

C

D

C

0

1

2

3

0 1 32

0

1

0

0

0

0

0

0

0

1

0

1

0

1

0

0

20.3 Representations of Graphs [825]

C6840_20 11/19/08 12:54 PM Page 825

May not be copied, scanned, or duplicated, in whole or in part.

Note that there are four edges in this graph, so only 4 of the 16 matrix cells
are occupied by 1: cells (1,0), (1,2), (1,3), and (3,2). This is an example of a sparse
graph, which produces a sparse adjacency matrix. If the graph is undirected, then
four more cells are occupied by 1, to account for the bidirectional character of
each edge (see Figure 20.9).

[FIGURE 20.9] An undirected graph and its adjacency matrix

If the edges have weights, then the weight values can occupy the matrix cells.
The cells that indicate no edges must then have some value that is not within the
range of the allowable weights. If the vertices are labeled, then the labels can be
stored in a separate one-dimensional array (as shown in the second row of the
tables in both figures).

20.3.2 Adjacency List

Figure 20.10 shows a directed graph and its adjacency list representation. An
adjacency list representation stores the information about a graph in an array of
lists. Either linked or array-based list implementations can be used. In this exam-
ple, we use a linked list implementation. Assume that a graph has N vertices
labeled 0, 1, . . . , N – 1, and then the following applies:

� The adjacency list for the graph is an array of N linked lists.
� The ith linked list contains a node for vertex j if and only if there is an

edge from vertex i to vertex j.

A

B

C

D

0

1

3

2

A B D

A

B

C

D

C

0

1

2

3

0 1 32

0

1

0

0

1

0

0

1

0

1

0

1

0

1

1

0

CHAPTER 20 Graphs[826]

C6840_20 11/19/08 12:54 PM Page 826

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 20.10] A directed graph and its adjacency list

Note that the labels of the vertices are included in the nodes for each edge.
Naturally, there would be twice as many nodes in an undirected graph (see
Figure 20.11).

[FIGURE 20.11] An undirected graph and its adjacency list

When the edges have weights, the weights can also be included as a second data
field in the nodes, as shown in Figure 20.12.

[FIGURE 20.12] A weighted, directed graph and its adjacency list

A

B

C

D
21 2

3

0

1

2

3

B

A

C

D C 2

D 2 C 3 A 1

A

B

C

D

0

1

2

3

B D C A

A B

C D B

D C B

A

B

C

D

0

1

2

3

B

A

D C A

D

C

C

20.3 Representations of Graphs [827]

C6840_20 11/19/08 12:54 PM Page 827

May not be copied, scanned, or duplicated, in whole or in part.

20.3.3 Analysis of the Two Representations

As far as running time is concerned, the behavior of two commonly used graph
operations illustrates the difference in computational efficiency between the adja-
cency matrix and the adjacency list. These operations are the following:

1 Determine whether or not there is an edge between two given vertices.

2 Find all of the vertices adjacent to a given vertex.

The adjacency matrix supports the first operation in constant time because it
requires just an index operation into a two-dimensional array. By contrast, the
linked adjacency list requires an index into an array of linked lists and then a
search of a linked list for a target vertex. The running time is linear with the
length of this list, on the average. The use of an array-based adjacency list can
improve this performance to logarithmic time, if the vertices can be sorted in
the lists.

The adjacency list tends to support the second operation more efficiently
than the adjacency matrix. In the adjacency list, the set of adjacent vertices for a
given vertex is simply the list for that vertex, which can be located with one index
operation. By contrast, the set of adjacent vertices for a given vertex in the adja-
cency matrix must be computed by traversing that vertex’s row in the matrix and
accumulating just those positions that contain 1. The operation must always visit
N cells in the adjacency matrix, whereas the operation typically visits much fewer
than N nodes in an adjacency list. The limiting case is that of a complete graph.
In this case, each cell in the matrix is occupied by 1, each linked list has N – 1
nodes, and the performance is a toss-up.

The linked adjacency list and the array-based adjacency list exhibit perform-
ance trade-offs for insertions of edges into the lists. The array-based insertion
takes linear time, whereas the linked-based insertion requires constant time.

As far as memory usage is concerned, the adjacency matrix always requires
N2 cells, no matter how many edges connect the vertices. Thus, the only case in
which no cells are wasted is that of a complete graph. By contrast, the adjacency
list requires an array of N pointers and a number of nodes equal to twice the
number of edges in the case of an undirected graph. The number of edges typi-
cally is much smaller than N 2, although as the number of edges increases, the
extra memory required for the pointers in the linked adjacency list becomes a
significant factor.

CHAPTER 20 Graphs[828]

C6840_20 11/19/08 12:54 PM Page 828

May not be copied, scanned, or duplicated, in whole or in part.

20.3.4 Further Run-Time Considerations

Another commonly performed operation in graph algorithms is to iterate across
all the neighbors of a given vertex. Let N = number of vertices and M = number
of edges. Then, the following applies:

� Using an adjacency matrix to iterate across all neighbors, one must traverse
a row in a time that is O(N). To repeat this for all rows is O(N2).

� Using an adjacency list, the time to traverse across all neighbors depends
on the number of neighbors. On the average, this time is O(M/N). To
repeat this for all vertices is O(max(M, N)), which for a dense graph is
O(N2) and for a sparse graph is O(N). Thus, adjacency lists can provide a
run-time advantage when working with sparse graphs.

20.3 Exercises
1 Make a table showing the adjacency matrix for the following directed

graph with edge costs.

2 Draw a picture showing the adjacency list for the above directed graph
with edge costs. You should assume that the edges in a list are ordered
from least cost to greatest cost.

3 State one advantage and one disadvantage of the adjacency matrix
representation and the adjacency list representation of graphs.

1

0
2

3

4

3

2

1

2

2

1

20.3 Representations of Graphs [829]

C6840_20 11/19/08 12:54 PM Page 829

May not be copied, scanned, or duplicated, in whole or in part.

20.4 Graph Traversals
As in a tree, you get to a given item in a graph by following a link to it from
another item. Often, you need to follow several links, from one item to another,
in a path to get to a given item. In addition to the insertion and removal of items,
important graph-processing operations include the following:

� Finding the shortest path to a given item in a graph
� Finding all of the items to which a given item is connected by paths
� Traversing all of the items in a graph

In this section, we examine several types of graph traversals. One starts at a
given vertex and, from there, visits all vertices to which it connects. Graph traver-
sals are thus different from tree traversals, which always visit all of the nodes in a
given tree.

20.4.1 A Generic Traversal Algorithm

Graph traversal algorithms start at a given vertex and move outward to explore
paths to neighboring vertices. Iterative (nonrecursive) versions of these algo-
rithms schedule vertices to be visited on a separate, temporary collection. As we
shall see, the type of collection used for the scheduling influences the order in
which vertices are visited. For now, we present a generic function that performs a
graph traversal that starts at an arbitrary vertex startVertex and uses a generic
collection to schedule the vertices. Here is the pseudocode for this function:

traverseFromVertex(graph, startVertex):
mark all vertices in the graph as unvisited
insert the startVertex into an empty collection
while the collection is not empty:

remove a vertex from the collection
if the vertex has not been visited:

mark the vertex as visited
process the vertex
insert all adjacent unvisited vertices into the collection

CHAPTER 20 Graphs[830]

C6840_20 11/19/08 12:54 PM Page 830

May not be copied, scanned, or duplicated, in whole or in part.

In the foregoing function, for a graph that contains N vertices, the following
applies:

1 All vertices reachable from startVertex are processed exactly once.

2 Determining all vertices adjacent to a given vertex is straightforward:

a When an adjacency matrix is used, we iterate across the row corre-
sponding to the vertex.

� This is an O(N) operation.
� Repeating this for all rows is O(N 2).

b When an adjacency list is used, we traverse the vertex’s linked list.

� Performance depends on how many vertices are adjacent to
the given vertex.

� Repeating this for all vertices is O(max(M, N), where M is the
number of edges.

20.4.2 Breadth-First and Depth-First Traversals

There are two common orders in which vertices can be visited during a graph
traversal. The first, called a depth-first traversal, uses a stack as the collection in
the generic algorithm. The use of a stack forces the traversal process to go deeply
into the graph before backtracking to another path. Put another way, the use of a
stack constrains the algorithm to move from a vertex to one of its neighbors, and
then to one of this neighbor’s neighbors, and so on.

The second kind of traversal, called a breadth-first traversal, uses a queue
as the collection in the generic algorithm. The use of a queue forces the traversal
process to visit every vertex adjacent to a given vertex before it moves deeper into
the graph. In this respect, a breadth-first traversal of a graph is similar to a level-
order traversal of a tree, as discussed in Chapter 18.

Figure 20.13 shows a graph and the vertices or nodes visited during these
two types of traversals. The start vertex is shaded, and the vertices are numbered
in the order in which they are visited during the traversals.

20.4 Graph Traversals [831]

C6840_20 11/19/08 12:54 PM Page 831

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 20.13] Depth-first and breadth-first traversals of a given graph

A depth-first traversal can also be implemented recursively. This fact should
not be too surprising; remember the relationship between stacks and recursion
established in Chapters 14 and 17 of this book. Here is a function for recursive
depth-first traversal. It uses an auxiliary function called dfs (short for depth-first
search). Here is the pseudocode for the two functions:

traverseFromVertex(graph, startVertex):
mark all vertices in the graph as unvisited
dfs(graph, startVertex)

dfs(graph, v):
mark v as visited
process v
for each vertex, w, adjacent to v:

if w has not been visited:
dfs(graph, w)

As just presented, a traversal starting at a vertex v is limited to the vertices
reachable from v, which in an undirected graph is the component containing v.
If we desire to traverse all the vertices of an undirected graph component by
component, these functions can be extended, as is illustrated next. Here is the
iterative version:

traverseAll(graph):
mark all vertices in the graph as unvisited
instantiate an empty collection
for each vertex in the graph:

if the vertex has not been visited:
insert the vertex in the collection

84

5

2

3

1
The graph Depth-first transversal Breadth-first transversal

6
7

76

8

2

5

1

3
4

CHAPTER 20 Graphs[832]

C6840_20 11/19/08 12:54 PM Page 832

May not be copied, scanned, or duplicated, in whole or in part.

while the collection is not empty:
remove a vertex from the collection
if the vertex has not been visited:

mark the vertex as visited
process the vertex
insert all adjacent unvisited vertices into the collection

And here is the recursive version:

traverseAll(graph):
mark all vertices in the graph as unvisited
for each vertex, v, in the graph:

if v is unvisited:
dfs(graph, v)

dfs(graph g, v):
mark v as visited
process v
for each vertex, w, adjacent to v:

if w is unvisited
dfs(g, w)

Performance for the basic traversal algorithm, ignoring the processing of a
vertex, is O(max(N, M)) or O(N2), depending on the representation, as illustrated
in the following algorithm. We assume that inserting and deleting from the col-
lection are O(1), which they can be with stacks and queues.

traverseFromVertex(graph, startVertex):
mark all vertices in the graph as unvisited O(N)
insert the startVertex into an empty collection O(1)
while the collection is not empty: loop O(N) times

remove a vertex from the collection O(1)
if the vertex has not been visited: O(1)

mark the vertex as visited O(1)
process the vertex O(?)
insert all adjacent unvisited vertices into the collection O(deg(v))

Note that the value of the expression O(deg(v)) depends on the graph representation.

20.4 Graph Traversals [833]

C6840_20 11/19/08 12:54 PM Page 833

May not be copied, scanned, or duplicated, in whole or in part.

20.4.3 Graph Components

The traversal algorithms that we have discussed can be used to partition the
vertices of a graph into disjoint components. Here, by way of example, each
component is stored in a set, and the sets are stored in a list:

partitionIntoComponents(graph):
lyst = []
mark all vertices in the graph as unvisited
for each vertex, v, in the graph:

if v is unvisited:
s = set()
lyst.append(s)
dfs(g, v, s)

return list

dfs(graph, v, s):
mark v as visited
s.add(v)
for each vertex, w, adjacent to v:

if w is unvisited:
dfs(g, w, s)

20.4 Exercises
1 Assume that the following graph is traversed in depth-first fashion,

beginning with the vertex labeled A. Write a list of the labels in an order
in which they might be visited.

B

A

D

E

C

CHAPTER 20 Graphs[834]

C6840_20 11/19/08 12:54 PM Page 834

May not be copied, scanned, or duplicated, in whole or in part.

2 Assume that the graph in Exercise 1 is traversed in breadth-first fashion,
beginning with the vertex labeled A. Write a list of the labels in the
order in which they are visited.

3 Describe, informally without pseudocode, a strategy for performing a
breadth-first traversal of a graph.

20.5 Trees Within Graphs
The function traverseFromVertex implicitly yields a tree rooted at the vertex
from which the traversal starts and includes all the vertices reached during the
traversal. This tree is just a subgraph of the graph being traversed. Consider, for
instance, the depth-first search variant of the method. Suppose dfs has just been
called using vertex v. If a recursive call using vertex w now occurs, then we con-
sider w to be a child of v. The edge (v, w) corresponds to the parent-child rela-
tionship, or edge, between v and w. The starting vertex is the root of this tree.
The tree is called a depth-first search tree.

It is also possible to build a breadth-first search tree. Figure 20.13 showed
these two kinds of trees within a graph that was traversed from a given vertex.

20.5.1 Spanning Trees and Forests

A spanning tree is of interest because it has the fewest number of edges possible
while still retaining a connection between all the vertices in the component. If
the component contains n vertices, the spanning tree contains n – 1 edges. When
you traverse all the vertices of an undirected graph, not just those in a single
component, you generate a spanning forest.

20.5.2 Minimum Spanning Tree

When the edges in a graph are weighted, you can sum the weights for all edges in a
spanning tree and attempt to find a spanning tree that minimizes this sum. There
are several algorithms for finding a minimum spanning tree for a component.
Repeated application to all the components in a graph yields a minimum spanning
forest for a graph. For example, consider the map of air miles between cities. This
map is useful to determine how an airline can service all cities, while minimizing
the total length of the routes it needs to support. To accomplish this, you could
treat the map as a weighted graph and generate its minimum spanning forest.

20.5 Trees Within Graphs [835]

C6840_20 11/19/08 12:54 PM Page 835

May not be copied, scanned, or duplicated, in whole or in part.

20.5.3 Algorithms for Minimum Spanning Trees

There are two well-known algorithms for finding a minimum spanning tree, one
developed by Robert C. Prim in 1957 and the other by Joseph Kruskal in 1956.
Here is Prim’s algorithm. Without loss of generality, we assume the graph is
connected.

minimumSpanningTree(graph):
mark all vertices and edges as unvisited
mark some vertex, say v, as visited
for all the vertices:

find the least weight edge from a visited vertex to an unvisited vertex, say w
mark the edge and w as visited

At the end of this process, the marked edges are the branches in a minimum
spanning tree. Here is a proof by contradiction:

1 Suppose G is a graph for which Prim’s algorithm yields a spanning tree
that is not minimum.

2 Number the vertices in the order in which they are added to the span-
ning tree by Prim’s algorithm, giving v1, v2, . . . , vn. In this numbering
scheme, v1 represents the arbitrary vertex at which the algorithm starts.

3 Number each edge in the spanning tree according to the vertex into
which it leads, for instance, ei leads into vertex i.

4 Because we are assuming that Prim’s algorithm does not yield a mini-
mum spanning tree for G, there is a first edge, call it ei, such that the set
of edges Ei = {e2, e3, . . . , ei} cannot be extended into a minimum span-
ning tree, whereas the set of edges Ei–1 = {e2, e3, . . . , ei–1} can be
extended. The set Ei–1 could even be empty, meaning that Prim’s algo-
rithm goes wrong with the first edge added.

5 Let Vi = {v1, v2, . . . , vi–1}. This set contains at least v1.

6 Let T be any spanning tree that extends Ei–1. T does not include ei.

7 Adding any more edges to T creates a cycle, so let us create a cycle by
adding edge ei.

8 This cycle includes two edges that cross the boundary between Vi and
the rest of the vertices in the graph. One of these edges is ei. Call the
other e. Because of the manner in which ei was chosen, ei <= e.

CHAPTER 20 Graphs[836]

C6840_20 11/19/08 12:54 PM Page 836

May not be copied, scanned, or duplicated, in whole or in part.

9 Remove e from T. Again we have a spanning tree, and because ei <= e, it
too is minimum. But this contradicts our earlier assumption that Ei could
not be extended into a minimum spanning tree. So if we have reasoned
correctly, the only way to escape this apparent contradiction is to suppose
that Prim’s algorithm applies to every graph.

Maximum running time is O(m * n). Solution:

Suppose n = number of vertices and m = number of edges, then

step 2. O(n + m) time
step 3. O(1) time
step 4. the loop executes O(n) times
step 5. if this is done in a straightforward manner, then

look at m edges—O(m) time
for each edge determine if the end points are visited or unvisited—O(1) time

step 6. O(1) time

Max Time = O(n + m + n * m)
but n + m + n * m < 1 + n + m + n * m = (n + 1) * (m + 1)
implies O(m * n)

A better result can be obtained by modifying the algorithm slightly. Central to
the modified algorithm is a heap of edges. Thus, the edge with the smallest weight
is on top. Because the graph is connected, n – 1 <= m.

1 minimumSpanningTree(Graph g):
2 mark all edges as unvisited
3 mark all vertices as unvisited
4 mark some vertex, say v, as visited
5 for each edge leading from v:
6 add the edge to the heap
7 k = 1
8 while k < number of vertices:
9 remove an edge from the heap

10 if one end of this edge, say vertex w, is not visited:
11 mark the edge and w as visited
12 for each edge leading from w:
13 add the edge to the heap
14 k += 1

20.5 Trees Within Graphs [837]

C6840_20 11/19/08 12:54 PM Page 837

May not be copied, scanned, or duplicated, in whole or in part.

The maximum running time is O(mlogn) for the adjacency list representation.
Solution:

Suppose n = number of vertices and m = number of edges, then, ignoring
lines that are O(1), we get the following:
step 2 — O(m)
step 3 — O(n)
step 5 — O(n) loops
step 6 — O(logm)
step 5 & 6 — O(nlogm)
step 8 — O(n)
step 9 — O(logm) and can happen at most m times, therefore O(mlogm)
step 12 — all executions of this inner loop are bounded by m
step 13 — O(logm)
step 12 &13 — O(mlogm)

Total
= O(m + n + logm + nlogm + mlogm)
= O(mlogm)
= O(mlogn), because m <= n * n and logn * n = 2 logn

20.6 Topological Sort
A directed acyclic graph (DAG) has an order among the vertices. For example, in
a graph of courses for an academic major, such as computer science, some courses
are prerequisites for others. A natural question to ask in these cases is, to take a
given course, in what order should I take all of its prerequisites? The answer lies
in a topological order of vertices in this graph. A topological order assigns a
rank to each vertex such that the edges go from lower- to higher-ranked vertices.
Figure 20.14 shows a graph of courses P, Q, R, S, and T. Figures 20.15 and 20.16
show two possible topological orderings of the courses in this graph.

CHAPTER 20 Graphs[838]

C6840_20 11/19/08 12:54 PM Page 838

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 20.14] A graph of courses

[FIGURE 20.15] The first topological ordering of the graph

[FIGURE 20.16] The second topological ordering of the graph

The process of finding and returning a topological order of vertices in a
graph is called a topological sort. One topological sort algorithm is based on a
graph traversal. One can use either a depth-first traversal or a breadth-first tra-
versal. We use a depth-first traversal. The vertices are returned in a stack in
ascending order (topologically speaking):

topologicalSort(graph g):
stack = LinkedStack()
mark all vertices in the graph as unvisited
for each vertex, v, in the graph:

if v is unvisited:
dfs(g, v, stack)

return stack

P S RTQ

P Q RTS

P

S

T

Q
R

20.6 Topological Sort [839]

C6840_20 11/19/08 12:54 PM Page 839

May not be copied, scanned, or duplicated, in whole or in part.

dfs(graph, v, stack):
mark v as visited
for each vertex, w, adjacent to v:

if w is unvisited:
dfs(graph, w, stack)

stack.push(v)

The performance of this algorithm is O(m) when stack insertions are O(1).

20.7 The Shortest-Path Problem
It is often useful to determine the shortest path between two vertices in a graph.
Consider an airline map, represented as a weighted directed graph whose weights
represent miles between airports. The shortest path between two airports is the
path that has the smallest sum of edge weights.

The single-source shortest path problem asks for a solution that contains
the shortest paths from a given vertex to all of the other vertices. This problem
has a widely used solution by Dijkstra. His solution is O(n2) and assumes that all
weights must be positive.

Another problem, known as the all-pairs shortest path problem, asks
for the set of all the shortest paths in a graph. A widely used solution by Floyd
is O(n3).

20.7.1 Dijkstra’s Algorithm

We now develop Dijkstra’s algorithm for computing the single-source shortest
path. The inputs to this algorithm are a directed acyclic graph with edge weights
greater than 0 and a single vertex that represents the source vertex. The algo-
rithm computes the distances of the shortest paths from the source vertex to all
the other vertices in the graph. The output of the algorithm is a two-dimensional
grid, results. This grid has N rows, where N is the number of vertices in the
graph. The first column in each row contains a vertex. The second column con-
tains the distance from the source vertex to this vertex. The third column con-
tains the immediate parent vertex on this path (recall that vertices within a graph
can have parent/child relationships when implicit trees are traversed within that
graph).

In addition to this grid, the algorithm uses a temporary list, included, of N
Booleans to track whether or not a given vertex has been included in the set of

CHAPTER 20 Graphs[840]

C6840_20 11/19/08 12:54 PM Page 840

May not be copied, scanned, or duplicated, in whole or in part.

vertices for which we already have determined the shortest path. The algorithm
consists of two major steps: an initialization step and a computation step.

20.7.2 The Initialization Step

In this step, we initialize all of the columns in the results grid and all of the
cells in the included list according to the following algorithm:

for each vertex in the graph
Store vertex in the current row of the results grid
If vertex = source vertex

Set the row’s distance cell to 0
Set the row’s parent cell to undefined
Set included[row] to True

Else if there is an edge from source vertex to vertex
Set the row’s distance cell to the edge’s weight
Set the row’s parent cell to source vertex
Set included[row] to False

Else
Set the row’s distance cell to infinity
Set the row’s parent cell to undefined
Set included[row] to False

Go to the next row in the results grid

At the end of this process, the following things are true:
� The cells in the included list are all False, except for the cell that corre-

sponds to the row of the source vertex in the results grid.
� The distance in a row’s distance cell is either 0 (for the source vertex),

infinity (for a vertex without a direct edge from the source), or a positive
number (for a vertex without a direct edge from the source). We represent
infinity in the implementation with a large number, such as 1010.

� The vertex in a row’s parent cell is either the source vertex or undefined.
We represent undefined in the implementation with None.

Figure 20.17 shows the state of the two data structures after the initialization
step has been run with a given graph.

20.7 The Shortest-Path Problem [841]

C6840_20 11/19/08 12:54 PM Page 841

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 20 Graphs[842]

[FIGURE 20.17] A graph and the initial state of the data structures used to compute the shortest
paths from a given vertex

20.7.3 The Computation Step

In the computation step, Dijkstra’s algorithm finds a shortest path from the
source to a vertex, marks this vertex’s cell in the included list, and continues this
process until all of these cells are marked. Here is the algorithm for this step:

Do
Find the vertex F that is not yet included and has the minimal distance in the

results grid
Mark F as included
For each other vertex T not included

If there is an edge from F to T
Set new distance to F’s distance + edge’s weight
If new distance < T’s distance in the results grid

Set T’s distance to new distance
Set T’s parent in the results grid to F

While at least one vertex is not included

As you can see, the algorithm repeatedly selects the vertex with the shortest-
path distance that has not yet been included and marks it as included before
entering the nested for loop. In the body of this loop, the process runs through
any edges from the included vertex to unincluded vertices and determines the
smallest possible distance from the source vertex to any of these other vertices.
The critical step in this process is the nested if statement, which resets the

A

B

C

D
1

2

1 1

0

2

3 2 B

2 B

4 ∞

1 B

0

A

D

B

C

E

False

False

True

False

False

included results

vertex

distance

parent

graph

E32

C6840_20 11/19/08 12:54 PM Page 842

May not be copied, scanned, or duplicated, in whole or in part.

20.7 The Shortest-Path Problem [843]

distance and parent cells for an unincluded vertex if a new minimal distance has
been found to the unincluded vertex through the included vertex. Figure 20.18
shows the graph and the state of the data structures after the algorithm has run.

[FIGURE 20.18] A graph and the final state of the data structures used to compute the shortest
paths from a given vertex

20.7.4 Analysis

The initialization step must process every vertex, so it is O(n). The outer loop of
the computation step also iterates through every vertex. The inner loop of this
step iterates through every vertex not included thus far. Hence, the overall behav-
ior of the computation step resembles that of other O(n2) algorithms, so
Dijkstra’s algorithm is O(n2).

20.7 Exercises
1 Dijkstra’s single-source shortest path algorithm returns a results grid that

contains the lengths of the shortest paths from a given vertex to the
other vertices reachable from it. Develop a pseudocode algorithm that
uses the results grid to build and return the actual path, as a list of ver-
tices, from the source vertex to a given vertex. (Hint: This algorithm
starts with a given vertex in the grid’s first column and gathers ancestor
vertices, until the source vertex is reached.)

A

B

C

D
1

2

1 1

0

2

3 2 B

2 B

4 3

1 B

0

A

D

B

C

E

True

True

True

True

True

included results

vertex

distance

parent

graph

E32

D

C6840_20 11/19/08 12:54 PM Page 843

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 20 Graphs[844]

20.8 Developing a Graph ADT
To develop a graph ADT, we need to consider various factors:

� The requirements of users
� The mathematical nature of graphs
� The commonly used representations, adjacency matrix and adjacency list

All graphs, whether they are directed, undirected, weighted, or unweighted, are
collections of vertices connected by edges. A quite general graph allows the labels
of vertices and edges to be any kind of object, although they typically are strings
or numbers. Users should be able to insert and remove vertices, insert or remove
an edge, and retrieve all of the vertices and edges. It is also useful to obtain the
neighboring vertices and the incident edges of a given vertex in a graph and to set
and clear marks on the vertices and edges. Finally, users should be able to choose,
as their needs dictate, between directed and undirected graphs and between an
adjacency matrix representation and an adjacency list representation.

The graph ADT shown here creates weighted directed graphs with an adja-
cency list representation. In the examples, the vertices are labeled with strings
and the edges are weighted with numbers. The implementation of the graph
ADT shown here consists of the classes LinkedDirectedGraph, LinkedVertex,
and LinkedEdge.

20.8.1 Example Use of the Graph ADT

Assume that you want to create the weighted directed graph in Figure 20.19.

[FIGURE 20.19] A weighted directed graph

A

B

D

C
E

1

2

1

3

2

C6840_20 11/19/08 12:54 PM Page 844

May not be copied, scanned, or duplicated, in whole or in part.

20.8 Developing a Graph ADT [845]

The following code segment does this and displays the graph’s string representa-
tion in the terminal window:

fromƒgraphƒimportƒLinkedDirectedGraph

gƒ=ƒLinkedDirectedGraph()

#ƒInsertƒvertices
g.addVertex(“A”)
g.addVertex(“B”)
g.addVertex(“C”)
g.addVertex(“D”)
g.addVertex(“E”)

#ƒInsertƒweightedƒedges
g.addEdge(“A”,ƒ“B”,ƒ3)
g.addEdge(“A”,ƒ“C”,ƒ2)
g.addEdge(“B”,ƒ“D”,ƒ1)
g.addEdge(“C”,ƒ“D”,ƒ1)-
g.addEdge(“D”,ƒ“E”,ƒ2)

printƒgƒ

Output:

5ƒVertices:ƒƒAƒCƒBƒEƒD
5ƒEdges:ƒƒA>B:3ƒA>C:2ƒB>D:1ƒC>D:1ƒD>E:2

The next code segment displays the neighboring vertices and the incident edges
of the vertex labeled A in our example graph:

printƒ“NeighboringƒverticesƒofƒA:”
forƒvertexƒinƒg.neighboringVertices(“A”):
ƒƒƒƒprintƒvertex

printƒ“IncidentƒedgesƒofƒA:”
forƒedgeƒinƒg.incidentEdges(“A”):
ƒƒƒƒprintƒedge

C6840_20 11/19/08 12:54 PM Page 845

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 20 Graphs[846]

Output:

NeighboringƒverticesƒofƒƒA:
B
C
IncidentƒedgesƒofƒA:
A:B:3
A:C:2

In the next subsections, we present the interfaces and partial implementations for
each of the classes in this version of the graph ADT. The completed implementa-
tion is left as an exercise for you.

20.8.2 The Class LinkedDirectedGraph
Table 20.1 lists the methods in the class LinkedDirectedGraph. Note that the
methods are categorized by their relationships to edges, vertices, and other roles.
We have not included any preconditions on the methods, but clearly some are
called for. For example, the methods addVertex and addEdge should not allow
the user to insert a vertex or an edge that is already in the graph. The develop-
ment of a complete set of preconditions is left as an exercise for you.

continued

LinkedDirectedGraph METHOD WHAT IT DOES

Gƒ=ƒLinkedDirectedGraph(Creates a new directed graph using an
ƒƒƒƒcollectionƒ=ƒNone) adjacency list representation. Accepts an

optional collection of labels as an argument
and adds vertices with these labels.

CLEARING, MARKS, SIZES, STRING REPRESENTATION

g.clear() Removes all the vertices from the graph.
g.clearEdgeMarks() Clears all edge marks.
g.clearVertexMarks() Clears all vertex marks.
g.isEmpty() Returns True if this graph contains no vertices.
g.sizeEdges() Returns the number of edges in the graph.
g.sizeVertices() Returns the number of vertices in the graph.
g.__str__() Same as str(g). Returns a string representa-

tion of the graph.

C6840_20 11/19/08 12:54 PM Page 846

May not be copied, scanned, or duplicated, in whole or in part.

[TABLE 20.1] The methods in the class LinkedDirectedGraph

The implementation of LinkedDirectedGraph maintains a dictionary
whose keys are labels and whose values are the corresponding vertices. The

VERTEX-RELATED METHODS

g.containsVertex(label) Returns True if the graph contains a vertex
with the specified label, otherwise returns
False.

g.addVertex(label) Adds a vertex with the specified label.

g.getVertex(label) Returns the vertex with the specified label or
None if there is no such vertex.

g.removeVertex(label) Removes the vertex with the specified label
and returns the vertex.

EDGE-RELATED METHODS

g.containsEdge(fromLabel, Returns True if the graph contains an edge
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtoLabel) from a vertex with fromLabel to a vertex

with toLabel, otherwise returns False.

g.addEdge(fromLabel, Adds an edge with the specified weight
ƒƒƒƒƒƒƒƒƒƒtoLabel, between the specified vertices.
ƒƒƒƒƒƒƒƒƒƒweight)

g.getEdge(fromLabel, Returns the edge connecting vertices with
ƒƒƒƒƒƒƒƒƒƒtoLabel) the specified labels, or returns None if there

is no such edge.

g.removeEdge(fromLabel, Removes and returns the edge specified by
ƒƒƒƒƒƒƒƒƒƒƒƒƒtoLabel) the given labels.

ITERATORS

g.edges() Returns an iterator over the edges in the graph.

g.vertices() Returns an iterator over the vertices in the
graph.

g.incidentEdges(label) Returns an iterator over the incident edges of
the vertex with label.

g.neighboringVertices(label)Returns an iterator over the vertices adjacent
to the vertex with label.

20.8 Developing a Graph ADT [847]

C6840_20 11/19/08 12:54 PM Page 847

May not be copied, scanned, or duplicated, in whole or in part.

constructor also adds vertices with labels if the user provides a collection of these
labels. Here is the code for the class header and constructor:

classƒLinkedDirectedGraph(object):

ƒƒƒƒdefƒ__init__(self,ƒcollectionƒ=ƒNone):
ƒƒƒƒƒƒƒƒself._vertexCountƒ=ƒ0
ƒƒƒƒƒƒƒƒself._edgeCountƒ=ƒ0
ƒƒƒƒƒƒƒƒself._verticesƒ=ƒ{}ƒƒƒƒƒƒƒƒ#ƒDictionaryƒofƒvertices
ƒƒƒƒƒƒƒƒifƒcollectionƒ!=ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒAddƒlabeledƒverticesƒifƒtheƒuserƒprovidesƒthe
ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒlabelsƒinƒcollection
ƒƒƒƒƒƒƒƒƒƒƒƒforƒlabelƒinƒcollection:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself.addVertex(label)

Adding, accessing, and testing for the presence of a vertex all use direct oper-
ations on the dictionary. For example, here is the code for the method
addVertex:

defƒaddVertex(self,ƒlabel):
ƒƒƒƒself._vertices[label]ƒ=ƒLinkedVertex(label)
ƒƒƒƒself._vertexCountƒ+=ƒ1

Removing a vertex, however, also entails removing any edges connecting it to
other vertices. The method removeVertex visits each remaining vertex in the
graph to cut any connections to the deleted vertex. It does this by calling the
LinkedVertex method removeEdgeTo, as follows:

defƒremoveVertex(self,ƒƒlabel):
ƒƒƒƒremovedVertexƒ=ƒself._vertices.pop(label,ƒNone)
ƒƒƒƒifƒremovedVertexƒisƒNone:ƒ
ƒƒƒƒƒƒƒƒreturnƒFalse
ƒƒƒƒƒƒƒƒ
ƒƒƒƒ#ƒExamineƒallƒotherƒverticesƒtoƒremoveƒedges
ƒƒƒƒ#ƒconnectedƒtoƒme
ƒƒƒƒforƒvertexƒinƒself.vertices():
ƒƒƒƒƒƒƒƒifƒvertex.removeEdgeTo(removedVertex):ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒself._edgeCountƒ-=ƒ1
ƒƒƒƒself._vertexCountƒ-=ƒ1
ƒƒƒƒreturnƒTrue

CHAPTER 20 Graphs[848]

C6840_20 11/19/08 12:54 PM Page 848

May not be copied, scanned, or duplicated, in whole or in part.

The methods related to edges first get the vertices corresponding to the
labels and then use corresponding methods in the LinkedEdge class to complete
the operations. Here is the code for adding, accessing, and removing an edge:

defƒaddEdge(self,ƒfromLabel,ƒtoLabel,ƒweight):
ƒƒƒƒfromVertexƒ=ƒself.getVertex(fromLabel)
ƒƒƒƒtoVertexƒƒƒ=ƒself.getVertex(toLabel)
ƒƒƒƒfromVertex.addEdgeTo(toVertex,ƒweight)
ƒƒƒƒself._edgeCountƒ+=ƒ1
ƒƒƒƒ
defƒgetEdge(self,ƒfromLabel,ƒtoLabel):
ƒƒƒƒfromVertexƒ=ƒself._vertices[fromLabel]
ƒƒƒƒtoVertexƒƒƒ=ƒself._vertices[toLabel]
ƒƒƒƒreturnƒfromVertex.getEdgeTo(toVertex)
ƒƒƒƒ
defƒremoveEdge(self,ƒfromLabel,ƒtoLabel):ƒ
ƒƒƒƒfromVertexƒ=ƒself.getVertex(fromLabel)ƒƒƒƒƒ
ƒƒƒƒtoVertexƒƒƒ=ƒself.getVertex(toLabel)ƒƒƒƒƒ
ƒƒƒƒedgeRemovedFlgƒ=ƒfromVertex.removeEdgeTo(toVertex)
ƒƒƒƒifƒedgeRemovedFlg:ƒ
ƒƒƒƒƒƒƒƒself._edgeCountƒ-=ƒ1
ƒƒƒƒreturnƒedgeRemovedFlg

The graph’s iterators access or build the appropriate internal collections and
return iterators on these. The method vertices, which returns an iterator on
the dictionary’s values, is the simplest. The methods incidentEdges and
neighboringVertices each call a corresponding method in the LinkedVertex
class. The method edges, however, requires that we build a collection of the set
of all the incident edges from the set of all their vertices. This result is essentially
the union of all the sets of incident edges, which is expressed in the following
method definition:

defƒedges(self):
ƒƒƒƒresultƒ=ƒset()
ƒƒƒƒforƒvertexƒinƒself.vertices():
ƒƒƒƒƒƒƒƒedgesƒ=ƒvertex.incidentEdges()
ƒƒƒƒƒƒƒƒresultƒ=ƒresult.union(set(edges))
ƒƒƒƒreturnƒiter(result)

20.8 Developing a Graph ADT [849]

C6840_20 11/19/08 12:54 PM Page 849

May not be copied, scanned, or duplicated, in whole or in part.

20.8.3 The Class LinkedVertex

Table 20.2 lists the methods in the class LinkedVertex.

[TABLE 20.2] The methods in the class LinkedVertex

The adjacency list implementation is expressed as a list of edges belonging to
each vertex. The next code segment shows the constructor and the method
setLabel. Note that setLabel includes the graph as an argument. Resetting a
vertex label is tricky, because we actually just want to change the key of this ver-
tex in the graph’s dictionary without disturbing the other objects, such as incident
edges, that might be related to this vertex. So, we first pop the vertex from the

LinkedVertex METHOD WHAT IT DOES

v = LinkedVertex(label) Creates a vertex with the specified label. The
vertex is initially unmarked.

v.clearMark() Unmarks the vertex.

v.setMark() Marks the vertex.

v.isMarked() Returns True if the vertex is marked, or returns
False otherwise.

v.getLabel() Returns the label of the vertex.

v.setLabel(label, g) Changes the label of the vertex in the graph g to
the specified label.

v.addEdgeTo(toVertex, Adds an edge with the given weight from v to
ƒƒƒƒƒƒƒƒƒƒƒƒweight) toVertex.

v.getEdgeTo(toVertex) Returns the edge from v to toVertex, or returns
None if the edge does not exist.

v.incidentEdges() Returns an iterator over the incident edges of v.

v.neighboringVertices() Returns an iterator over the vertices adjacent to v.

__str__() Returns a string representation of the vertex.

CHAPTER 20 Graphs[850]

C6840_20 11/19/08 12:54 PM Page 850

May not be copied, scanned, or duplicated, in whole or in part.

dictionary, reinsert that same vertex object with the new label as its key into the
dictionary, and then reset this vertex’s label to the new label. Here is the code:

classƒLinkedVertex(object):

ƒƒƒƒdefƒ__init__(self,ƒlabel):
ƒƒƒƒƒƒƒƒself._labelƒ=ƒlabel
ƒƒƒƒƒƒƒƒself._edgeListƒ=ƒ[]
ƒƒƒƒƒƒƒƒself._markƒ=ƒFalse

ƒƒƒƒdefƒsetLabel(self,ƒlabel,ƒg):
ƒƒƒƒƒƒƒƒg._vertices.pop(self._label,ƒNone)
ƒƒƒƒƒƒƒƒg._vertices[label]ƒ=ƒself
ƒƒƒƒƒƒƒƒself._labelƒ=ƒlabelƒƒƒƒƒƒƒƒƒƒ

The LinkedVertex class defines several other methods used by
LinkedGraph to access the edges of a vertex. Adding and accessing an edge
involve direct calls to the corresponding list methods, as does the iterator method
incidentEdges. The method getNeighboringVertices builds a list of the
other vertices from the list of edges, using the LinkedEdge method
getOtherVertex. The method removeEdgeTo creates a dummy edge with the
current vertex and the argument vertex, and removes the corresponding edge
from the list if it is in the list. Here is the code for two of these methods:

defƒneighboringVertices(self):
ƒƒƒƒverticesƒ=ƒ[]
ƒƒƒƒforƒedgeƒinƒself._edgeList:
ƒƒƒƒƒƒƒƒvertices.append(edge.getOtherVertex(self))
ƒƒƒƒreturnƒiter(vertices)
ƒƒƒƒƒƒƒƒƒƒƒƒ
defƒremoveEdgeTo(self,ƒtoVertex):
ƒƒƒƒedgeƒ=ƒLinkedEdge(self,ƒtoVertex)
ƒƒƒƒifƒedgeƒinƒself._edgeList:
ƒƒƒƒƒƒƒƒself._edgeList.remove(edge)
ƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒFalse

20.8 Developing a Graph ADT [851]

C6840_20 11/19/08 12:54 PM Page 851

May not be copied, scanned, or duplicated, in whole or in part.

20.8.4 The Class LinkedEdge

Table 20.3 lists the methods in the class LinkedEdge.

[TABLE 20.3] The methods in the class LinkedEdge

An edge maintains references to its two vertices, its weight, and a mark.
Although the weight can be any object labeling the edge, the weight is often a
number or some other comparable value. Two edges are considered equal if they
have the same vertices. Here is the code for the constructor and the __eq__
method:

classƒLinkedEdge(object):
ƒƒƒƒ
ƒƒƒƒdefƒ__init__(self,ƒfromVertex,ƒtoVertex,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒweightƒ=ƒNone):ƒƒƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒƒself._vertex1ƒ=ƒfromVertex
ƒƒƒƒƒƒƒƒself._vertex2ƒ=ƒtoVertex
ƒƒƒƒƒƒƒƒself._weightƒ=ƒweightƒ
ƒƒƒƒƒƒƒƒself._markƒ=ƒFalse

continued

LinkedEdge METHOD WHAT IT DOES

Eƒ=ƒLinkedEdge(fromVertex, Creates an edge with the specified vertices
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtoVertex, and weight. It is initially unmarked.
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒweight = None)

e.clearMark() Unmarks the edge.

e.setMark() Marks the edge.

e.isMarked() Returns True if the edge is marked, or
returns False otherwise.

e.getWeight() Returns the weight of the edge.

e.setWeight(weight) Sets the edge’s weight to the specified
weight.

e.getOtherVertex(vertex) Returns the edge’s other vertex.

e.getToVertex() Returns the edge’s destination vertex.

e.__str__() Same as str(e). Returns a string
representation of the edge.

CHAPTER 20 Graphs[852]

C6840_20 11/19/08 12:54 PM Page 852

May not be copied, scanned, or duplicated, in whole or in part.

ƒƒƒƒdefƒ__eq__(self,ƒother):
ƒƒƒƒƒƒƒƒifƒselfƒisƒother:ƒreturnƒTrue
ƒƒƒƒƒƒƒƒifƒtype(self)ƒ!=ƒtype(other):ƒreturnƒFalse
ƒƒƒƒƒƒƒƒreturnƒself._vertex1ƒ==ƒother._vertex1ƒandƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._vertex2ƒ==ƒother._vertex2

20.9 Case Study: Testing Graph Algorithms
Although our graph ADT is easy to use, building a complex graph for real appli-
cations can be complicated and tedious. In this case study, we develop a data
model and user interface that allow the programmer to create graphs and use
them to test graph algorithms.

20.9.1 Request

Write a program that allows the user to test some graph-processing algorithms.

20.9.2 Analysis

The program allows the user to enter a description of the graph’s vertices and
edges. The program also allows the user to enter the label of a starting vertex for
certain tests. Menu options make it easy for the user to perform several tasks,
including running the following graph algorithms:

� Find the minimum spanning tree from the start vertex.
� Determine the single-source shortest paths.
� Perform a topological sort.

When the user selects the option to build a graph, the program attempts to
build a graph with some inputs. These inputs can come from the keyboard or
from a text file. If the inputs generate a valid graph, the program notifies the user.
Otherwise, the program displays an error message. The other options display the
graph or run algorithms on the graph and display the results. Figure 20.20 shows a
short session with the program.

20.9 Case Study: Testing Graph Algorithms [853]

C6840_20 11/19/08 12:54 PM Page 853

May not be copied, scanned, or duplicated, in whole or in part.

[FIGURE 20.20] The user interface for the graph-tester program

The string “p>q:0” means that there is an edge with weight 0 from vertex p
to vertex q. The string for a disconnected vertex is simply the vertex label.

Main menu
 1 Input a graph from the keyboard
 2 Input a graph from a file
 3 View the current graph
 4 Single-source shortest paths
 5 Minimum spanning tree
 6 Topological sort
 7 Exit the program

Enter a number [1-7]: 1
Enter an edge or return to quit: p>s:0
Enter an edge or return to quit: p>q:0
Enter an edge or return to quit: s>t:0
Enter an edge or return to quit: q>t:0
Enter an edge or return to quit: q>r:0
Enter an edge or return to quit: t>r:0
Enter an edge or return to quit:
Enter the start label: p
Graph created successfully
Main menu
 1 Input a graph from the keyboard
 2 Input a graph from a file
 3 View the current graph
 4 Single-source shortest paths
 5 Minimum spanning tree
 6 Topological sort
 7 Exit the program

Enter a number [1-7]: 6
Sort: p s q t r
Main menu
 1 Input a graph from the keyboard
 2 Input a graph from a file
 3 View the current graph
 4 Single-source shortest paths
 5 Minimum spanning tree
 6 Topological sort
 7 Exit the program

Enter a number [1-7]: 7

CHAPTER 20 Graphs[854]

C6840_20 11/19/08 12:54 PM Page 854

May not be copied, scanned, or duplicated, in whole or in part.

The program consists of two main classes, GraphDemoView and
GraphDemoModel. As usual, the view class handles interaction with the user. The
model class builds the graph and runs the graph algorithms on it. These algo-
rithms are defined as functions in a separate module named algorithms. We
now develop portions of these classes and leave their completion as an exercise
for you.

20.9.3 The Classes GraphDemoView and
GraphDemoModel

The setup of the command menu resembles command menus in previous case
studies. When the user selects one of the two commands to input a graph, the
method createGraph is run on the model with the text from the input source.
This method returns a string that indicates either a legitimate graph or a poorly
formed graph.

When the user selects a command to run a graph algorithm, the appropriate
graph-processing function is passed to the model to be executed. If the model
returns None, that means that the model did not have a graph available for pro-
cessing. Otherwise, the model performs the given task and returns a data struc-
ture of results for display. Table 20.4 presents the methods that the model
provides to the view.

[TABLE 20.4] The methods in the GraphModel class

The three graph-processing functions are defined in the algorithms mod-
ule and are listed in Table 20.5.

GraphDemoModel METHOD WHAT IT DOES

createGraph(rep, startLabel) Attempts to create a graph with string
representation rep and the starting label
startLabel. Returns a string indicating
success or failure.

getGraph() If the graph is not available, returns None;
otherwise, returns a string representation
of the graph.

run(aGraphFunction) If the graph is not available, returns None;
otherwise, runs aGraphFunction on the
graph and returns its results.

20.9 Case Study: Testing Graph Algorithms [855]

C6840_20 11/19/08 12:54 PM Page 855

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 20 Graphs[856]

[TABLE 20.5] The graph-processing functions in the algorithms module

20.9.4 Implementation (Coding)

The view class includes methods for displaying the menu and getting a command
that are similar to methods in other case studies. The other two methods get the
inputs from the keyboard or a file. Here is the code for a partial implementation:

“””
File:ƒview.py
Theƒviewƒforƒtestingƒgraph-processingƒalgorithms.
“””

fromƒmodelƒimportƒGraphDemoModel

fromƒalgorithmsƒimportƒshortestPaths,ƒspanTree,ƒtopoSort

classƒGraphDemoView(object):
ƒƒƒƒ“””Theƒviewƒclassƒforƒtheƒapplication.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._modelƒ=ƒGraphDemoModel()

continued

GRAPH-PROCESSING FUNCTION WHAT IT DOES

spanTree(graph, Returns a list containing the edges in the
ƒƒƒƒƒƒƒƒƒstartVertex) minimum spanning tree for the graph.

topoSort(graph, Returns a stack of vertices representing a
ƒƒƒƒƒƒƒƒƒstartVertex) topological order of vertices in the graph.

shortestPaths(graph, Returns a two-dimensional grid of N rows
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒstartVertex) and three columns, where N is the number

of vertices. The first column contains the
vertices. The second column contains the
distance from the start vertex to this
vertex. The third column contains the
immediate parent vertex of this vertex, if
there is one.

C6840_20 11/19/08 12:54 PM Page 856

May not be copied, scanned, or duplicated, in whole or in part.

20.9 Case Study: Testing Graph Algorithms [857]

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒ“””Menu-drivenƒcommandƒloopƒforƒtheƒapp.”””
ƒƒƒƒƒƒƒƒmenuƒ=ƒ“Mainƒmenu\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ1ƒƒInputƒaƒgraphƒfromƒtheƒkeyboard\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ2ƒƒInputƒaƒgraphƒfromƒaƒfile\n”ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ3ƒƒViewƒtheƒcurrentƒgraph\n”ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ4ƒƒSingle-sourceƒshortestƒpaths\n”ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ5ƒƒMinimumƒspanningƒtree\n”ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ6ƒƒTopologicalƒsort\n”ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒƒ7ƒƒExitƒtheƒprogram\n”
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._getCommand(7,ƒmenu)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒƒƒcommandƒ==ƒ1:ƒself._getFromKeyboard()
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcommandƒ==ƒ2:ƒself._getFromFile()
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcommandƒ==ƒ3:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒself._model.getGraph()
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcommandƒ==ƒ4:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Paths:\n”,ƒself._model.run(shortestPaths)
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcommandƒ==ƒ5:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Tree:”,ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒ“.join(map(str,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._model.run(spanTree)))
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcommandƒ==ƒ6:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprintƒ“Sort:”,ƒƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒ“.join(map(str,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._model.run(topoSort)))
ƒƒƒƒƒƒƒƒƒƒƒƒelse:ƒbreak

ƒƒƒƒdefƒ_getCommand(self,ƒhigh,ƒmenu):
ƒƒƒƒƒƒƒƒ“””Obtainsƒandƒreturnsƒaƒcommandƒnumber.”””
ƒƒƒƒƒƒƒƒ#ƒSameƒasƒinƒearlierƒcaseƒstudies

ƒƒƒƒdefƒ_getFromKeyboard(self):
ƒƒƒƒƒƒƒƒ“””Inputsƒaƒdescriptionƒofƒtheƒgraphƒfromƒtheƒkeyboard
ƒƒƒƒƒƒƒƒandƒcreatesƒtheƒgraph.”””
ƒƒƒƒƒƒƒƒrepƒ=ƒ“”
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒedgeƒ=ƒraw_input(“Enterƒanƒedgeƒorƒreturnƒtoƒquit:ƒ“)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒedgeƒ==ƒ“”:ƒbreak
ƒƒƒƒƒƒƒƒƒƒƒƒrepƒ+=ƒedgeƒ+ƒ“ƒ“
ƒƒƒƒƒƒƒƒstartLabelƒ=ƒraw_input(“Enterƒtheƒstartƒlabel:ƒ“)
ƒƒƒƒƒƒƒƒprintƒself._model.createGraph(rep,ƒstartLabel)

ƒƒƒƒdefƒ_getFromFile(self):
ƒƒƒƒƒƒƒƒ“””Inputsƒaƒdescriptionƒofƒtheƒgraphƒfromƒaƒfile
ƒƒƒƒƒƒƒƒandƒcreatesƒtheƒgraph.”””
ƒƒƒƒƒƒƒƒ#ƒExercise
ƒƒƒƒƒƒƒƒƒƒƒƒ
#ƒStartƒupƒtheƒapplication

GraphDemoView().run()

C6840_20 11/19/08 12:54 PM Page 857

May not be copied, scanned, or duplicated, in whole or in part.

The model class includes methods to create a graph and run a graph-processing
algorithm. Here is the code:

“””
File:ƒmodel.py
Theƒmodelƒforƒtestingƒgraph-processingƒalgorithms.
“””

fromƒgraphƒimportƒLinkedDirectedGraph

classƒGraphDemoModel(object):
ƒƒƒƒ“””Theƒmodelƒclassƒforƒtheƒapplication.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._graphƒ=ƒNone
ƒƒƒƒƒƒƒƒself._startLabelƒ=ƒNone

ƒƒƒƒdefƒcreateGraph(self,ƒrep,ƒstartLabel):
ƒƒƒƒƒƒƒƒ“””CreatesƒaƒgraphƒfromƒrepƒandƒstartLabel.
ƒƒƒƒƒƒƒƒReturnsƒaƒmessageƒifƒtheƒgraphƒwasƒsuccessfully
ƒƒƒƒƒƒƒƒcreatedƒorƒanƒerrorƒmessageƒotherwise.”””
ƒƒƒƒƒƒƒƒself._graphƒ=ƒLinkedDirectedGraph()
ƒƒƒƒƒƒƒƒself._startLabelƒ=ƒstartLabel
ƒƒƒƒƒƒƒƒedgeListƒ=ƒrep.split()
ƒƒƒƒƒƒƒƒforƒedgeƒinƒedgeList:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒnotƒ'>'ƒinƒedge:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒAƒdisconnectedƒvertex
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒnotƒself._graph.containsVertex(edge):
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._graph.addVertex(edge)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._graphƒ=ƒNone
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Duplicateƒvertex”
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTwoƒverticesƒandƒanƒedge
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbracketPosƒ=ƒedge.find('>')
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcolonPosƒ=ƒedge.find(':')
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒbracketPosƒ==ƒ-1ƒorƒcolonPosƒ==ƒ-1ƒorƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbracketPosƒ>ƒcolonPos:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._graphƒ=ƒNone
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Problemƒwithƒ>ƒorƒ:”
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒfromLabelƒ=ƒedge[:bracketPos]
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtoLabelƒ=ƒedge[bracketPosƒ+ƒ1:colonPos]
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒweightƒ=ƒedge[colonPosƒ+ƒ1:]
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒweight.isdigit():
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒweightƒ=ƒint(weight)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒnotƒself._graph.containsVertex(fromLabel):
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._graph.addVertex(fromLabel)

continued

CHAPTER 20 Graphs[858]

C6840_20 11/19/08 12:54 PM Page 858

May not be copied, scanned, or duplicated, in whole or in part.

20.9 Case Study: Testing Graph Algorithms [859]

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒnotƒself._graph.containsVertex(toLabel):
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._graph.addVertex(toLabel)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒself._graph.containsEdge(fromLabel,ƒtoLabel):
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._graphƒ=ƒNone
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Duplicateƒedge”
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._graph.addEdge(fromLabel,ƒtoLabel,ƒweight)
ƒƒƒƒƒƒƒƒvertexƒ=ƒself._graph.getVertex(startLabel)
ƒƒƒƒƒƒƒƒifƒvertexƒisƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒself._graphƒ=ƒNone
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Startƒlabelƒnotƒinƒgraph”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒvertex.setMark()
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Graphƒcreatedƒsuccessfully”

ƒƒƒƒdefƒgetGraph(self):
ƒƒƒƒƒƒƒƒ“””ReturnsƒtheƒstringƒrepƒofƒtheƒgraphƒorƒNoneƒif
ƒƒƒƒƒƒƒƒitƒisƒunavailable”””
ƒƒƒƒƒƒƒƒifƒnotƒself._graph:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒNone
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒstr(self._graph)

ƒƒƒƒdefƒrun(self,ƒalgorithm):
ƒƒƒƒƒƒƒƒ“””Runsƒtheƒgivenƒalgorithmƒonƒtheƒgraphƒand
ƒƒƒƒƒƒƒƒreturnsƒitsƒresult,ƒorƒNoneƒifƒtheƒgraphƒis
ƒƒƒƒƒƒƒƒunavailable.”””
ƒƒƒƒƒƒƒƒifƒself._graphƒisƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒNone
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒalgorithm(self._graph,ƒself._startLabel)

The functions defined in the algorithms module must accept two argu-
ments, a graph and a start label. When the start label is not used, it can be
defined as an optional argument. The following code completes the topological
sort and leaves the other two functions as exercises for you:

“””
File:ƒalgorithms.py

Graph-processingƒalgorithms
“””

fromƒstackƒimportƒLinkedStack

continued

C6840_20 11/19/08 12:54 PM Page 859

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 20 Graphs[860]

defƒtopoSort(g,ƒstartLabelƒ=ƒNone):ƒƒ
ƒƒƒƒstackƒ=ƒLinkedStack()
ƒƒƒƒg.clearVertexMarks()
ƒƒƒƒforƒvƒinƒg.vertices():
ƒƒƒƒƒƒƒƒifƒnotƒv.isMarked():
ƒƒƒƒƒƒƒƒƒƒƒƒdfs(g,ƒv,ƒstack)
ƒƒƒƒreturnƒstack

defƒdfs(g,ƒv,ƒstack):
ƒƒƒƒv.setMark()
ƒƒƒƒforƒwƒinƒg.neighboringVertices(v.getLabel()):
ƒƒƒƒƒƒƒƒifƒnotƒw.isMarked():
ƒƒƒƒƒƒƒƒƒƒƒƒdfs(g,ƒw,ƒstack)
ƒƒƒƒstack.push(v)

defƒspanTree(g,ƒstartLabel):
ƒƒƒƒ#ƒExercise

defƒshortestPaths(g,ƒstartLabel):
ƒƒƒƒ#ƒExercise

Summary
� Graphs have many applications. They are often used to represent net-

works of items that can be connected by various paths.
� A graph consists of one or more vertices (items) connected by one or

more edges. One vertex is adjacent to another vertex if there is an
edge connecting the two vertices. These two vertices are also called
neighbors. A path is a sequence of edges that allows one vertex to be
reached from another vertex in the graph. A vertex is reachable from
another vertex if and only if there is a path between the two. The
length of a path is the number of edges in the path. A graph is con-
nected if there is a path from each vertex to every other vertex. A
graph is complete if there is an edge from each vertex to every other
vertex.

� A subgraph consists of a subset of a graph’s vertices and a subset of its
edges. A connected component is a subgraph consisting of the set of
vertices that are reachable from a given vertex.

C6840_20 11/19/08 12:54 PM Page 860

May not be copied, scanned, or duplicated, in whole or in part.

REVIEW QUESTIONS [861]

� Directed graphs allow travel along an edge in just one direction,
whereas undirected graphs allow two-way travel. Edges can be labeled
with weights, which indicate the cost of traveling along them.

� Graphs have two common implementations. An adjacency matrix
implementation of a graph with N vertices uses a two-dimensional
grid G with N rows and N columns. The cell G[i][j] contains 1 if there
is an edge from vertex i to vertex j in the graph. Otherwise, there is no
edge and that cell contains 0. This implementation wastes memory if
not all the vertices are connected.

� An adjacency list implementation of a graph with N vertices uses an
array of N linked lists. The ith linked list contains a node for vertex j
if and only if there is an edge from vertex i to vertex j.

� Graph traversals explore tree-like structures within a graph, starting
with a distinguished start vertex. A depth-first traversal visits all the
descendants on a given path first, whereas a breadth-first traversal
visits all the children of each vertex first.

� A spanning tree has the fewest number of edges possible and still
retains a connection between all the vertices in a graph. A minimum
spanning tree is a spanning tree whose edges contain the minimum
weights possible.

� A topological sort generates a sequence of vertices in a directed
acyclic graph.

� The single-source shortest path problem asks for a solution that con-
tains the shortest paths from a given vertex to all of the other vertices.

REVIEW QUESTIONS
1 A graph is an appropriate ADT to use to represent

a a file directory structure
b a map of airline flights between cities

2 Unlike a tree, a graph

a is an unordered collection
b can contain nodes with more than one predecessor

C6840_20 11/19/08 12:54 PM Page 861

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 20 Graphs[862]

3 In a connected undirected graph,

a each vertex has an edge to every other vertex
b each vertex has a path to every other vertex

4 The indexes I and J in an adjacency matrix representation of a graph
locate

a a vertex with an edge I connecting to a vertex J
b an edge between vertices I and J

5 In a complete, undirected graph with N vertices, there are approximately

a N 2 edges
b N edges

6 A depth-first search of a directed acyclic graph

a visits the children of each node on a given path before advancing
farther along that path

b advances as far as possible on a path from a given node before
traveling on the next path from a given node

7 The memory in an adjacency matrix implementation of a graph is fully
utilized by a

a complete graph
b directed graph
c undirected graph

8 Determining whether or not there is an edge between two vertices in an
adjacency matrix representation of a graph requires

a logarithmic time
b constant time
c linear time
d quadratic time

9 Determining whether or not there is an edge between two vertices in an
adjacency list representation of a graph requires

a logarithmic time
b constant time
c linear time
d quadratic time

C6840_20 11/19/08 12:54 PM Page 862

May not be copied, scanned, or duplicated, in whole or in part.

PROJECTS [863]

10 The shortest path between two vertices in a weighted directed graph is
the path with

a the fewest edges
b the smallest sum of the weights on the edges

PROJECTS
1 Complete the adjacency list implementation of the directed graph ADT,

including the specification and enforcement of preconditions on any
methods that should have them.

2 Complete the classes in the case study and test the operations to input a
graph and display it.

3 Complete the function spanTree in the case study and test it
thoroughly.

4 Complete the function shortestPaths in the case study and test it
thoroughly.

5 Define a function breadthFirst, which performs a breadth-first tra-
versal on a graph, given a start vertex. This function should return a list
of the labels of the vertices in the order in which they are visited. Test
the function thoroughly with the case study program.

6 Define a function hasPath, which expects a directed graph and the
labels of two vertices as arguments. This function returns True if there is
a path between the two vertices, or returns False otherwise. Test this
function thoroughly with the case study program.

7 Design and implement an adjacency matrix implementation of the
directed graph ADT.

8 Add a method convertToMatrix to the LinkedDirectedGraph class.
This function builds and returns an adjacency matrix representation of
this graph, as defined in Project 7.

C6840_20 11/19/08 12:54 PM Page 863

May not be copied, scanned, or duplicated, in whole or in part.

CHAPTER 20 Graphs[864]

9 The root of a directed acyclic graph is a vertex from which every other
vertex in the graph can be reached by following a directed path. Define a
function hasRoot that expects a LinkedDirectedGraph as an argu-
ment. This function determines whether or not the graph has a root. If
this is true, the function should return the label of the root vertex; other-
wise, the function should return None.

10 Design and implement an application that allows the user to find the
shortest path between two cities. One input to the program should be a
file representing a weighted graph, as described in the case study. The
vertices are labeled with the names of cities and the weight on an edge is
the number of miles between two cities. The other inputs to the pro-
gram come from the keyboard, and are the names of the city of depar-
ture and the city of arrival. The program should display as output the
length of the shortest route between these two cities.

C6840_20 11/19/08 12:54 PM Page 864

May not be copied, scanned, or duplicated, in whole or in part.

Table A.1 provides information on an excellent Web site where
programmers can find complete documentation for the Python API
(Application Programming Interface) and download Python and
other resources.

[TABLE A.1] Online Python Documentation

DESCRIPTION URL EXPLANATION

Python’s top-level http://www.python.org/ This page contains
Web page news about events in

the Python world and
links to documentation,
Python-related prod-
ucts, program examples,
and free downloads of
resources.

Downloads http://www.python.org/ This page allows you
download/ to select the version of

Python that matches
your computer and to
begin the download
process.

Documentation http://www.python.org/doc/ This page allows you to
and training browse the documen-

tation for the Python
API, tutorials, and
other training aids.
You can also download
many of these items to
your computer for
offline reference.

[APPENDIX] Python ResourcesA

C6840_Appendices 11/19/08 11:46 AM Page 865

May not be copied, scanned, or duplicated, in whole or in part.

The following sections discuss some situations that involve downloading files
or information from the Web.

A.1 Installing Python on Your Computer
As of this writing, Python does not come preinstalled on Windows systems.
Therefore, you must download the Windows installer from http://www.python.org/
download/. The installer might then run automatically, or you might have to double-
click an icon for the installer to launch it. The installer automatically puts Python
into a folder and inserts various command options on the All Programs menu.
Note that administrators installing Python for all users on Windows Vista need
to be logged in as Administrator.

Macintosh users running Mac OS X might need to update the version of
Python that comes preinstalled on their system. A Mac OS X installer can be
downloaded for this purpose and behaves in a manner similar to that of the
Windows installer.

Unix and Linux users also might need to upgrade the version of Python that
comes preinstalled on their systems. In these cases, they have to download a com-
pressed Python source code “tarball” from the same site and install it.

Most users will also want to place aliases of the important Python commands,
such as the one that launches IDLE, on their desktops.

A.2 Using the Terminal Command Prompt,
IDLE, and Other IDEs
To launch an interactive session with Python’s shell from a terminal command
prompt, open a terminal window and enter python at the prompt. To end the
session on Unix machines (including Mac OS X), press the Control+D key com-
bination at the session prompt. To end a session on Windows, press Control+Z,
and then press Enter.

Before you run a Python script from a terminal command prompt, the script
file must be in the current working directory, or the system path must be set to
the file’s directory. You should consult your system’s documentation on how to set
a path. To run a script, enter python, followed by a space, followed by the name
of the script’s file (including the .py extension), followed by any command-line
arguments that the script expects.

APPENDIX A Python Resources[866]

C6840_Appendices 11/19/08 11:46 AM Page 866

May not be copied, scanned, or duplicated, in whole or in part.

On Windows, you can also launch a Python script by double-clicking the
script’s file icon. On Macintosh, Unix, and Linux systems, you must first config-
ure the system to launch Python when files of this type are launched. The
File/Get Info option on a Macintosh, for example, allows you to do this.

You can also launch an interactive session with a Python shell by launching
IDLE. There are many advantages to using an IDLE shell rather than a
terminal-based shell, such as color-coded program elements, menu options for
editing code and consulting documentation, and the ability to repeat commands.

IDLE also helps you manage program development with multiple editor
windows. You can run code from these windows and easily move code among
them. Although this book does not discuss it, a debugging tool is also available
within IDLE.

The are several other free and commercial IDEs with capabilities that extend
those of IDLE. jEdit (http://www.jedit.org/) is a free, lightweight IDE that has
widespread use in academic environments because it also supports Java and C++
program development.

A.2 Using the Terminal Command Prompt, IDLE, and Other IDEs [867]

C6840_Appendices 11/19/08 11:46 AM Page 867

May not be copied, scanned, or duplicated, in whole or in part.

C6840_Appendices 11/19/08 11:46 AM Page 868

This page intentionally left blank

[APPENDIX]
INSTALLING THE turtlegraphics

and images LibrariesB
The turtlegraphics and images libraries are nonstandard, open-
source Python libraries developed to support easy graphics and
image processing. The turtlegraphics library is based in part on
the graphics library created by John Zelle. Information on Zelle’s
library, which does not include Turtle graphics, is available at his
Web site, http://mcsp.wartburg.edu/zelle/python/.

The images library comes in two versions. The first one is eas-
ier to install, but supports the processing of GIF images only. The
second one, based on the Python Imaging Library (PIL), supports
other image formats, such as JPEG and PNG, as well. The source
code for the three libraries, in the files turtlegraphics.py,
images.py, and pilimages.py, is available on the author’s Web
site at http://home.wlu.edu/~lambertk/python/, or from your instructor.

In general, there are two ways to install a Python library:

1 Place the source file for the library in the current working
directory. Then, when you launch a Python script from this
directory or load it from an IDLE window into a shell,
Python can locate the library resources that are imported by
that script. The disadvantage of this installation option is
that the library must be moved whenever you change work-
ing directories.

2 Place the source file in the directory that Python has estab-
lished for third-party libraries. The path to this directory will
vary, depending on your system. For Windows users, this path
will be something like c:\python26\Lib\site-packages.
For Unix or Macintosh users, it might be something like
/usr/local/bin/lib/python2.6/site-packages. Once a
library is placed in this directory, a Python script can access
its resources from any directory on your system.

C6840_Appendices 11/19/08 11:46 AM Page 869

May not be copied, scanned, or duplicated, in whole or in part.

The turtlegraphics.py file and the images.py file can be installed using one
of the preceding methods and your client code will be ready to use these modules.

The installation of the images module based on the file pilimages.py is a
bit more complicated on a Windows system. This version depends on the Python
Imaging Library (PIL), a separate library that you can download from
http://www.pythonware.com/products/pil/. Windows users must first install this
library by double-clicking the installer after it’s downloaded. They can then
rename the file pilimages.py to images.py and add this file to the appropriate
directory, as mentioned earlier. Macintosh, Unix, and Linux users also have to
download the PIL, but they must endure a complicated process of compiling var-
ious code files and placing them in the appropriate directories. The method of
doing this not only varies from system to system, but also from version to version
of the same system.

APPENDIX B Installing the turtlegraphics and images Libraries[870]

C6840_Appendices 11/19/08 11:46 AM Page 870

May not be copied, scanned, or duplicated, in whole or in part.

[APPENDIX]
APIs FOR GRAPHICS AND

Image ProcessingC
Both the graphics and the image-processing libraries are based on
Python’s standard Tkinter library. The Application Programming
Interface (API) for the graphics and image-processing libraries follows.

C.1 The turtlegraphics API
The turtlegraphics module includes a single class named Turtle.
Each Turtle object represents a single window with an invisible pen
for drawing in that window. The window uses Cartesian coordinates.
When the programmer imports the Turtle class and instantiates it,
its window opens. At that point, the programmer can run various
methods with the Turtle object to draw shapes within that window.
Multiple Turtle objects and their windows can be active and visible
at the same time. This code can be run either interactively within a
Python shell or from a Python script. We recommend that the shell
or script be launched from a system terminal rather than from IDLE.

Here is a list of the Turtle methods:
� Turtle() Creates and returns a Turtle object. The turtle’s

window, which opens, has a width and height of 200 pixels.
The turtle’s position is (0, 0), its color is blue, its width is
2 pixels, and its direction is 90 degrees (due north).

� Turtle(width, height) Creates and returns a Turtle
object. The turtle’s window, which opens, has the specified
width and height. The turtle’s position is (0, 0), its color is
blue, its width is 2 pixels, and its direction is 90 degrees
(due north).

� getWidth() Returns the width of the turtle’s window.

C6840_Appendices 11/19/08 11:46 AM Page 871

May not be copied, scanned, or duplicated, in whole or in part.

� getHeight() Returns the height of the turtle’s window.
� home() Moves the turtle immediately to position (0, 0) without drawing,

and sets its direction to 90 degrees (due north).
� down() Places the turtle down on the drawing surface, ready to draw on

the next move.
� up() Raises the turtle above the drawing surface, so that it can move

without drawing.
� move(distance) Moves the given distance in the current direction. If the

turtle is down, a line segment is drawn.
� move(x, y) Moves to the given position. If the turtle is down, a line

segment is drawn.
� turn(degrees) Rotates the turtle the given number of degrees from its

current direction. A negative amount rotates clockwise, and a positive
amount rotates counterclockwise.

� setDirection(degrees) Sets the turtle’s direction to the specified
degrees.

� setColor(r, g, b) Sets the turtle’s color to the given RGB value.
These values must range from 0 through 255.

� setWidth(size) Sets the turtle’s line width to the given size.

C.2 The images API
The images module includes a single class named Image. Each Image object
represents an image. The programmer can supply the filename of an image on
disk when Image is instantiated. The resulting Image object contains pixels
loaded from an image file on disk. If a filename is not specified, a height and
width must be specified. The resulting Image object contains the specified
number of pixels with a single default color.

When the programmer imports the Image class and instantiates it, no win-
dow opens. At that point, the programmer can run various methods with this
Image object to access or modify its pixels, as well as save the image to a file. At
any point in your code, you may run the draw method with an Image object.
At this point, a window will open and display the image. The program then waits
for you to close the window before allowing you, either in the shell or in a script,
to continue running more code.

APPENDIX C APIs for Graphics and Image Processing[872]

C6840_Appendices 11/19/08 11:46 AM Page 872

May not be copied, scanned, or duplicated, in whole or in part.

The positions of pixels in an image are the same as screen coordinates for
display in a window. That is, the origin (0, 0) is in the upper-left corner of the
image, and its (width, height) is in the lower-right corner.

Images can be manipulated either interactively within a Python shell or from
a Python script. Once again, we recommend that the shell or script be launched
from a system terminal, rather than from IDLE.

Unlike Turtle objects, Image objects cannot be viewed in multiple windows
at the same time from the same script. If you want to view two or more Image
objects simultaneously, you can create separate scripts for them and launch these
Image objects in separate terminal windows.

As mentioned earlier, there are two versions of the images module. One ver-
sion, contained in the file images.py, supports the use of GIF files only. The other,
contained in the file pilimages.py, supports the use of several common image file
formats, such as GIF, JPEG, and PNG. Despite these differences, the Image class in
both versions has the same interface. Here is a list of the Image methods:

� Image(filename) Loads an image from the file named fileName and
returns an Image object that represents this image. The file must exist in
the current working directory.

� Image(width, height) Returns an Image object of the specified width
and height with a single default color.

� getWidth() Returns the width of the image in pixels.
� getHeight() Returns the height of the image in pixels.
� getPixel(x, y) Returns the pixel at the specified coordinates. A pixel is

of the form (r, g, b), where the letters are integers representing the red,
green, and blue values of a color in the RGB system.

� setPixel(x, y, (r, g, b)) Resets the pixel at position (x, y) to the
color value represented by (r, g, b). The coordinates must be in the
range of the image’s coordinates, and the RGB values must range from 0
through 255.

� draw() Opens a window and displays the image. The user must close the
window to continue the program.

� save() Saves the image to its current file, if it has one. Otherwise, it
does nothing.

� save(filename) Saves the image to the given file and makes it the
current file. This is similar to the Save As option in most File menus.

C.2 The images API [873]

C6840_Appendices 11/19/08 11:46 AM Page 873

May not be copied, scanned, or duplicated, in whole or in part.

C6840_Appendices 11/19/08 11:46 AM Page 874

This page intentionally left blank

[APPENDIX]
TRANSITION FROM PYTHON TO

Java and C++D
Although Python is an excellent teaching language and is gaining
acceptance in industry, Java and the C/C++ family of languages
remain the most widespread languages used in higher education and
real-world settings. Thus, computer science students must become
proficient in these languages, both to continue in their course work
and to prepare for careers in the field.

Fortunately, the transition from Python to Java or C++ is not
difficult. Although the syntactic structures of Python and these other
languages are somewhat different, the languages support the same
programming styles. For an overview of all the essential differences
between Python, Java, and C++, see the author’s Web site at
http://home.wlu.edu/~lambertk/python/.

C6840_Appendices 11/19/08 11:46 AM Page 875

May not be copied, scanned, or duplicated, in whole or in part.

C6840_Appendices 11/19/08 11:46 AM Page 876

This page intentionally left blank

\ (backspace), 50, 60, 220, 223
: (colon), 76, 93, 124, 176, 184
, (comma), 162
$ (dollar sign), 62
. (dot), 65, 297, 320
“ (double quotes), 49, 50, 162
/ (forward slash), 220, 223
() (parentheses), 173, 566–567, 716
‘ (single quote), 50
[] (square brackets), 160–161, 162, 215
_ (underscore), 51, 297, 308

A
abacus An early computing device that allowed

users to perform simple calculations by
moving beads along wires. 12

ABC (Atanasoff-Berry Computer), 15, 16
abs function, 64, 65
abstract Simplified or partial, hiding detail.

18, 338
abstract behavior, 338
abstract data type (ADT). See ADTs (abstract

data types)
abstract class A class that defines attributes

and methods for subclasses, but is never
instantiated. 338–339

abstraction A simplified view of a task or data
structure that ignores complex detail. 18, 52,
202–205, 512–513

accept method, 414
acceptance testing, 496–497
acceptCommand function, 222
accessor A method used to examine an

attribute of an object without changing
it. 298

Account class, 338–339
acquire method, 405
activation record An area of computer memory

that keeps track of a function or method call’s
parameters,local values, return value, and the

caller’s return address. 216, 578, 579, 580, 705.
See also run-time stack

add method, 316, 480, 758, 760–761, 771–772,
781, 811

addCustomer method, 624
addEdge method, 846–847
addHelper function, 761
addition operator, 58–59
address An integer value that the computer can

use to reference a memory cell. 517
addVertex method, 846–848
adjacency list An implementation of a graph

that contains an array of linked lists for each
vertex. A node in a list represents an edge
from the list’s vertex to the node’s vertex.
826–827, 828

adjacency matrix An implementation of a
graph that contains a two-dimensional array.
Each dimension is the number of vertices,
and the cell at position [i][j] is occupied if
there is an edge connecting vertices i and j.
825–826, 828

adjacent The property of being connected by
an edge. 820

ADTs (abstract data types) A class of objects,
a defined set of properties of those objects,
and a set of operations for processing the
objects. 512–513, 529, 563, 853

graphs and, 819, 844–853
implementation and, 657–658
queues and, 604, 606
trees and, 746, 749–759, 774

aggregation, 478–479
Aiken, Howard, 15
algorithm(s) A finite sequence of instructions

that, when applied to a problem, will solve it.
constant of proportionality and, 442–443
counting instructions and, 435–438
derivation of the term, 11–12
described, 2
edge detection and, 280–281
efficiency of, 432–438
graphics and, 261–265

GLOSSARY/INDEX [877]

GLOSSARY/INDEX

C6840_GlossIndex 11/24/08 9:17 AM Page 877

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[878]

overview, 2–4
profilers, 460–465
quadratic behavior of, 440
run time of, 432–435
search, 443–449
sort, 450–456
Turing and, 15

algorithms module, 462, 463–465, 859
alias A situation in which two or more names in a

program can refer to the same memory location.
An alias can cause subtle side effects. 169–170

Al-Khawarizmi, Muhammad ibn Musa, 11
all-pairs shortest path problem A problem in

which the shortest paths must be found from a
given vertex in a graph to all of the other
vertices reachable from it. 840–843

Allen, Paul, 21
Altair, 20
amountOfServiceNeeded method, 626
anagrams Words that contain the same letters,

but in different order. 792
analog information, 266–267
analysis The phase of the software life cycle in

which the programmer describes what the
program will do. 220–221, 618–619

algorithm profilers and, 460–462
ATM program and, 323–324, 365–366
craps game and, 301–302
described, 40–41
emergency room scheduler and, 633–634
fractal objects and, 261
generating sentences and, 179–180
graphs and, 828, 843, 853–855
income tax calculator and, 43
investment report and and, 87
lists and, 678–679
multi-client chat room and, 421–422
nondirective psychotherapy and, 191–192
postfix expressions and, 589–592
recursion and, 719–720
square roots and, 110
text and and, 149
trees and, 764–765

Analytical Engine A general-purpose computer
designed in the nineteenth century by Charles
Babbage, but never completed by him. 14, 16

ancestor, 734
AND operator, 15, 97–99
anonymous function A function without a name,

constructed in Python using lambda. 237–238
APIs (Application Programming Interfaces),

484–485
append method, 165–166, 168–169, 172, 520, 540,

563, 605, 644, 658, 660
application software Programs that allow human

users to accomplish specialized tasks, such as
word processing or database management. Also
called applications, 9

apply function, 234
argument A value or expression passed in a

function or method call.
described, 27, 64–65
default (keyword), 230–232
function definitions and, 176

arithmetic expression A sequence of operands
and operators that computes a value. 58–60,
569–570

arithmetic overflow A situation that arises when
the computer’s memory cannot represent the
number resulting from an arithmetic operation.
309–310

ARPANET (Advanced Research Projects Agency
Network), 21

array(s) A data structure whose elements are
accessed by means of index positions.

-based implementation of lists, 658–660,
663–664

described, 513–516
dynamic, 517–518
implementation, 581–583, 587–588, 614–617
inserting items into, 521–522
multidimensional, 528
one-dimensional, 525
operations on, 519–525
removing items from, 523–524
size of, 518–522
static, 517–518
trees and, 769–770
two-dimensional, 525–528

Array class, 514–416, 518, 582
ArrayHeap class, 771, 774
ArrayIndexedList class, 653, 658–660

C6840_GlossIndex 11/24/08 9:17 AM Page 878

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [879]

ArrayPositionalList class, 653
ArrayStack class, 565, 580–581
ArrayStack constructor, 673–674
arrivalTime method, 626
artificial intelligence A field of computer science

whose goal is to build machines that can perform
tasks that require human intelligence. 17

ASCII character set The American Standard
Code for Information Interchange ordering for
a character set. 56–57, 127–128, 792

aspect ratio, 283
assembler A program that translates an assembly

language program to machine code. 17
assembly language A computer language that

allows the programmer to express operations
and memory addresses with mnemonic symbols.
16–17

assertEquals method, 499
assertions, 498
assertRaises method, 500
assignment statement A method of giving values

to variables. 51–52
assignment operator The symbol -, which is

used to give a value to a variable. 71, 99, 165
association A pair of items consisting of a key and

a value. 183, 476
association lists, 183
asymptotic analysis The process of

approximating the performance of an algorithm
by focusing on the largest degree term of a
polynomial. 442

Atanasoff, John, 15
ATM class, 324–326
ATM programs, 323–329, 365–370
atm.py, 327–328
attribute A property that a computational object

models, such as the balance in a bank account.
355, 356–359, 371–377

AttributeError exception, 535, 756
augmented assignment An assignment operation

that performs a designated operation, such as
addition, before storing the result in a variable.
78–80

average function, 275
average-case performance, 445–446, 455–456

B
Babbage, Charles, 14, 16
backspace (\b) character, 50
backtracking algorithm A type of algorithm that

explores possible paths to a solution and returns
to alternative paths when a given path fails.
575–577, 705–713

Backus, John, 17
Bank class, 315–317, 323–329
Bank object, 366
bank.py, 315–317
base, use of the term, 231
base address The memory address of the first cell

in an array. 517
base case The condition in a recursive algorithm

that is tested to halt the recursive process. 211
BaseException class, 489–490
batch processing The scheduling of multiple

programs so that they run in sequence on the
same computer. 19

behavior The set of actions that a class of objects
supports. 338, 440

benchmarking The process of measuring the
performance of an algorithm by timing it on a
real computer. 432–435

Berners-Lee, Tim, 22–23
Berry, Clifford, 15
best-case performance, 445–446, 455–456
big-O notation A formal notation used to express

the amount of work done by an algorithm or
the amount of memory used by an algorithm.
441–443

binary digit A digit, either 0 or 1, in the binary
number system. Program instructions are stored
in memory using a sequence of binary digits. See
also bit. 7, 129–135, 188–189

binary search The process of examining a middle
value of a sorted collection to see which half
contains the value in question and halving until
the value is located. 446–447

binary search tree. See BST (binary search tree)
binary tree A tree in which each node has at most

two children. 736, 740–757, 769–770
BinaryTree class, 743–754
BinaryTree interface, 752–753

C6840_GlossIndex 11/24/08 9:17 AM Page 879

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[880]

bind method, 385, 387, 413
bit A binary digit, 7, 131
bitmap A data structure used to represent the

values and positions of points on a computer
screen or image. 20

bit-mapped display screen A type of display
screen that supports the display of graphics and
images. 20

black-box testing A method of testing in which
the range of test data is limited and the tests are
made without knowledge of the program’s inner
workings. See also white-box testing. 494–496

blackAndWhite function, 275–277
Blackjack class, 334, 337
block An area of program text, offset by

indentation, that contains statements and data
declarations. 397

block cipher An encryption method that replaces
characters with other characters located in a
two-dimensional grid of characters. 128

blurring, 279–280
Book class, 476–478, 501, 502
Boole, George, 14–15, 91
Boolean data type, 91–92
Boolean expression An expression whose value is

either true or false. See also compound Boolean
expression and simple Boolean expression. 93,
97–99, 105–107

Boolean functions, 177
Boolean logic, 14–15
borrow method, 501–502
borrowBook method, 479–482, 502
bottom-up implementation A method of coding

a program that starts with lower-level modules
and a test driver module. 152

bouncy program, 348–352
breadth-first traversal A graph traversal that

visits each node at a given level before moving
to the next level. 831–833

break statement, 105–107, 109
BST (binary search tree) A binary tree in which

each node’s left child is less than that node and
each node’s right child is greater than that node.
739, 744–745, 757–763

BST class, 813

bubble sort A sorting algorithm that swaps
consecutive elements that are out of order to
bubble the elements to the top or bottom on
each pass. 452–453

bucket The location in an array to which an item
is hashed using the chaining method of collision
processing. A bucket also holds a linked list of
items. 797–798

buildRange function, 700–701
Bush, Vannevar, 19, 22
button object A window object that allows the

user to select an action by clicking a mouse. 356
byte A sequence of bits used to encode a character

in memory. 30
byte code The kind of object code generated by a

Python compiler and interpreted by a Python
virtual machine. Byte code is platform
independent. 30

C
C++ (high-level language), 517–518, 533, 875
Caesar cipher An encryption method that

replaces characters with other characters a given
distance away in the character set. 127–128

calculus, 14
call Any reference to a function or method by an

executable statement. Also referred to as invoke.
212, 217

call stack The trace of function or method calls
that appears when Python raises an exception
during program execution. 216–217

call tree, 457
capacity references, 664
Card class, 319–322, 334, 359
card reader A device that inputs information

from punched cards into the memory of a
computer. 17

CardDemo class, 359
cards, playing, 319–322, 333–338, 358–361
Cartesian coordinates, 248, 269
Cashier class, 610, 620–621
c-curve A fractal shape that resembles the

letter C. 261–265

C6840_GlossIndex 11/24/08 9:17 AM Page 880

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [881]

cCurve function, 265
Census Bureau (United States), 14
center method, 138
central processing unit (CPU). See CPU (central

processing unit)
CERN Institute, 22
chaining A strategy of resolving collisions in

which the items that hash to the same location
are stored in a linked structure. 797–798

chains The linked structures used in the chaining
method of resolving collisions. 797–798

changePerson function, 193, 211, 227–229,
235–236

character set The list of characters available for
data and program statements. 54–57. See also
ASCII character set

characters, accessing, 122–126
ChatRecord class, 422–423, 425
chatrecord.py, 425
chdir method, 147
CheckingAccount class, 338–339
child See children
children Elements that are directly below a given

element in a hierarchical collection.
in collections, 508–509
trees and, 734

chr function, 127
cipher text, 127
circlearea program, 362–363, 373, 375, 376, 377
circular array implementation An

implementation of a queue that supports
insertions and removals in constant time. 616

circular linked structure A linked structure in
which the next pointer of the last node is aimed
at the first node. 550–552

class A description of the attributes and behavior
of a set of computational objects. See also classes
(listed by name)

definitions, 300
design with, 291–346
documentation and, 485
getting inside, 292–300
hierarchy, 294
queues and, 635
recursion and, 720

structuring, 329–341
trees and, 765–768

class diagram A graphical notation that describes
the relationships among the classes in a software
system. 324–325, 338–339

described, 473
overview, 476–479

class method A method that is invoked when a
method is run on a class. 622, 626

class variable A variable that is visible to all
instances of a class and is accessed by specifying
the class name. 312–314

classes (listed by name). See also class
Account class, 338–339
Array class, 514–416, 518, 582
ArrayHeap class, 771, 774
ArrayIndexedList class, 653, 658–660
ArrayPositionalList class, 653
ArrayStack class, 565, 580–581
ATM class, 324–326
Bank class, 315–317, 323–329
BaseException class, 489–490
BinaryTree class, 743–754
Blackjack class, 334, 337
Book class, 476–478, 501, 502
BST class, 813
Card class, 319–322, 334, 359
CardDemo class, 359
Cashier class, 610, 620–621
ChatRecord class, 422–423, 425
CheckingAccount class, 338–339
ClientHandler class, 416–417, 422–424
Comparable class, 628–629
Consumer class, 402–403
Customer class, 610, 620–622, 626, 627
Dealer class, 336
Deck class, 319–322, 334
Die class, 303, 304
Doctor class, 418
DoubleVar class, 361–363
EmptyTree class, 754–756
Entry class, 361–363, 785
Frame class, 354–355, 371
GraphDemoModel class, 855–856
GraphDemoView class, 855–856

C6840_GlossIndex 11/24/08 9:17 AM Page 881

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[882]

Grid class, 526–528, 712
HashDict class, 806–810
HashSet class, 811–812
HashTable class, 801–803
HeapPriorityQueue class, 774
Image class, 269–273, 278, 291, 872–873
IndexedLinkedList class, 676
LabelDemo class, 354
Library class, 479–482
LibraryView class, 479–481
LinkedDirectedGraph class, 846–849
LinkedEdge class, 849, 852–853
LinkedQueue class, 612–614, 620–621,

630–632
LinkedStack class, 565, 567, 580–581,

584–587, 612–614
LinkedVertex class, 850–851
list class, 444–445, 645–654
Listbox class, 382–385
ListDict class, 785–787
ListSet class, 784–785
MarketModel class, 620–623
Node class, 535, 552, 584, 612, 666, 702,

798, 811
Patron class, 476–481
PatronQueue class, 476–478, 502
PFEvaluator class, 594
PFEvaluatorModel class, 594
PFEvaluatorView class, 593
PhotoImage class, 355–356
Player class, 303, 304, 335
Producer class, 402–403
Profiler class, 460–463
Rational class, 307–309, 312
RestrictedSavingsAccount class,

331–333, 483
SavingsAccount class, 312–315, 323–329,

331–333, 338–339, 483
Scanner class, 595
set class, 781–782
SharedCell class, 402–403, 404, 406
SleepyThread class, 399
Student class, 293–295, 297–298, 485–491,

498–501
TestCase class, 501, 502

TestStudent class, 499, 500–501
Thread class, 397, 399, 416
Token class, 595–596
TreeSet class, 813
Turtle class, 249, 252, 257–260, 291

client(s) A computational object that receives a
service from another computational object.

handling multiple, 416–417
overview, 407–420

client/server relationship A means of describing
the organization of computing resources in
which one resource provides a service to
another resource. 393–430

ClientHandler class, 416–417, 422–424
cloning, 511
close method, 146, 411, 414, 270, 278, 676
clustering A phenomenon in which several items

are placed in adjacent array locations during
hashing. 795–796

cmp function, 311, 448–449
cmp method, 310–311, 448–449, 676, 629
COBOL (Common Business Oriented

Language), 17
code coverage The process of selecting test data

that exercise every branch of an if statement. See
also white-box testing. 495–496

code redundancy, 202–203
coding The process of writing executable

statements that are part of a program to solve a
problem. See also implementation. 9–10, 39, 40,
43. See also implementation

collaboration diagrams, 473, 479–482
collection A group of data elements that can be

treated as one thing. A collection tracks several
elements, which can be added or removed.

described, 507
implementing, 513–519
operations on, 510
overview, 508–513

collision A situation that takes place when two
items hash to the same array location. 790–792

color. See also RGB (red-green-blue) color
drawing with random, 257–258
GUIs and, 371
image compression and, 267–268

C6840_GlossIndex 11/24/08 9:17 AM Page 882

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [883]

overview, 256–257
palettes, 268
systems, true, 257

Colossus, 15, 16
column attribute, 359
columnconfigure method, 376
command argument, 239
command buttons, 350, 356–358, 378–379
comments Nonexecutable statements used to

make a program more readable.
described, 52–53
program structure and, 67

Comparable class, 628–629
comparison method, 461, 462
comparison operators, 91–92, 311, 448, 628,

629, 678
comparisons, 310–311
compiler A computer program that automatically

converts instructions in a high-level language to
byte code or machine language. 17, 217, 435,
472, 566, 569, 578, 673, 725–726

composition, 471, 478–479
complete binary tree A binary tree whose shape

is restricted by starting at the root node and
filling the tree by levels from left to right. 741

complete graph A graph in which there is an edge
from each vertex to every other vertex. 821, 828

complexity
hiding, 203–204
order of, 440, 439–441

complexity analysis The process of deriving a
formula that expresses the rate of growth of
work or memory as a function of the size of the
data or problem that it solves. See also big-O
notation. 439–443, 763, 788–789, 798–799

components, organizing, 378–379
compound Boolean expression Refers to the

complete expression when logical connectives
and negation are used to generate Boolean
values. See also Boolean expression and simple
Boolean expression. 75, 97–100

compression
of images, 267–268
lossy/lossless, 268

computation step, 842–843
computeInterest method, 313, 316
Computer button, 350–352
computer software. See software
computer systems, structure of, 6–10
computing agent The entity that executes

instructions in an algorithm. 3
computing systems, history of, 10–23
concatenation An operation in which the

contents of one sequence are placed after the
contents of another sequence. 50, 79, 122, 138,
162–163, 699, 753

concrete class A class that can be instantiated.
338–339. See also abstract class.

concrete data type A data structure that is used
to contain the data in an implementation of an
abstract data type. See also data structure. 513

concurrent processing The simultaneous
performance of two or more tasks. 19

conditional iteration, 102–109
conditional statement See selection statements
conditions, 91
conjunction The connection of two Boolean

expressions using the logical operator and,
returning false if at least one of the expressions
is false or true if they are both true. 99, 198,
215, 783

connect method, 411
connected graph A graph in which there is a

path from each vertex to every other vertex. 820
connected component A subgraph consisting of the

set of vertices that are reachable from a given
vertex. 921

cons function, 700, 701
constant of proportionality The measure of the

amount of work of an algorithm that never
varies with the size of its data set. 442–443

constructor A method that is run when an object
is instantiated, usually to initialize that object’s
instance variables. This method is named _init_
in Python. 252, 297

Consumer class, 402–403
container objects, 361–363
contains function, 698

C6840_GlossIndex 11/24/08 9:17 AM Page 883

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[884]

content-based operation An operation that
involves a search for a given element
irrespective of its position in a collection.
646–647

context switch, 397
contiguous memory Computer memory that is

organized so that the data are accessible in
adjacent cells., 516-517, 531

continuation condition A Boolean expression
that is checked to determine whether or not to
continue iterating within a loop. If this
expression is True, iteration continues. 102

continuous range, of values, 266
control statements, 75
control statement A statement that allows the

computer to repeat or select an action. 76–120.
See also loops

controllers, 352
convert function, 189
coordinate system A grid that allows a

programmer to specify positions of points in a
plane or of pixels on a computer screen.
248–249

copy buffer, 692, 695
correct program A program that produces an

expected output for any legitimate input. 46
count method, 138, 151
count variable, 105
count-controlled loop A loop that stops when a

counter variable reaches a specified limit.
77–79, 181

countByte function, 223
counter A variable used to count the number of

times some process is completed. 437
Counter object, 437
countFiles function, 223
countSentences function, 207
CP/M (Control Program for Microcomputers), 21
cPickle module, 317–318
cPickle.dump, 317
cPickle.load function, 318
CPU (central processing unit) A major

hardware component that consists of the
arithmetic/logic unit and the control unit. Also
sometimes called a processor. 394–397, 399

concurrent processing and, 19

described, 6, 7
operating systems and, 9
queues and, 605, 611
threads and, 394

craps, playing, 301–307
craps.py, 304–307
createGraph method, 855
CRT (Cathode Ray Tube) screen, 19
currentBalance variable, 52
cursor The pointer in a positional list that locates

the item about to be accessed with a next or a
previous operation. 647

customer request
algorithm profilers and, 460
ATM program and, 323, 365
craps game and, 301
described, 40–41
emergency room scheduler and, 633
fractal objects and, 261
generating sentences and, 179
graphs and, 853
lists and, 678
multi-client chat room and, 421
navigating file systems and, 219
nondirective psychotherapy and, 191
investment report and, 87
postfix expressions and, 589
recursion and, 719
square roots and, 110
supermarket checkout simulator and, 618
text analysis and, 149
trees and, 764

Customer class, 610, 620–622, 626, 627
CWD (current working directory), 221–223
cycle A path that begins and ends at the same

vertex. 821

D
DAG (directed acyclic graph), 823, 838
data The symbols that are used to represent

information in a form suitable for storage,
processing, and communication.

encapsulation, 329
items, comparing, 448–449

C6840_GlossIndex 11/24/08 9:17 AM Page 884

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [885]

-modeling, 307–323
sequences, traversing the contents of, 80–81
test, choosing, 494–496
use of the term, 4–5

data decryption The process of translating
encrypted data to a form that can be used. 127

data encryption The process of transforming
data so that others cannot use it. 126–129

data structure A compound unit consisting of
several data values. 122, 513–519, 758–759

data type(s) A set of values and operations on
those values. See also specific data types

conversion, 60–62
described, 47–48

data validation The process of examining data
prior to its use in a program. 31, 92, 97, 113,
222, 489, 494, 620, 706

day/time client script, 410–414
day/time server script, 412–414
deal method, 321–322
Dealer class, 336
Dealer object, 333–338
debugging The process of eliminating errors, or

bugs, from a program. 213, 298, 315, 756, 867
decimal (base ten) number system, 55, 129–131
Deck class, 319–322, 334
Deck constructor, 322
Deck object, 337
decrement To decrease the value of a variable.

523, 546, 548, 569, 581, 626, 699, 702, 762
decrypt script, 127
decrypts, use of the term, 127
deep copy The process whereby copies are made

of the individual components of a data structure.
See also shallow copy. 511

def reserved word, 176
default behavior Behavior that is expected and

provided under normal circumstances. 64
default parameter Also called a default

argument. A special type of parameter that is
automatically given a value if the caller does not
supply one. 230–232

definite iteration The process of repeating a
given action a preset number of times. 76

degree of a vertex The number of neighbors of a
vertex. See also neighbors. 921

delete method, 380
delete operation, 533
dense graph A graph that has many edges relative

to its vertices. 823. See also sparse graph.
density The number of items contained in an

array relative to its capacity. 790–792
density ratio A measure of the degree to which

an array is filling with items, computed by
dividing the number of items by the array’s
capacity. 799

deposit method, 313
depth, use of the term, 735
depth-first search tree The set of nodes visited

during a depth-first traversal of a graph. 832
depth-first traversal A graph traversal that visits

the successors of each node before moving to
other nodes at the same level. 831–833

dequeue The operation that removes an item
from the front of a queue. 604, 606, 607,
612–617, 628, 629–630, 774

descendant, use of the term, 734
design The phase of the software life cycle in

which the programmer describes how the
program will accomplish its tasks.

algorithm profilers and, 462
ATM programs and, 325–326, 366–367
craps game and, 302–304
described, 40–41
emergency room scheduler and, 635–637
fractal objects and, 263–264
generating sentences and, 180–181
income tax calculator and, 44–45
investment report and, 88
lists and, 679–680
multi-client chat room and, 422–423
navigating file systems and, 222–224
nondirective psychotherapy and, 192–193
overview, 471–506
postfix expressions and, 592–596
square roots and, 110–111
text analysis and, 150–151
trees and, 765–768

C6840_GlossIndex 11/24/08 9:17 AM Page 885

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[886]

design error An error such that a program runs,
but unexpected results are produced. Also
referred to as a logic error. See also compilation
error, run-time error, and syntax error. 46

destination vertex A vertex to which an edge
extends from another vertex in a directed
graph. 822

detectEdges function, 280–281
dfs (depth-first search). See depth-first search
dialog boxes, pop-up, 363–364
dictionary A data structure that allows the

programmer to access items by specifying key
values, 183. 714

commonly used operations, 187–188
described, 159
implementation and, 784–789, 806–810
lists and, 788–789
literals, 183–184
nondirective psychotherapy and, 191–195
overview, 183–195
sets and, 783
sorted, 813
traversing, 186–188

Die class, 303, 304
Die method, 303
Die object, 302
die.py, 304–307
digital information, 266–267
Dijkstra’s algorithm, 840–841, 843
directed graph (digraph) A graph whose edges

specify explicit directions. 822–823
directed edge An edge that specifies the direction

in which to move from one vertex to another in
a graph. 822

directories, accessing/manipulating, 146–147. See
also file systems

discrete values, 266
disk(s)

accessing files/directories on, 146–147, 605
organizing files on, 656–657

displayRange function, 211, 212, 216–217
dispose operation, 533
divide-and-conquer algorithms A class of

algorithms that solves problems by repeatedly
dividing them into simpler problems. See also
recursion. 685, 686, 692

division operator, 58–59
docstring A sequence of characters enclosed in

triple quotation marks (“““) that Python uses to
document program components such as
modules, classes, methods, and functions.

described, 52–53, 296
program structure and, 67

Doctor class, 418
Doctor object, 418, 419
doctor program, 209–210, 227–229, 233, 235–236
doctor.py, 228, 418
doctorserver.py, 419
documentation

online Python resources, 865–866
overview, 484–493
Web-based, 490–493
writing APIs, 484–485

dominant, described, 442
DoubleVar class, 361–363
doubly linked node A node that has a pointer to

the previous node and a pointer to the next
node. 531–532

doubly linked structure A linked structure in which
each node has a pointer to the previous node
and a pointer to the next node. 530–531,
552–554

down method, 250
DPI (dots per inch), 281
draw method, 270, 271
drawLine function, 264, 265
drawPolygon function, 254
drawSquare function, 251
driver A function used to test other functions. 152
dummy header node A special node that does

not contain data, but lies at the beginning of a
linked structure and makes insertions and
removals simpler. 550–554

Dynabook, 20
dynamic Pertaining to the run-time behavior of a

program or allocation of memory. 510
dynamic array An array whose storage

requirements can be determined at run time.
517–518

dynamic collections, 510

C6840_GlossIndex 11/24/08 9:17 AM Page 886

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [887]

dynamic memory Memory allocated under
program control from the heap and accessed by
means of pointers. See also heap and pointer.

dynamic structure A data structure that may
expand or contract during execution of a
program. See also dynamic memory.

E
EBNF (Extended-Naur Form) grammar, 715
Eckert, J. Presper, 15
edge A link between two vertices in a graph. 734
edge detection , 280–281
Eight Queens problem, 709–713
element A value that is stored in an array or a

collection.
described, 160
inserting/removing, 165–167
replacing, 163–164

e-mail, rise of, 22
emergency room scheduler, 633–637
empty link A value used to indicate the absence

of a link to another node. 530
empty string A string that contains no

characters. 49
EmptyTree class, 754–756
encapsulation The process of hiding and

restricting access to the implementation details
of a data structure. 329

encryption The process of transforming data so
that others cannot use it. 126–129

end-of-line comment Part of a single line of text
in a program that is not executed, but serves as
documentation for readers. 53

endswith method, 138
Engelbart, Douglas, 19, 20, 22
England, 15, 16
ENIAC (Electronic Numerical Integrator and

Calculator), 15, 16
Enigma code, 16
enqueue The operation that inserts an item at the

rear of a queue. 604, 606–607, 612–617, 628,
631, 632, 774

entrance-controlled loop See pretest loop

entries, sizing/justifying, 372–373
Entry class, 361–363, 785
entry fields, 350, 361–363
eq method, 311
equality, 311–312, 511
error(s). See also compilation error; design error;

logic error; run-time error; syntax error
ATM programs and, 323–324
client/server programming and, 409
dictionaries and, 186
functions and, 217, 238
graphics and, 271
GUIs and, 364
if-else statements and, 93
iterators and, 675
PVM and, 30
recovery, 146–147
recursion and, 717
strings and, 123
try-except statements and, 319
variables and, 51–52

escape sequence A sequence of two characters in
a string, the first of which is /. The sequence
stands for another character, such as the tab or
newline. 50

Ethernet, 21
Euclid, 12
event An occurrence, such as a button click or a

mouse motion, that can be detected and
processed by a program.

described, 351
responding to, 356–358

event-driven loop A process, usually hidden in
the operating system, that waits for an event,
notifies a program that an event has occurred,
and returns to wait for more events. 351–354

event parameter, 386
exception An abnormal state or error that occurs

during run time and is signaled by the operating
system.

enforcing preconditions with, 488–490
iterators and, 676

exceptions module, 489
exchange method, 461, 462

C6840_GlossIndex 11/24/08 9:17 AM Page 887

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[888]

execute To carry out the instructions of a
program. 3–4

exists method, 147
expansion weight, 376
exponent variable, 77
exponential, use of the term, 441
exponential algorithms, 457–458
exponentiation operator, 58–59
expression A description of a computation that

produces a value. 58–63. See also operators
expression method, 767–768
expression start symbol, 716
expression tree A tree in which each leaf node

contains a number and each interior node
contains an operator. 746, 764–768

extend method, 165–166, 168–169
extended if statement Nested selection in which

additional if-else statements are used in the else
option. See also nested if statement. 101, 115

external (or secondary) memory Memory that
can store large quantities of data permanently. 8

external pointer A special pointer that allows
users to access the nodes in a linked list.
612, 666

F
factIter function, 724–725
fib function, 459
Fibonacci numbers A series of numbers

generated by taking the sum of the previous two
numbers in the series. The series begins with
the numbers 0 and 1. 457–459, 723

field width The number of columns used for the
output of text. See also formatting. 84

FIFO (first-in, first-out) order, 605, 627
file A data structure that resides on a secondary

storage medium
accessing/manipulating, 146–147
-name extensions, 124–125, 139, 147, 866
organizing, 656–657

file object, 142, 144, 146

file system Software that organizes data on
secondary storage media.

described, 9
gathering information from, 219–227

fileName attribute, 358
filesys.py, 220–222
filtering The successive application of a Boolean

function to a list of arguments that returns a list
of the arguments that make this function return
True. 236

find method, 138, 167, 758, 759
Finder (Macintosh), 219
findFiles function, 223
first function, 697–698, 700
first method, 648, 649
first variable, 170
first-class data objects Data objects that can be

passed as arguments to functions and returned
as their values. 233–234

firstName variable, 52
Flesch-Kincaid Grade Level formula, 149–152
Flesh, Rudolf, 148
Flesh Index, 148–153
float A Python data type used to represent

numbers with a decimal point, for example, a
real number or a floating-point number. 48, 55,
60, 309–311

formatting text and, 85–87
while loops and, 104
type conversion and, 61–62

float function, 145
floating-point number A data type that

represents real numbers in a computer
program. 55

fonts, 371–373
for loop A structured loop used to traverse a

sequence. 80–81, 678–679. See also loops
count-controlled, 77–79
dictionaries and, 186–188
lists and, 162, 173–174
overview, 76–83
strings and, 144–147
subscript operator and, 123–124

C6840_GlossIndex 11/24/08 9:17 AM Page 888

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [889]

form fillers, 361–363
format operator, 85
format string A special syntax within a string that

allows the programmer to specify the number of
columns within which data are placed in a
string. 85

FORTRAN, 17, 18, 517, 532, 533
fractal geometry A theory of shapes that are

reflected in various phenomena, such as
coastlines, water flow, and price fluctuations.
261–265

fractal object A type of mathematical object that
maintains self-sameness when viewed at greater
levels of detail. 261–265

Frame class, 354–355, 371
frames, nested, 378–379
free list An area of memory used to allocate

storage for objects. 655, 657
front The end of a queue from which elements

are removed. 396, 474, 493, 604–608, 611,
613–617, 630–631

frontier The set of all leaves in a tree.753.
See also leaf.

frontier function, 753
full binary tree A binary tree that contains the

maximum number of nodes for its height.
740–741

fullName variable, 52
function(s) A chunk of code that can be treated as

a unit and called to perform a task. See also
functions (listed by name)

as abstraction mechanisms, 202–205
body, 175–176
calling, 64–65
definitions, 175–178
design with, 201–245
division of labor supported through, 205
documentation and, 485
eliminating redundancy with, 202–203
as first-class data objects, 233–234
hiding complexity with, 203–204
higher-order, 233–239
using, 63–69

function heading The portion of a function
implementation containing the function’s name
and parameter names. 175–176

functional programming, 340, 703–704
functions (listed by name). See also functions; main

function
abs function, 64, 65
acceptCommand function, 222
addHelper function, 761
apply function, 234
average function, 275
blackAndWhite function, 275–277
buildRange function, 700–701
cCurve function, 265
changePerson function, 193, 211, 227–229,

235–236
chr function, 127
cmp function, 311, 448–449
cons function, 700, 701
contains function, 698
convert function, 189
countByte function, 223
countFiles function, 223
countSentences function, 207
cPickle.load function, 318
detectEdges function, 280–281
displayRange function, 211, 212, 216–217
drawLine function, 264, 265
drawPolygon function, 254
drawSquare function, 251
factIter function, 724–725
fib function, 459
findFiles function, 223
first function, 697–698, 700
float function, 145
frontier function, 753
grayscale function, 277–278
help function, 64, 66, 490–491
input function, 27, 414
insertionSort function, 454
key function, 790
keyToIndexes function, 790–793
len function, 122, 161, 322, 514
makeSuite function, 499

C6840_GlossIndex 11/24/08 9:17 AM Page 889

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[890]

map function, 234–236
max function, 94, 189–190
merge function, 692
mergeSort function, 692–693
mergeSortHelper function, 692–695
min function, 94, 444
nounPhrase function, 183, 215
odd function, 177
ord function, 127
os.path.exists function, 146
partition function, 691
playManyGames function, 304
playOneGame function, 304
prepositionalPhrase function, 215
product function, 237
quicksortHelper function, 690–691
randint function, 107–108
random.choice function, 181
randomWalk function, 255–256
range function, 81–82, 83, 161, 230–231
raw_input function, 26–27
reduce function, 237, 280
reply function, 192–193, 209–210, 229
repToInt function, 231–232
rest function, 697–698, 700
round function, 63, 64, 65
runCommand function, 222, 238–239
runSimulation method, 622
sentence function, 183
shrink function, 283
size function, 752
socket function, 411
solve function, 708
square function, 175–176, 178
str function, 62, 142, 259–260, 307, 322, 514
stringHash function, 792, 794
sum function, 202–204, 212, 213, 237
swap function, 450
time function, 433
time.sleep function, 399
toString function, 699
traverseFromVertex function, 835
tripleSum function, 279–280
type function, 312
xrange function, 81–82

G
game of craps, playing, 301–307
garbage Data that are no longer accessible to a

program or no longer have a meaning within
it. 518

garbage collection The automatic process of
reclaiming memory when the data of a program
no longer need it. 299, 655

Gates, Bill, 21
GCD (greatest common divisor), 308
_gcd method, 308
general method A method that solves a class of

problems, not just one individual problem. 204
general tree A tree in which each node can have

an arbitrary number of children. 736
generateCustomer method, 626
generator object An object that feeds data items

to a user on demand, and is used to implement
iterators. 676. See also iterator

geometry method, 373–374
Germany, 15
get method, 185, 316, 361, 659, 699, 702
getAverage method, 294, 500
getBalance method, 313
getcwd method, 147
getData method, 404
getDepth method, 528
getHeight method, 250, 270, 526, 528
getHighScore method, 500
getLeft method, 751
getName method, 294, 313, 397–398, 498, 499
getNumberBooks method, 481
getPin method, 313
getPixel method, 270, 272, 274
getPoints method, 336
getRight method, 751
getRoot method, 750
getScore method, 294, 296, 486–490, 500
getsize method, 147
getValue method, 303
getWidth method, 250, 270, 526, 528
GIF (Graphic Interchange Format) images, 267,

270–271, 273, 355–356, 358–361. See also images
grammar The set of rules for constructing

sentences in a language, 179–180, 208. 714–716

C6840_GlossIndex 11/24/08 9:17 AM Page 890

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [891]

graph collection (graph). A collection whose
elements may have zero or more predecessors
and successors. 509, 819–864

terminology, 820–823
traversal, 830–834

GraphDemoModel class, 855–856
GraphDemoView class, 855–856
graphical user interface (GUI). See GUI (graphical

user interface)
graphics

APIs for, 871–883
described, 248
GIF, 267, 270–271, 273, 355–356, 358–361
overview, 247–290
grayscale, 277–278
two-dimensional shapes, 254–255

graphs. See graph collection
grayscale function, 277–278
grayscale images, 277–278
greeting method, 418
grid A data structure in which the items are

accessed by specifying at least two index
positions, one that refers to the item’s row and
another that refers to the item’s column.
525–528

attributes, 374–377
nested frames and, 378–379
traversing, 273–274

Grid class, 526–528, 712
grid layout A Python layout class that allows the

user to place window objects in a two-
dimensional grid in the window. 355

grid method, 355
GUI (graphical user interface) A means of

communication between human beings and
computers that uses a pointing device for input
and a bitmapped screen for output. The bitmap
displays images of windows and window objects
such as buttons, text fields, and drop-down
menus. The user interacts with the interface by

using the mouse to directly manipulate the
window objects. See also window object.

-based programs, coding, 353–364
described, 9, 347
displaying images with, 355–356
overview, 347–392
resources, 370–387

H
hacking The use of clever techniques to write a

program, often for the purpose of gaining access
to protected resources on networks. 129, 135, 184

halting problem, 497
haphazard testing, 494–496
hardware The computing machine and its

support devices. 6–8
Harvard University, 15
hash code A number that is used to determine

the location of an item in an array. 807
hash table A data structure, usually an array, that

supports constant-time access to items using
hashing. 789, 801–803

HashDict class, 806–810
hashing A method by which the position of an

item in a collection is related to the item’s
content and can be determined in constant time.
779, 783, 789–800

hashing function Also called key-to-address
transformation. A method of generating a hash
code in constant time. 789

HashSet class, 811–812
HashTable class, 801–803
hasNext method, 648, 649, 650, 667–672, 675
hasPrevious method, 648, 649
head The first element in a list. 644
head link An external link that is either empty or

points to the first node in a linked structure. 530
head pointer, 536, 537, 540, 543, 550
header nodes, 550

C6840_GlossIndex 11/24/08 9:17 AM Page 891

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[892]

heap An area of computer memory in which
storage for dynamic data is available. Also, a
tree that is organized to guarantee logarithmic
searches, insertions, and removals.
See also max-heap and min-heap. 654–655, 743,
771–774

heap property The relationship that characterizes
nodes and their children in a heap, for example,
each node is greater than either of its
children. 743

heap sort, 743
HeapPriorityQueue class, 774
height, use of the term, 735
help

APIs and, 484
classes and, 291, 296, 300
documentation and, 490–491
exceptions and, 489
shell window and, 24

help function, 64, 66, 490–491
helper A method or function used within the

implementation of a module or class but not
used by clients of that module or class. 309, 366,
463, 586, 636, 661, 692–693, 728, 760, 761

hexadecimal number system, 129–135, 188–189
hexToBinaryTable argument, 189
hierarchical collection A collection whose

elements may have zero or more successors, but
at most one predecessor. 508–509, 733–778

higher-order function A function that expects
another function as an argument and/or returns
another function as a value. 233–239

high-level programming language Any
programming language that uses words and
symbols to make it relatively easy to read and
write a program. See also assembly language and
machine language. 9

hit method, 336, 338
Hollerith, Herman, 14
home index The initial index, established by a

hashing function, for an item in a hash
table. 794

home method, 250
Homebrew Computer Club, 20

Hopper, Grace Murray, 17
horizontal tab (\t), 50
horizontal.gif, 273
HTML (HyperText Markup Language) A

programming language that allows the user to
create pages for the World Wide Web. 23

HTTP (Hypertext Transfer Protocol), 23
Hypercard, 22
hypermedia A data structure that allows the user

to access different kinds of information (text,
images, sound, video, applications) by traversing
links. 22

hypertext A data structure that allows the user to
access different chunks of text by traversing
links. 20, 22

hypertext markup language (HTML). See HTML
(HyperText Markup Language)

I
IBM (International Business Machines), 14, 17, 21
identifiers Words that must be created according

to a well-defined set of rules but can have any
meaning subject to these rules. 27, 294, 407

identity The property of an object that it is the
same thing at different points in time, even
though the values of its attributes might
change. 171

IDE (integrated development environment) A
set of software tools that allows you to edit,
compile, run, and debug programs within one
user interface. 867. See also IDLE

IDLE
breaking lines in, 60
client/server programming and, 395,

398–399
functions and, 176
income tax calculator and, 46–47
launching, 23–24
loops and, 109
main module and, 66–67
scripts and, 28–29
using, 866–867

C6840_GlossIndex 11/24/08 9:17 AM Page 892

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [893]

if statements, 718, 842–843
multi-way, 94–95
search algorithms and, 444

if-else statement A selection statement that
allows a program to perform alternative actions
based on a condition. 92–94, 340, 495–496

described, 92–94, 177
hexadecimal system and, 188–189

image(s). See also graphics
analog/digital information and, 266–267
APIs for, 871–883
black-and-white, 275–277
blurring, 279–280
compression, 267–268
converting, 275–278
copying, 278
digitizing, 267–268
displaying, 358–361
file formats, 267–268
grayscale, 277–278
GUIs and, 355–356
-manipulation operations, 268–269
processing, 247–290, 871–883
properties, 269
reducing the size of, 281–283
sampling, 267–268
saving, 273

Image class, 269–273, 278, 291, 872–873
images library, 869–870
images module, 269–273, 872–873
images.py, 269–273
immutable data structure, 122
immutable object An object whose internal data

or state cannot be changed.
imperative programming, 339
implementation The phase of the software life

cycle in which the program is coded in a
programming language. See also coding

algorithm profilers and, 463–465
arrays and, 581–583, 587–588, 614–617
ATM programs and, 327–329, 367–370
craps games and, 304–307
described, 40–41
dictionaries and, 784–789
emergency room scheduler and, 635–637

fractal objects and, 265
generating sentences and, 182
graphs and, 856–860
hashing, 806–812
income tax calculator and, 45–46
investment report and, 88–90
iterators and, 676–677
linked, 584–588, 611–618, 660–662
lists and, 657–772
multi-client chat room and, 423–424
navigating file systems and, 224–227
nondirective psychotherapy and, 193–194
postfix expressions and, 596–599
queues and, 611–618
recursion and, 690–691, 720–721
sets and, 783, 784–789
square roots and, 112–113
stacks and, 580–588
text analysis and, 151–152
trees and, 753–756, 765–767, 769–774

import statement, 182
in operator, 125, 162–163, 167
incident edges The edges that connect a vertex

to other vertices in a graph. 822
income tax calculator, 43–47
increment The process of increasing a number

by 1. 40, 63, 105, 211, 212, 282, 300, 333
incremental/iterative development, 40–41
indefinite iteration The process of repeating a

given action until a condition stops the
repetition. 76

index The relative position of a component of a
linear data structure or collection. 123, 797–798

described, 160
Flesh Index, 148–153
home, 794
lists and, 160, 167

index method, 167, 787
index-based operation An operation that

accesses an element by specifying its position in
a collection. For lists, the position is specified as
an integer ranging from 0 to the size of the
collection minus 1. 646

indexed lists, 658–665
IndexedLinkedList class, 676

C6840_GlossIndex 11/24/08 9:17 AM Page 893

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[894]

IndexedList interface, 658, 664
IndexError exception, 489
indirect recursion A recursive process that

results when one function calls another, which
results at some point in a second call to the first
function. 215

infinite loop A loop in which the controlling
condition is not changed in such a manner to
allow the loop to terminate. 102

infinite recursion In a running program, the
state that occurs when a recursive function
cannot reach a stopping state. 55, 215–216

infix form The form of an expression in which
the operator is surrounded by its operands.
569–575

information processing The transformation of
one piece of information into another piece of
information. 2, 4–5

inheritance The process by which a subclass can
reuse attributes and behavior defined in a
superclass. See also subclass and superclass.

described, 329
hierarchies, 330–331
overview, 482–484

init method, 297–298, 300, 319–320, 354–358,
366–370, 398, 419

initialAmount variable, 52
initialization, 841–842
inorder method, 750, 756, 758
inorder traversal A tree traversal that visits the

left child, visits the item, and visits the right
child of each node. 747–748

input Data obtained by a program during its
execution.

described, 5
overview, 25–27
text, 361–363

input device A device that provides information
to the computer. Typical input devices are a
mouse, keyboard, disk drive, microphone, and
network port. See also I/O device and output
device. 6–7

input function, 27, 414
insert method, 165–166, 168–169, 380, 520, 644,

648–652, 654, 658, 660–661, 671

insertion sort A sorting algorithm that locates an
insertion point and takes advantage of partial
orderings in an array. 453–455

insertionSort function, 454
installation

of libraries, 869–870
of Python, 866

instance A computational object bearing the
attributes and behavior specified by a class.
251–254

instance method A method that is called on an
instance of a class. 622, 626

instance variable Storage for data in an instance
of a class. 297–298, 593–596

instant messaging, rise of, 22
instantiation The process of creating a new

object or instance of a class. 251–254
instructions, counting, 435–438
int data type, 48, 54–55

arithmetic and, 309–311
expressions and, 60
type conversion and, 61–62

integer A positive or negative whole number, or
the number 0. The magnitude of an integer is
limited by a computer’s memory. 54–55

integer arithmetic operations Operations
allowed on data of type int. These include the
operations of addition, subtraction,
multiplication, division, and modulus to produce
integer answers. 58–60, 569–570

integers.txt, 143
integrated circuit The arrangement of computer

hardware components in a single, miniaturized
unit. 18–19

integration, described, 40–41
integration testing The phase of testing in which

software components are brought together and
tested for their interaction. 496, 498–502

Intel, 20
interest variable, 52
interface A formal statement of how

communication occurs between the user of a
module (class or method) and its
implementer. 251

interior node A node that has at least one child
in a tree. 734

C6840_GlossIndex 11/24/08 9:17 AM Page 894

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [895]

internal memory, described, 7
Internet host, described, 409
interpreter A program that translates and

executes another program. 9–10, 17, 717
investment reports, 87–90
invoke. See call
I/O device Any device that allows information to

be transmitted to or from a computer. See also
input device and output device. 20

Iowa State University, 15
IP address The unique location of an individual

computer on the Internet. 407–409,
411–412, 414

IP name A representation of an IP address that
uses letters and periods. 407–409

IP number A representation of an IP address that
uses digits and periods. 407–409

is operator, 171–172, 312
isAlive method, 398
isalpha method, 138
isdigit method, 138
isdir method, 147
isEmpty method, 564–565, 606, 607, 750, 753, 756,

758, 771
isfile method, 147
item, use of the term, 160
items method, 186
iter method, 514, 677, 757, 758, 771, 781
iterable The property of a collection that allows a

programmer to traverse it with a simple for
loop. See also iterator. 511

iteration See iterator; iterative process; loops; pass
(iteration)

iterative process A running program that
executes a loop. 725

iterator An object that allows clients to navigate a
collection by tracking a cursor. 673–677

J
Jacquard’s Loom, 13*
Java, 517–518, 875
Jobs, Steve, 20
join method, 138, 193, 228

JPEG (Joint Photographic Experts Group) images,
267–268. See also images

jump table A dictionary that associates command
names with functions that are invoked when
those functions are looked up in the table.
238–239

junit tool, 498
justification The process of aligning text to the

left, the center, or the right within a given
number of columns. 373

justify attribute, 373

K
Kay, Alan, 20, 21
Kaypro computer, 21
key(s) An item that is associated with a value and

which is used to locate that value in a collection.
dictionaries and, 184–186
encryption, 127
non-numeric, hashing with, 792–794
removing, 186

key - 15000 expression, 789
key function, 790
key variable, 187
keys method, 187
key-to-address transformation, 789
keyboard events, 386–387
keypunch machine An early input device that

allowed the user to enter programs and data
onto punched cards. 16–17

keyToIndexes function, 790–793
keywords See reserved words

L
label object A window object that displays text,

usually to describe the roles of other window
objects. 355

LabelDemo class, 354
labels, 350
lambda The mechanism by which an anonymous

function is created. 237–238, 280

C6840_GlossIndex 11/24/08 9:17 AM Page 895

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[896]

LANs (local area networks), 21
last method, 648, 649
last-in first-out protocol (LIFO) The constraint

imposed on access to items in a stack, whereby
the last item inserted is always the first item
removed. 562

leaf A node without children. 734
left associative The property of an operator such

that repeated applications of it are evaluated
from left to right (first to last). 59

left child One of two immediate descendants of a
given node in a binary tree. 736

left subtree The node and its descendants to the
left of a given node in a binary tree. 736, 739,
744, 746–749, 751, 753, 756, 760, 762, 768

Leibnitz, Gottfried, 14
len function, 122, 161, 322, 514
len method, 564, 606, 653, 676, 752, 758, 771,

781, 786
length of a path The number of edges needed to

reach one vertex from another vertex in a graph.
735, 820

level order traversal A tree traversal that visits
each node, from left to right, at a given level
before moving to the next level. 748, 750, 758

levelorder method, 750, 758
lexical analysis The phase of parsing that involves

recognizing words in a given expression. See also
scanning. 717–718

lexicon, 714
library A collection of operations and data

organized to perform a set of related tasks. 29,
479–482. See also classes

Library class, 479–482
LibraryView class, 479–481
lifetime The time during which a data object,

function call, or method call exists. 229–230
line breaks, 49
linear An increase of work or memory in direct

proportion to the size of a problem. 15, 267,
273, 458–459

probing, 794–796
loop structure, 273–274

linear collection A collection whose elements
have at most one predecessor and at most one
successor. 508, 561–562, 603–642, 643–684. See
also lists

linear search See sequential search
linked implementation, 584–588, 611–618,

660–662
linked positional lists, 665–667
linked structure A structure in which each item

is linked to the next one by means of a pointer.
See also recursive data structure. 529–536

circular, 550–552
described, 513
doubly, 530–531, 552–554
singly, 530–531, 536–550

LinkedDirectedGraph class, 846–849
LinkedEdge class, 849, 852–853
LinkedIndexedList class, 653
LinkedPositionalList class, 651, 653, 666–667
LinkedPriorityQueue, 632
LinkedQueue class, 612–614, 620–621, 630–632
LinkedStack class, 565, 567, 580–581, 584–587,

612–614
LinkedVertex class, 850–851
Linux, 8, 24

Python installation and, 866
IDEs and, 867

LISP (List Processing), 17, 696–703
list(s)

aliasing and, 169–170
applications of, 654–658
described, 159–160
dictionaries and, 788–789
interfaces, 652–654
lists of, 160–161
mutator methods and, 168–169
numbers with, 172–173
operators and, 160–163
overview, 643–684
recursion and, 696–704
replacing elements in, 163–164
searching, 167, 444–445, 446–447
sets and, 788–789
side effects and, 169–170
sorting, 168
using, 645–654

C6840_GlossIndex 11/24/08 9:17 AM Page 896

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [897]

list boxes, 382–385
list class, 444–445, 645–654
list data type, 165–167, 520–521
list literals, 160–163
Listbox class, 382–385
ListDict class, 785–787
listdir method, 147
listen method, 413
ListSet class, 784–785
literal An element of a language that evaluates to

itself, such as 34 or “hi there.” 48–49
load factor A measure of the degree to which an

array is filling with items, computed by dividing
the number of items by the array’s capacity. 524

loader A system software tool that places program
instructions and data into the appropriate
memory locations before program start-up. 8

local host, 409
lock, on resources, 404
logarithmic An increase of work in proportion to

the number of times that the problem size can
be divided by 2. 440

logic (design) errors, described, 46
logical negation, 98
logical operator Either of the logical connective

operators and, or, or not. 97–99
logical size The number of data items actually

available in a data structure at a given time. See
also physical size. 518–519

logical structure The organization of the
components in a data structure, independent of
their organization in computer memory. 96, 160

_login method, 366
long data type, 48, 54–55, 60
lookup tables, 188–189
loop(s) A type of statement that repeatedly executes

a set of statements. See also control statements.
82–83, 172

collections and, 511
complexity analysis and, 439–441
counting, 436
described, 76
errors, 80
functions and, 211–212, 217, 234
graphics and, 254, 273–274, 283

patterns, 273–274
stopping, 109
strings and, 123–124, 144–145
termination condition, 106
traversing grids and, 273–274

loop body The action(s) performed on each
iteration through a loop. 76–77

loop control variables, 103–104
loop header Information at the beginning of a

loop that includes the conditions for continuing
the iteration process. 76–77

lossless compression, 268
lossy compression, 268
low-level language See assembly language
lower argument, 211–212, 213
lower bound, 211–212
lower method, 138
luminance, 277, 280
lyst argument, 698

M
machine language The language used directly by

the computer in all its calculations and
processing. Also called machine code. 8

Macintosh, 8–9, 20
client/server programming and, 394
IDEs and, 867
MultiFinder, 394
Python installation and, 866
shell window and, 24
terminal window and, 68–69

magnetic storage media Any media that allow
data to be stored as patterns in a magnetic
field. 8

main function, 192, 206–210, 222, 353, 399, 402
defining, 178
generating sentences and, 181
graphics and, 265
GUIs and, 355, 366
queues and, 620
stacks and, 580–581

C6840_GlossIndex 11/24/08 9:17 AM Page 897

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[898]

main (primary or internal) memory The high-
speed internal memory of a computer, also
referred to as random access memory (RAM).
See also memory and secondary memory. 8

main module The software component that
contains the point of entry or start-up code of a
program. 66–67

main windows, sizing, 373–374
mainframe Large computers typically used by

major companies and universities. 16. See also
microcomputer; minicomputer

mainloop method, 355
makeSuite function, 499
mantainance, described, 40–41
manyqueens program, 710–711
map function, 234–236
mapping The successive application of a function

to a list of arguments that returns a list of
results. 234–236

Mark I computer, 15
MarketModel class, 620–623
math module, 65–66, 110–113, 291
math.sqrt, 110–113
matrix A two-dimensional array that provides

range checking and can be resized. 129, 558,
819, 825–831, 844, 861

Mauchly, John, 15
max function, 94, 189–190
max-heap A tree in which each node is greater

than either of its children. 743
MAX_WITHDRAWALS variable, 332
McCarthy, John, 17, 19, 696
median, of a set of numbers, 172–173
megabyte Shorthand for approximately 1 million

bytes. 283
memory The ordered sequence of storage cells

that can be accessed by address. Instructions and
variables of an executing program are
temporarily held here. See also main memory;
secondary memory

call stacks, 216–217
consumed by algorithms, 432, 438
contiguous, 516–517
described, 6
dynamic, 517–518

graphs and, 828
linked structures and, 549
management, 577–580
noncontiguous, 531–533
queue and, 617
static, 517–518

memory location A storage cell that can be
accessed by address. 8

MENU variable, 222
merge The process of combining lists. Typically

refers to files or arrays. 692–695
merge function, 692
merge method, 693–695
merge sort An nlogn sort algorithm that uses a

divide and conquer strategy. 686, 692–695
mergeSort function, 692–693
mergeSortHelper function, 692–695
metasymbols Symbols that a grammar uses to

construct rules. Metasymbols express selection
among optional items, iteration, and so
forth. 715

method(s) A chunk of code that can be treated as
a unit and invoked by name. A method is called
with an object or class. See also class method and
instance method. See also methods (listed
by name)

definitions, 296
described, 137
documentation and, 485
general, 204
list of, 138
names, 228
string, 136–140

methods (listed by name). See also methods
accept method, 414
acquire method, 405
add method, 316, 480, 758, 760–761,

771–772, 781, 811
addCustomer method, 624
addEdge method, 846–847
addVertex method, 846–848
amountOfServiceNeeded method, 626
append method, 165–166, 168–169, 172,

520, 540, 563, 605, 644, 658, 660
arrivalTime method, 626

C6840_GlossIndex 11/24/08 9:17 AM Page 898

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [899]

assertEquals method, 499
assertRaises method, 500
bind method, 385, 387, 413
borrow method, 501–502
borrowBook method, 479–482, 502
center method, 138
chdir method, 147
close method, 146, 411, 414, 270, 278, 676
cmp method, 310–311, 448–449, 676, 629
columnconfigure method, 376
comparison method, 461, 462
computeInterest method, 313, 316
connect method, 411
count method, 138, 151
createGraph method, 855
deal method, 321–322
delete method, 380
deposit method, 313
Die method, 303
down method, 250
draw method, 270, 271
endswith method, 138
enqueue method, 604, 606–607, 612–617,

628, 631, 632, 774
eq method, 311
exchange method, 461, 462
exists method, 147
expression method, 767–768
extend method, 165–166, 168–169
find method, 138, 167, 758, 759
first method, 648, 649
_gcd method, 308
generateCustomer method, 626
geometry method, 373–374
get method, 185, 316, 361, 659, 699, 702
getAverage method, 294, 500
getBalance method, 313
getcwd method, 147
getData method, 404
getDepth method, 528
getHeight method, 250, 270, 526, 528
getHighScore method, 500
getLeft method, 751
getName method, 294, 313, 397–398,

498, 499

getNumberBooks method, 481
getPin method, 313
getPixel method, 270, 272, 274
getPoints method, 336
getRight method, 751
getRoot method, 750
getScore method, 294, 296, 486–490, 500
getsize method, 147
getValue method, 303
getWidth method, 250, 270, 526, 528
greeting method, 418
grid method, 355
hasNext method, 648, 649, 650,

667–672, 675
hasPrevious method, 648, 649
hit method, 336, 338
home method, 250
index method, 167, 787
init method, 297–298, 300, 319–320,

354–358, 366–370, 398, 419
inorder method, 750, 756, 758
insert method, 165–166, 168–169, 380, 520,

644, 648–652, 654, 658, 660–661, 671
isAlive method, 398
isalpha method, 138
isdigit method, 138
isdir method, 147
isEmpty method, 564–565, 606, 607, 750,

753, 756, 758, 771
isfile method, 147
items method, 186
iter method, 514, 677, 757, 758, 771, 781
join method, 138, 193, 228
keys method, 187
last method, 648, 649
len method, 564, 606, 653, 676, 752, 758,

771, 781, 786
levelorder method, 750, 758
listdir method, 147
listen method, 413
_login method, 366
lower method, 138
mainloop method, 355
merge method, 693–695
mkdir method, 147

C6840_GlossIndex 11/24/08 9:17 AM Page 899

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[900]

move method, 250
next method, 648, 650, 652, 667–670,

676, 678
notify method, 405
notifyAll method, 405
open method, 146
peek method, 564–565, 581, 606, 607, 614,

629, 771
play method, 303, 304
postorder method, 750
previous method, 649, 650–652
processAccount method, 326
read method, 143, 146
readline method, 144–146
recv method, 411
release method, 404, 405
remove method, 147, 239, 316, 648, 649,

650–652, 644, 660, 663, 668–669,
671–672, 702–704, 758, 781

removeLeft method, 751
removeRight method, 751
replace method, 138, 644, 648, 650, 659,

668–670, 672
resetCounter method, 332, 333
resizable method, 373–374
rmdir method, 147
roll method, 303
rowconfigure method, 376
rshuffle method, 322
run method, 326, 327–328, 396, 397, 417
runSimulation method, 622
save method, 270, 317
send method, 414
serve method, 626
serveCustomers method, 624–625
set method, 361, 383–384, 781
setColor method, 250, 257–258
setData method, 404
setDirection method, 250
setLabel method, 850–851
setLeft method, 751
setName method, 397–398
setPixel method, 270, 272
setRight method, 751
setRoot method, 751, 756

setScore method, 294, 298, 486–489, 500
setup method, 499, 501, 502
setWidth method, 250
sort method, 168–169, 311
split method, 137–140, 145, 164–165, 228
start method, 396, 397, 398
startswith method, 138
str method, 259, 294, 298, 300, 303,

313, 316
strip method, 138, 145
str method, 294, 319–320, 321, 338, 448,

462, 564, 587–588, 606, 617, 623, 629,
653, 672, 676, 750, 753, 756–758, 771,
850, 852

teardown method, 502
test method, 460, 462
turn method, 250
turtle method, 250
upper method, 138
wait method, 405, 404
widthdraw method, 338
withdraw method, 313, 331–333
write method, 142, 146
yview method, 384

method header The portion of a method
implementation containing the method’s name
and parameter names. 228, 251, 296, 300, 487

microcomputer A computer capable of fitting on
a laptop or desktop, generally used by one
person at a time. 20. See also mainframe;
minicomputer

min function, 94, 444
min-heap A tree in which each node is less than

either of its children. 743, 747
minicomputer A small version of a mainframe

computer. It is usually used by several people at
once. 18–19. See also mainframe; microcomputer
minimum spanning forest The set of all
minimum spanning trees in a graph. 83

minimum spanning tree A tree that has the
fewest number of edges possible while still
connecting all of the vertices in a graph
component. 835–838

MIT (Massachusetts Institute of Technology), 15,
17, 19, 191, 248

C6840_GlossIndex 11/24/08 9:17 AM Page 900

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [901]

mixed-mode arithmetic Expressions containing
data of different types; the values of these
expressions will be of either type, depending on
the rules for evaluating them. 60–62

mkdir method, 147
mode, of a list of values, 189–190
models, described, 473
model/view/controller pattern (MVC) A design

plan in which the roles and responsibilities of
the system are cleanly divided among data
management (model), user interface display
(view), and user event-handling (controller)
tasks. 325, 352

module(s) An independent program component
that can contain variables, functions, and classes.

described, 63
documentation and, 485
namespaces and, 227–228
navigating file systems and, 222
using, 63–69
variables, 227–228

monitor resolution, 256
Moore, Gordon, 18
Moore’s Law A hypothesis that states that the

processing speed and storage capacity of
computers will increase by a factor of two every
18 months. 18, 19

mouse
advent of, 20
events, 385–386

move method, 250
MS-DOS (Microsoft Disk Operating System), 21
multi-client chat room, 421–426
multi-way selection statements, 94–95
multidimensional array An array whose

elements are accessed by specifying more than
one index. 528

multiplication operator, 58–59
multiplicity, 477–478
multiprocessing systems, 394
mutable, lists as, 163
mutator A method used to change the value of an

attribute of an object. 168–169, 298
MVC (model/view/controller pattern). See

model/view/controller pattern (MVC)

N
n> log n> sorting, 686–695
namespace(s) The set of all of a program’s variables

and their values.
described, 227
managing, 227–232

natural ordering The placement of data items
relative to each other by some internal criteria,
such as numeric value or alphabetical value. 168

Navy (United States), 15
negation The use of the logical operator not with

a Boolean expression, returning True if the
expression is false, and False if the expression is
true. 58–59

neighbors Two vertices connected by an edge.
509, 820

nested if statement A selection statement used
within another selection statement. 842. See also
extended if statement.

nested loop A loop as one of the statements in
the body of another loop. 273–274

network A collection of resources that are linked
together for communication.

described, 6
history of, 19–21
overview, 407–420

networked (distributed) systems, 394–395
Neumann, John von, 16
newline character A special character (‘\n’) used

to indicate the end of a line of characters in a
string or a file stream., 49, 142

described, 26, 50
strings and, 144, 146–147

Newton, Isaac, 14 Newton, 110, 111
next field, 535, 586
next method, 648, 650, 652, 667–670, 676, 678
NLS (ONLine System) Augment, 20, 22
node A component of a linked structure,

consisting of a data item and one or more
pointers to other nodes.

trees and, 765–767
described, 734

Node class, 535, 552, 584, 612, 666, 702, 798, 811

C6840_GlossIndex 11/24/08 9:17 AM Page 901

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[902]

noncontiguous memory A type of memory that
allows adjacent items in a data structure to be
stored in memory cells that are not adjacent in
the computer. 531–533

nondirective psychotherapy, 191–195
None value A special value that indicates that no

object can be accessed. 168–169, 177, 185, 296,
317, 322, 514, 533–537, 540, 543, 545, 586,
622, 626, 759–760, 762, 841

nonterminal symbols Symbols that a grammar
uses to express phrases. 715, 718

NOT operator, 15, 98–99
Notepad, 141
notify method, 405
notifyAll method, 405
nounPhrase function, 183, 215
nouns variable, 181
null values, 533
number variable, 77
number systems

conversion and, 131–134, 188–189
strings and, 129–130

numeric data types, 48, 54–57

O
object A collection of data and operations, in

which the data can be accessed and modified
only by means of the operations

described, 137
first-class, described, 233–234
fractal, 261–265
getting inside, 292–300
input of, 318–319
instantiation, 251–254
lifetime of, 299
storage of, 317–318
str function and, 259–260

object code. See object program
object heap An area of computer memory from

which storage for objects is allocated. 533, 579
object identity The property of an object that it

is the same thing at different points in time,

even though the values of its attributes might
change. 171

object-based programming The construction of
software systems that use objects. 248

object-oriented languages, 292
object-oriented programming The construction

of software systems that define classes and rely
on inheritance and polymorphism.

costs and benefits of, 339–341
described, 292

octal number system, 134–135
odd function, 177
off-by-one error Usually seen with loops, this

error shows up as a result that is one less or one
greater than the expected value. 80

offset The quantity added to the base address of
an array to locate the address of an array
cell. 517

one-dimensional array An array in which each
data item is accessed by specifying a single
index. 525

open method, 146
operating system A large program that allows

the user to communicate with the hardware and
performs various management tasks. 8–9. See
also specific operating systems

operator(s). See also expressions
lists and, 160–163
overloading, 307, 309–310
precedence, 58–59

optical storage media Devices such as CDs and
DVDs that store data permanently and from
which the data are accessed by using laser
technology. 8, 21–22

optional arguments Arguments to a function or
method that may be omitted. 64

OR operator, 15, 97–99
ord function, 127
origin The point (0,0) in a coordinate system. 248
os module, 147, 222
os.path module, 147, 222
os.path.exists function, 146
Osborne, 21
other parameter, 310

C6840_GlossIndex 11/24/08 9:17 AM Page 902

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [903]

output Information that is produced by a
program.

described, 5
formatting text for, 83–86
overview, 25–27
text, 361–363

output device A device that allows you to see the
results of a program. Typically, it is a monitor,
printer, speaker, or network port. 6–7. See also
input device and I/O device

overflow In arithmetic operations, a value may be
too large for the computer’s memory location. A
meaningless value may be assigned or an error
message may result. 582

overloading The process of using the same
operator symbol or identifier to refer to many
different functions. See also polymorphism. 307,
309–310

overriding The process of re-implementing a
method already implemented in a superclass.
140, 333, 338, 376, 502, 572

P
panes, 378–379
Papert, Seymour, 248
parallel computing, 395
parallel systems, 395
parameters, 227–228. See also arguments
parent A given node’s predecessor in a tree.

Also, the immediate superclass of a class.
508–509, 734

classes, described, 294
components, 355

parse tree A data structure developed during
parsing that represents the structure of a
sentence or expression. 737–738

parsing The process of analyzing an expression
for syntactic correctness. 717–719, 764–768

partition function, 691
partitioning, 687–688, 691
Pascal, 12–14, 517, 533
pass (iteration), 76

path A sequence of edges that allows one vertex to
be reached from another.

described, 220, 735, 820
length of, 735, 820
-names, checking, 146–147
simple, 921

Patron class, 476–481
PatronQueue class, 476–478, 502
peek method, 564–565, 581, 606, 607, 614,

629, 771
perfectly balanced binary tree A binary tree in

which each level but the last one must be
occupied by a complete set of nodes. 741

performance, acceptable, 495
peripheral memory. See memory; secondary

memory
personal computing, history of, 19–21
PFEvaluator class, 594
PFEvaluatorModel class, 594
PFEvaluatorView class, 593
PhotoImage class, 355–356
physical size The number of memory units

available for storing data items in a data
structure. See also logical size. 518–519

pi, value of, 65
pickling, 317–318
PINs (personal identification numbers), 312–314,

316–317, 323, 326, 331–332, 366, 448
pivot A data item around which a list is

subdivided during the quicksort. 686
pixel(s) A picture element or dot of color used to

display images on a computer screen. 256, 267,
279–280

color and, 269
replacing, 272

pixilation, 279–280
play method, 303, 304
Player class, 303, 304, 335
Player object, 303, 333–338
playManyGames function, 304
playOneGame function, 304
pointer A reference to an object that allows you

to access it. 532–533
polymorphic methods, 338

C6840_GlossIndex 11/24/08 9:17 AM Page 903

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[904]

polymorphism The property of one operator
symbol or method identifier having many
meanings. See also overloading. 329

polynomial time algorithm, 441
pop The operation that removes an element from

a Python list or stack. 165–167, 186, 521, 562,
563–565, 581, 583, 584, 586, 605, 612, 703,
771, 773, 786, 808

port A channel through which several clients can
exchange data with the same server or with
different servers. 6, 409, 413

position-based operation An operation
performed with respect to a cursor in a
collection. 647–652

positional list A list in which a client navigates by
moving a cursor. 665–772

positional notation The type of representation
used in based number systems, in which the
position of each digit denotes a power in the
system’s base. 130–132

postcondition A statement of what will be true
after a certain action is taken. 487–488

postfix expressions, 589–599
postfix form The form of an expression in which

the operator follows its operands. 569–575
postorder method, 750
postorder traversal A tree traversal that visits the

left child, visits the right child, and visits the
item of each node. 748, 758

precedence rules Rules that govern the order in
which operators are applied in expressions.
58–59

precondition A statement of what must be true
before a certain action is taken. 487–489

predicate A function that returns a Boolean
value. 236

prefix form The form of an expression in which
the operator precedes its operands. 236,
242, 697

preorder traversal A tree traversal that visits the
item, visits the left child, and visits the right
child of each node. 747, 750, 758

prepositionalPhrase function, 215
previous method, 649, 650–652
previous pointer, 552

primary memory, 7. See also memory
print statement

control statements and, 76–77
functions and, 213
introduction to, 25–26
lists and, 162, 169
scripts and, 28–29
strings and, 49
syntax errors and, 31
tabular format and, 84

priority queue A collection in which the items
are ordered according to priority. 604, 774

probe pointer, 547–548
problem decomposition The process of breaking

a problem into subproblems. 206–207
problem instance An individual problem that

belongs to a class of problems. 204
problem solving, 206–210
procedural programming A style of

programming that decomposes a program into a
set of methods or procedures. 340

processAccount method, 326
processing, overview, 25–27
processors, 7. See also CPUs (central processing

units)
Producer class, 402–403
producer/consumer relationship, 400–406
product function, 237
Profiler class, 460–463
profiling hashing strategies, 800–806
profit variable, 62
program A set of instructions that tells the

machine (the hardware) what to do.
described, 6
format, 67–68
interpreting, steps in, 29–30
namespaces, managing, 227–232
structure, 67–68

program library A collection of operations and
data organized to perform a set of related tasks.
29, 479–482. See also classes

program proof An analysis of a program that
attempts to verify the correctness of program
results. 497

C6840_GlossIndex 11/24/08 9:17 AM Page 904

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [905]

programming language A formal language that
computer scientists use to give instructions to
the computer.

described, 6
history of, 16–18

prototype A trimmed-down version of a class or
software system that still functions and allows
the programmer to study its essential
features. 40

pseudocode A stylized half-English, half-code
language written in English but suggesting
program code. 44–45

push The operation that adds an element to a
stack. 562, 564–565, 583, 584, 586–587, 612

PVM (Python Virtual Machine) A program that
interprets Python byte codes and executes them,
29, 30, 34, 216–217, 229–230, 578–580

client/server programming and, 395
lists and, 655

pydoc, 484, 490–493
pythonfiles directory, 69
pyunit, 498

Q
quadratic An increase of work or memory in

proportion to the square of the size of the
problem. 440

quadratic probing A strategy of resolving
collisions that searches the array for the next
available empty slot for an item, using the
square of an incrementally increasing distance
to leapfrog potential clusters. 796–797

queue(s) A data structure that allows the
programmer to insert items only at one end and
remove them from the other end.

applications of, 609–611
implementation, 611–618
interface, 605–608
overview, 603–642
priority, 627–632

quicksort A sorting technique that moves
elements around a pivot and recursively sorts
the elements to the left and the right of the
pivot. 686–695, 723

quicksortHelper function, 690–691
QUIT variable, 222

R
RAM (random access memory) High-speed

memory where programs and their data reside
during program execution. 7

randint function, 107–108
random access A data-access method that runs in

constant time. 516–517, 538
random access data structure A data structure

in which the time to access a data item does not
depend on its position in the structure.

random module, 107–108
random numbers, generating, 107–108
random.choice function, 181
randomWalk function, 255–256
range function, 81–82, 83, 161, 230–231
ranges, specifying steps in, 81–82
RANKS variable, 322
Rational class, 307–309, 312
rational number(s)

arithmetic, 309–310
described, 307–309

raw image files, described, 267–268
raw_input function, 26–27
reachable A vertex which can be found by

traversing a set of edges from a given
vertex. 820

read method, 143, 146
read queue, 611
readline method, 144–146
ready queue A data structure used to schedule

processes or threads for CPU access. 396
rear The end of a queue to which elements are

added. 396, 397, 604–607, 611, 613–617
recognizers, 717

C6840_GlossIndex 11/24/08 9:17 AM Page 905

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX[906]

recursion The process of a subprogram
calling itself. A clearly defined stopping
state must exist.

costs and benefits of, 216–218, 722–723
fractals and, 261–265
getting rid of, 723–724
infinite, 215–216
overview, 685–732
in sentence structure, 214–215
tail, 724–725
trees and, 736

recursive call The call of a function that already
has a call waiting in the current chain of
function calls. 212

recursive data structure A data structure that
has either a simple form or a form that is
composed of other instances of the same data
structure. 685, 696. See also linked structure.

recursive definition A set of statements in which
at least one statement is defined in terms of
itself. 214

recursive descent, 714–722
recursive design The process of decomposing a

problem into subproblems of exactly the same
form that can be solved by the same algorithm.
211, 219, 223, 224

recursive function A function that calls itself.
211–219, 457–458

defining, 211–212
constructing, 214
recursive Fibonacci function, 457–458
tracing, 213–214

recursive step A step in the recursive process that
solves a similar problem of smaller size and
eventually leads to a termination of the
process. 211

recursive subprogram See recursion
recv method, 411
reduce function, 237, 280
reducing The application of a function to a list of

its arguments to produce a single value. 237
reference The process of accessing or looking up

the value of a variable or, alternatively, a pointer
to an object. 533

regression testing The process of rerunning a
program on the test data to make sure that
modifications have not unintentionally
broken some feature that previously worked
correctly. 497

relational operator An operator used for
comparison of data items of the same type. 114

release method, 404, 405
reliable programs, 494
remainder (modulus) operator, 58–59
remove method, 147, 239, 316, 648, 649, 650–652,

644, 660, 663, 668–669, 671–672, 702–704,
758, 781

removeLeft method, 751
removeRight method, 751
repetition See loops
replace method, 138, 644, 648, 650, 659,

668–670, 672
replacement operation, 539
replacements variable, 227–229
reply function, 192–193, 209–210, 229
replyWords variable, 228–229
repToInt function, 231–232
request, customer

algorithm profilers and, 460
ATM program and, 323, 365
craps game and, 301
described, 40–41
emergency room scheduler and, 633
fractal objects and, 261
generating sentences and, 179
graphs and, 853
lists and, 678
multi-client chat room and, 421
navigating file systems and, 219
nondirective psychotherapy and, 191
investment report and, 87
postfix expressions and, 589
recursion and, 719
square roots and, 110
supermarket checkout simulator and, 618
text analysis and, 149
trees and, 764

C6840_GlossIndex 11/24/08 9:17 AM Page 906

May not be copied, scanned, or duplicated, in whole or in part.

GLOSSARY/INDEX [907]

required arguments Arguments that must be
supplied by the programmer when a function or
method is called. 64

reserved words Words that have predefined
meanings that cannot be changed. 230–232

resetCounter method, 332, 333
resizable method, 373–374
resolution

described, 281
image, 281–282
monitor, 256

responsibility-driven design The assignment of
roles and responsibilities to different actors in a
program. 209–210

rest function, 697–698, 700
RestrictedSavingsAccount class, 331–333, 483
return statement, 175–176

classes and, 296
generating sentences and, 183
syntax/usage, 177

returning a value The process whereby a
function or method makes the value that it
computes available to the rest of the program.
64–65

RGB (red-green-blue) color, 256–258, 269–272,
274–275, 371. See also color

blurred images and, 280
grayscale images and, 277

right associative operators, 59
right child One of two immediate descendants of

a given node in a binary tree. 736
right subtree The node and its descendants to

the right of a given node in a binary tree. 736,
739, 744, 746–756, 762

rmdir method, 147
Roberts, Eric, 107
robust The state in which a program is protected

against most possible crashes from bad data and
unexpected values. 494

roll method, 303
root The node in a tree that has no

predecessor. 734
root directory The top-level directory in a file

system. 220
root window, 373, 377

Rossum, Guido van, 23
round function, 63, 64, 65
round-robin scheduling The use of a queue to

rotate processes for access to a resource. 611
row attribute, 359
rowconfigure method, 376
row-major traversal, 274
rowspan attribute, 359
rshuffle method, 322
run method, 326, 327–328, 396, 397, 417
run-time environment Software that supports

the execution of a program. 578
run-time stack An area of computer memory

reserved for local variables and parameters of
method calls. 216

run-time system Software that supports the
execution of a program. 9–10, 216

runCommand function, 222, 238–239
runSimulation method, 622
Russell, Stephen, 17

S
sampling, moments of time, 266
save method, 270, 317
save operation, 273
SavingsAccount class, 312–315, 323–329, 331–333,

338–339, 483
SavingsAccount object, 448
Scanner class, 595
scanners, 717–719
scanning The process of picking words or tokens

out of a stream of characters. 567, 571
scientific notation The representation of a floating-

point number that uses a decimal point and an
exponent to express its value. 55

scope The area of program text in which the
value of a variable is visible. 228–229

screen coordinate system A coordinate system
used by most programming languages in which
the origin is in the upper-left corner of the
screen, window, or panel, and the y values
increase toward the bottom of the drawing
area. 269

C6840_GlossIndex 11/24/08 9:17 AM Page 907

GLOSSARY/INDEX[908]

script A Python program that can be launched
from a computer’s operating system.

described, 27–28
editing, 27–29
running, 27–29, 68–69
saving, 27–29
terminal command prompt and, 68–69

scroll bars, 382–383
scrolling list boxes, 382–385
search operations

collections and, 510
linked structures and, 538–539
trees and, 759–760

secondary (external) memory An auxiliary
device for memory, usually a disk or magnetic
tape. 8. See also memory.

secondName variable, 52
selection The process by which a method or a

variable of an instance or a class is accessed. 91
selection sort A sorting algorithm that sorts the

components of a list in either ascending or
descending order. This process puts the smallest
or largest element in the top position and
repeats the process on the remaining list
components. 450–451. See also quicksort

selection statement A control statement that
selects some particular logical path based on the
value of an expression. Also referred to as a
conditional statement.

overview, 91–100
testing, 100

self parameter, 296, 310
self-documenting code Code that is written

using descriptive identifiers. 472
semantic error A type of error that occurs when

the computer cannot carry out the instruction
specified. 59

semantics The rules for interpreting the meaning
of a program in a language. 59, 714

semiconductor storage media Devices, such as
flash sticks, that use solid state circuitry to store
data permanently. 8

send method, 414
sentence function, 183

sentences, generating, 179–183, 207–209, 717
sentinel node A special node in a linked structure

that contains no data but instead marks the
beginning or end of the structure. 666

sentinel value (sentinel) A special value that
indicates the end of a set of data or of a process.
102, 537, 538

sequence A type of collection in which each item
but the first has a unique predecessor and each
item but the last has a unique successor. 102

sequential search The process of searching a list
by examining the first component and then
examining successive components in the order
in which they occur. Also referred to as a linear
search. 444–445

serve method, 626
serveCustomers method, 624–625
server A computational object that provides a

service to another computational object.
407–420

set(s) An unordered collection of unique items.
hashing implementation of, 811–812
lists and, 788–789
sample sessions, 782–783
using, 780–784

set class, 781–782
set constructor, 782
set method, 361, 383–384, 781
setColor method, 250, 257–258
setData method, 404
setDirection method, 250
setLabel method, 850–851
setLeft method, 751
setName method, 397–398
setPixel method, 270, 272
setRight method, 751
setRoot method, 751, 756
setScore method, 294, 298, 486–489, 500
setup method, 499, 501, 502
setWidth method, 250
Shannon, Claude, 15
SharedCell class, 402–403, 404, 406

C6840_GlossIndex 11/24/08 9:17 AM Page 908

GLOSSARY/INDEX [909]

shell A program that allows users to enter and run
Python program expressions and statements
interactively.

described, 23
quitting, 25
running code in, 23–25
syntax errors and, 30–31

short-circuit evaluation The process by which a
compound Boolean expression halts evaluation
and returns the value of the first subexpression
that evaluates to true, in the case of or, or false,
in the case of and. 99–100

shortest path problem A problem that asks for a
solution that contains the shortest paths from a
given vertex to all of the other vertices. 840–843

shrink function, 283
siblings, 734, 737, 769, 770
side effect A change in a variable that is the result

of some action taken in a program, usually from
within a method. 169–170

simple Boolean expression An expression in
which two numbers or variable values are
compared using a single relational operator. See
also Boolean expression and compound Boolean
expression. 91

simple path A path between two vertices that
does not visit the same vertex more than
once. 921

simulations, 609–627
single-source shortest path problem A problem

that asks for a solution that contains the shortest
paths from a given vertex to all of the other
vertices. 840–843

singleton pattern A design pattern in which just
a single instance of a given class is used by all
application programs. 756

singly linked node A node that contains a single
pointer, which is either empty or refers to the
next node. 531–536

size function, 752
SleepyThread class, 399
slice operator, 165
slicing An operation that returns a subsection of a

sequence, for example, a sublist or a substring.
124–125, 165

smokey.gif, 270–271
sniffing software, 126
Social Security numbers, 17, 372
socket An object that serves as a communication

link between a single server process and a single
client process. 410–411

socket function, 411
socket module, 408, 410–411, 413
software Programs that make the machine (the

hardware) do something, such as word
processing, database management, or games.

described, 6
overview, 8–9

software development life cycle (SDLC) The
process of development, maintenance, and
demise of a software system. Phases include
analysis, design, coding, testing/verification,
maintenance, and

obsolescence. 40–43
software engineering The process of developing

and maintaining large software systems. 472
software reuse The process of building and

maintaining software systems out of existing
software components. 29, 329, 472

solid-state device An electronic device, typically
based on a transistor, which has no moving
parts. 18

solve function, 708
sort method, 168–169, 311
sorted collection A collection whose elements

are arranged in sorted order. 739
sorted dictionary A type of dictionary that allows

clients to visit its keys in sorted order. 779, 813
sorted lists, 678–681
sorted set A type of set that allows clients to visit

its items in sorted order. 813
source code The program text as viewed by the

human being who creates or reads it, prior to
compilation. 29–30

source program A program written by a
programmer. 153

source vertex A vertex from which an edge
extends to another vertex in a directed
graph. 822

C6840_GlossIndex 11/24/08 9:17 AM Page 909

GLOSSARY/INDEX[910]

spanning forest The set of all spanning trees in a
graph. 835

spanning tree A tree that connects all of the
vertices in a graph component. 835

split method, 137–140, 145, 164–165, 228
square function, 175–176, 178
square roots, 65, 110–113
SRI (Stanford Research Institute), 19, 20, 21
stack(s) A dynamic data structure in which access

can be made from only one end. Referred to as
a LIFO (last-in, first-out) structure.

applications, 569–572
implementation, 580–588
instantiating, 565–566
interface, 564–565
matching parentheses with, 566–567
overview, 561–602
using, 563–569

stack frame See activation record
stack module, 567
stack overflow error A situation that occurs

when the computer runs out of memory to
allocate for its call stack. This situation usually
arises during an infinite recursion.

start method, 396, 397, 398
start symbol, 716
startswith method, 138
state The set of all the values of the variables of a

program at any point during its execution. 163
statement An individual instruction in a program.

9, 23–25
static Pertaining to data whose memory

requirements are fixed and cannot be
changed. 510

static collections, 510
static memory, 517–518
Steele, Guy, 724
step value The amount by which a counter is

incremented or decremented in a count-
controlled loop. 82

stepwise refinement The process of repeatedly
subdividing tasks into subtasks until each
subtask is easily accomplished. See also
structured programming and top-down
design. 206

sticky attributes, 375–377
StopIteration error, 675
StopIteration exception, 676
stopping state The well-defined termination of a

recursive process. 537–539
str function, 62, 142, 259–260, 307, 322, 514
str method, 259, 294, 298, 300, 303, 313, 316
string(s) (string literals) One or more characters,

enclosed in double quotation marks, used as a
constant in a program. 48–49, 122–126

concatenation, described, 50
methods, 136–140
number systems and, 129–130
structure of, 122
trees and, 756–757
working with, 121–158

stringHash function, 792, 794
strip method, 138, 145
strongly-typed programming language A

language in which the types of operands are
checked prior to applying an operator to them,
and which disallows such applications, either at
run time or at compile time, when operands are
not of the appropriate type. 62

str method, 294, 319–320, 321, 338, 448, 462,
564, 587–588, 606, 617, 623, 629, 653, 672,
676, 750, 753, 756–758, 771, 850, 852

structural equivalence A criterion of equality
between two distinct objects in which one or
more of their attributes are equal. 171

structure chart A graphical method of indicating
the relationship between modules when
designing the solution to a problem. 206–209

structured programming Programming that
parallels a solution to a problem achieved by
top-down implementation. See also stepwise
refinement and top-down design. 107

Student class, 293–295, 297–298, 485–491,
498–501

Student constructor, 297
Student object, 299
student.py, 293–295, 493
subclass A class that inherits attributes and

behaviors from another class. 294

C6840_GlossIndex 11/24/08 9:17 AM Page 910

GLOSSARY/INDEX [911]

subgraph A subset of a graph’s vertices and a
subset of its edges. 921

subroutine A method or a function. 578–579. See
also functions; methods

subscript. See index
subscript operator, 123–124, 161, 164, 184–185
substring A string that represents a segment of

another string.
accessing, 122–126
slicing for, 124–125

subtraction operator, 58–59
subtree, 736, 739, 744, 746–749, 751, 753, 756,

760, 762, 768
SUITS variable, 322
sum function, 202–204, 212, 213, 237
summation, 79
superclass The class from which a subclass

inherits attributes and behavior. 333, 338, 340,
482, 483, 485. See also inheritance; subclass

supermarket checkout simulator, 618–627
swap function, 450
symbolic constant A name that receives a value

at program start-up and whose value cannot be
changed. 51

symbols
\ (backspace), 50, 60, 220, 223
: (colon), 76, 93, 124, 176, 184
, (comma), 162
$ (dollar sign), 62
. (dot), 65, 297, 320
“ (double quotes), 49, 50, 162
/ (forward slash), 220, 223
() (parentheses), 173, 566–567, 716
‘ (single quote), 50
[] (square brackets), 160–161, 162, 215
_ (underscore), 51, 297, 308

synchronization problem A type of problem
arising from the execution of threads or
processes that share memory. 400–406

syntax The rules for constructing well-formed
programs in a language. Also, the rules for
forming sentences in a language. 29–30, 714,
717–718

syntax error An error in spelling, punctuation, or
placement of certain key symbols in a program.

See also compilation error, design error, and run-
time error.

described, 9–10, 30
detecting/correcting, 30–31
strings and, 49

system software The programs that allow users
to write and execute other programs, including
operating systems such as Windows and Mac
OS. 8T

T
tabular format, 83–84
tail The last element in a list. Also, an external

pointer that is either empty or refers to the last
node in a linked structure. 644

tail links, 530
tail pointer, 552, 553
tail-recursive A recursive algorithm’s property of

performing no work after each recursive step.
724–725. See also recursion

target, of assignment statements, 164
taxform.py, 67, 68–69
teardown method, 502
temporary variable A variable that is introduced

in the body of a function or method for the use
of that subroutine only. 227–228, 577, 579, 676

terminal command prompt, 68–69, 109, 866–867
terminal I/O interface A user interface that

allows the user to enter input from a keyboard
and view output as text in a window. Also called
a terminal-based interface. 9, 348–353

terminal symbols, 715
termination condition A Boolean expression that

is checked to determine whether or not to stop
iterating within a loop. If this expression is
True, iteration stops. 106

test cases, 498
test method, 460, 462
test suite A set of test cases that exercise the

capabilities of a software component. 46, 498
TestCase class, 501, 502
test-driven development, 502

C6840_GlossIndex 11/24/08 9:17 AM Page 911

GLOSSARY/INDEX[912]

testing
choosing data for, 494–496
generating sentences and, 183
graph algorithms and, 853–860
income tax calculator and, 46–47
investment report and, 90
loops and, 109
nondirective psychotherapy and, 195
overview, 493–497
selection statements and, 100
square roots and, 113
stacks and, 580–581
substrings and, 125
text analysis and, 152–153
time for, 496–497
tools, 471–506

TestStudent class, 499, 500–501
teststudent.py, 498–499
text

analysis, 148–153, 206–207
attributes, 355, 356–357, 371–373
cipher, described, 127
formatting, for output, 83–86
reading, from a file, 143–144
writing, to a file, 142

text editor A program that allows the user to
enter text, such as a program, and save it in a
file. 9

text files Files that contain characters and are
readable and writable by text editors. 141

strings and, 141–153
reading numbers from, 145–146
writing numbers to, 142–143

Text widget, 379–382
textvariable attribute, 361
thread(s) A type of process that can run

concurrently with other processes. 397, 399, 416
overview, 394–406
sleeping, 398–400

Thread class, 397, 399, 416
threading module, 397
time function, 433
time sharing The scheduling of multiple

programs so that they run concurrently on the
same computer. 19, 394

time slicing A means of scheduling threads or
processes wherein each process receives a
definite amount of CPU time before returning
to the ready queue. 396

time module, 433
time.sleep function, 399
time-sharing operating system A computer

system that can run multiple programs in such a
manner that its users have the illusion that they
are running simultaneously. 19, 394

title bars, 350
title variable, 355
Tkinter component, 353–355, 361–363, 366, 371,

380–385
tkMessageBox module, 353, 363–364
token An individual word or symbol. 571,

717–718
Token class, 595–596
top The end of a stack where elements are added

or removed. 562
top-down design A method for coding by which

the programmer starts with a top-level task and
implements subtasks. Each subtask is then
subdivided into smaller subtasks. This process is
repeated until each remaining subtask is easily
coded. 206–210. See also stepwise refinement;
structured programming

topological order An order that assigns a rank to
each vertex such that the edges go from lower to
higher-ranked vertices. 838–840

topological sort The process of generating a
linear sequence of vertices that corresponds to a
topological order. 838–840

toString function, 699
transistor A device with no moving parts that can

hold an electromagnetic signal and that is used
to build computer circuitry for memory and a
processor. 18

translator A program that converts a program
written in one language to an equivalent
program in another language. 9

traversal The process of iterating through the
items of a collection so that each item is
visited once.

graphs and, 830–834
linked structures and, 536–537

C6840_GlossIndex 11/24/08 9:17 AM Page 912

GLOSSARY/INDEX [913]

recursion and, 698–700
trees and, 747–749

traverseFromVertex function, 835
trees

graphs and, 835–838
overview, 733–779
processing, 752–753
string representations of, 756–757
terminology, 734–736
TreeSet class, 813
tripleSum function, 279–280
true color systems, 257. See also color
True/False values. See Boolean data type

truth table A means of listing all of the possible
values of a Boolean expression. 98

try-except statement, 318–319, 364, 408, 596–597,
675, 787

tuple A linear, immutable collection. 173, 222
graphics and, 272
pixel values stored in, 274–275

Turing, Alan, 15, 16, 123
turn method, 250
Turtle class, 249, 252, 257–260, 291
turtle graphics A set of methods that manipulate

a pen in a graphics window. 248–251
turtle method, 250
Turtle objects, 249–252, 254–256, 263–264
turtlegraphics API, 871–782
turtlegraphics library, 869–870
turtlegraphics module, 238–239, 269, 252
turtlegraphics.py, 252
two-dimensional array An array in which each

data item is accessed by specifying a pair of
indices. 525–528

two-way chat script, 414–416, 418–420
two-way selection (if-else) statement. See if-else

statement
twoThirds variable, 211
type conversion function A function that takes

one type of data as an argument and returns the
same data represented in another type. 61

type fonts, 371–373
type function, 312

U
ubiquitous computing, 21–23
Unified Modeling Language (UML) A

graphical notation for describing a software
system in various phases of development.
325, 653

described, 472–474
diagrams, 338–339
software design with, 472–484

undirected graph A graph whose edges indicate
no direction. 822, 823

Unicode A character set that uses 16bits to
represent over 65,000 possible characters. These
include the ASCII character set as well as
symbols and ideograms in many international
languages. 56–57. See also ASCII character set

uniform resource locator (URL) The address of
a page on the World Wide Web. 865

unit testing The testing of a component
independently of other components in a
software system. See also integration testing.
496, 498–502

University of Pennsylvania, 15
Unix, 220, 867

Python installation and, 866
terminal window and, 68–69

unordered collection A collection whose
elements are in no particular order from the
client’s perspective. 510

upper argument, 211–213
upper bound, 211–212
upper method, 138
use case A narrative of the steps needed to

perform an action. 473–476
user friendly Describes an interactive program with

clear, easy-to-follow messages for the user. 494
user interface The part of a software system that

handles interaction with users. 9

C6840_GlossIndex 11/24/08 9:17 AM Page 913

GLOSSARY/INDEX[914]

V
value An item that is associated with a key and is

located by a key in a collection.
accessing, 185–186
dictionaries and, 184–186
list of, finding the mode of, 189–190
pairs, in dictionaries, 184–185

variable A memory location, referenced by an
identifier, whose value can be changed during
execution of a program.

assignment statement and, 51–52
capitalization of, 51
defining/initializing, 51
described, 27, 51
identifiers, 27
lifetime of, 229–230
namepaces and, 227–228
names, 27
references, 51
scope, 228–229
temporary, 227–229

variable reference The process whereby the
computer looks up and returns the value of a
variable. 51, 58, 700

vector A one-dimensional array that supports
resizing, insertions, and removals. 254, 646

vector graphics, 254–255
vertex A point or node in a graph. 254, 820–821,

825–826, 828–851
virtual machine A software tool that behaves like

a high-level computer. 9, 29, 30, 34. See also
PVM (Python Virtual Machine)

virtual reality A technology that allows a user to
interact with a computer-generated
environment, usually simulating movement in
three dimensions. 22

vocabulary, 179–180, 714

W
wait method, 405, 404
WANs (wide area networks), 21
waterfall model A series of steps in which a

software system trickles down from analysis to
design to implementation. See also software
development life cycle. 40

Web browser
described, 23
documentation and, 490–493

Web client Software on a user’s computer that
makes requests for resources from the Web. 23

Web server Software on a computer that
responds to requests for resources and makes
them available on the Web. 23

weight An attribute, usually a number, that labels
an edge in a graph and represents the cost of
traversing that edge. 51

WEIGHT variable, 51
weighted graph A graph whose edges are labeled

with numeric values. 820
Weizenbaum, Joseph, 191
while loop(s) A pretest loop that examines a

Boolean expression before causing a statement
to be executed.

lists and, 164
testing, 109
square roots and, 112
count control with, 104–105
break statement and, 105–107
overview, 102–109
structure/behavior of, 102–104

while True loop, 105–107, 109, 112
white box testing A type of testing that attempts

to exercise all the parts of a program. 494–496.
See also black-box testing

width attribute, 373
widthdraw method, 338
window A rectangular area of a computer screen

that can contain window objects. Windows
typically can be resized, minimized, maximized,
zoomed, or closed. 9, 20, 24–25. See also frame

C6840_GlossIndex 11/24/08 9:17 AM Page 914

GLOSSARY/INDEX [915]

window object (widget) A computational object
that displays an image, such as a button or a text
field, in a window and supports interaction with
the user. 349–351, 377

keyboard events and, 387
mouse events and, 385
multi-line, 379–381

Windows (Microsoft)
filename extensions, 124–125
IDEs and, 867
navigating file systems and, 219, 220
Python installation and, 866

Windows Explorer, 219
withdraw method, 313, 331–333
World War II, 15
World Wide Web, history of, 20, 22–23. See also

Web browser; Web client; Web server
worst-case performance, 445–446, 455–456
wrap attribute, 379
wrapper classes, 628–629
write method, 142, 146

X
Xerox PARC, 20–21
xrange function, 81–82

Y
yview method, 384

Z
Zelle, John, 869

	Front Cover
	Title Page
	Copyright
	Table of Contents
	Chapter 1 Introduction
	1.1 Two Fundamental Ideas of Computer Science: Algorithms and Information Processing
	1.2 The Structure of a Modern Computer System
	1.3 A Not-So-Brief History of Computing Systems
	1.4 Getting Started with Python Programming
	1.5 Detecting and Correcting Syntax Errors
	Suggestions for Further Reading
	Summary
	Review Questions
	Projects

	Chapter 2 Software Development, Data Types, and Expressions
	2.1 The Software Development Process
	2.2 Case Study: Income Tax Calculator
	2.3 Strings, Assignment, and Comments
	2.4 Numeric Data Types and Character Sets
	2.5 Expressions
	2.6 Using Functions and Modules
	Summary
	Review Questions
	Projects

	Chapter 3 Control Statements
	3.1 Definite Iteration: The for Loop
	3.2 Formatting Text for Output
	3.3 Case Study: An Investment Report
	3.4 Selection: if and if-else Statements
	3.5 Conditional Iteration: The while Loop
	3.6 Case Study: Approximating Square Roots
	Summary
	Review Questions
	Projects

	Chapter 4 Strings and Text Files
	4.1 Accessing Characters and Substrings in Strings
	4.2 Data Encryption
	4.3 Strings and Number Systems
	4.4 String Methods
	4.5 Text Files
	4.6 Case Study: Text Analysis
	Summary
	Review Questions
	Projects

	Chapter 5 Lists and Dictionaries
	5.1 Lists
	5.2 Defining Simple Functions
	5.3 Case Study: Generating Sentences
	5.4 Dictionaries
	5.5 Case Study: Nondirective Psychotherapy
	Summary
	Review Questions
	Projects

	Chapter 6 Design with Functions
	6.1 Functions as Abstraction Mechanisms
	6.2 Problem Solving with Top-Down Design
	6.3 Design with Recursive Functions
	6.4 Case Study: Gathering Information from a File System
	6.5 Managing a Program’s Namespace
	6.6 Higher-Order Functions (Advanced Topic)
	Summary
	Review Questions
	Projects

	Chapter 7 Simple Graphics and Image Processing
	7.1 Simple Graphics
	7.2 Case Study: Recursive Patterns in Fractals
	7.3 Image Processing
	Summary
	Review Questions
	Projects

	Chapter 8 Design with Classes
	8.1 Getting Inside Objects and Classes
	8.2 Case Study: Playing the Game of Craps
	8.3 Data-Modeling Examples
	8.4 Case Study: An ATM
	8.5 Structuring Classes with Inheritance and Polymorphism
	Summary
	Review Questions
	Projects

	Chapter 9 Graphical User Interfaces
	9.1 The Behavior of Terminal-Based Programs and GUI-Based Programs
	9.2 Coding Simple GUI-Based Programs
	9.3 Case Study: A GUI-Based ATM
	9.4 Other Useful GUI Resources
	Summary
	Review Questions
	Projects

	Chapter 10 Multithreading, Networks, and Client/Server Programming
	10.1 Threads and Processes
	10.2 Networks, Clients, and Servers
	10.3 Case Study: A Multi-Client Chat Room
	Summary
	Review Questions
	Projects

	Chapter 11 Searching, Sorting, and Complexity Analysis
	11.1 Measuring the Efficiency of Algorithms
	11.2 Complexity Analysis
	11.3 Search Algorithms
	11.4 Sort Algorithms
	11.5 An Exponential Algorithm: Recursive Fibonacci
	11.6 Converting Fibonacci to a Linear Algorithm
	11.7 Case Study: An Algorithm Profiler
	Summary
	Review Questions
	Projects

	Chapter 12 Tools for Design, Documentation, and Testing
	12.1 Software Design with UML
	12.2 Documentation
	12.3 Testing
	Suggestions for Further Reading
	Summary
	Review Questions
	Projects

	Chapter 13 Collections, Arrays, and Linked Structures
	13.1 Overview of Collections
	13.2 Data Structures for Implementing Collections: Arrays
	13.3 Operations on Arrays
	13.4 Two-Dimensional Arrays (Grids)
	13.5 Linked Structures
	13.6 Operations on Singly Linked Structures
	13.7 Variations on a Link
	Summary
	Review Questions
	Projects

	Chapter 14 Linear Collections: Stacks
	14.1 Overview of Stacks
	14.2 Using a Stack
	14.3 Three Applications of Stacks
	14.4 Implementations of Stacks
	14.5 Case Study: Evaluating Postfix Expressions
	Summary
	Review Questions
	Projects

	Chapter 15 Linear Collections: Queues
	15.1 Overview of Queues
	15.2 The Queue Interface and Its Use
	15.3 Two Applications of Queues
	15.4 Implementations of Queues
	15.5 Case Study: Simulating a Supermarket Checkout Line
	15.6 Priority Queues
	15.7 Case Study: An Emergency Room Scheduler
	Summary
	Review Questions
	Projects

	Chapter 16 Linear Collections: Lists
	16.1 Overview of Lists
	16.2 Using Lists
	16.3 Applications of Lists
	16.4 Indexed List Implementations
	16.5 Implementing Positional Lists
	16.6 Iterators
	16.7 Case Study: Developing a Sorted List
	Summary
	Review Questions
	Projects

	Chapter 17 Recursion
	17.1 n log n Sorting
	17.2 Recursive List Processing
	17.3 Recursion and Backtracking
	17.4 Recursive Descent and Programming Languages
	17.5 Case Study: A Recursive Descent Parser
	17.6 The Costs and Benefits of Recursion
	Summary
	Review Questions
	Projects

	Chapter 18 Hierarchical Collections: Trees
	18.1 An Overview of Trees
	18.2 Why Use a Tree?
	18.3 The Shape of Binary Trees
	18.4 Three Common Applications of Binary Trees
	18.5 Binary Tree Traversals
	18.6 A Binary Tree ADT
	18.7 Developing a Binary Search Tree
	18.8 Case Study: Parsing and Expression Trees
	18.9 An Array Implementation of Binary Trees
	18.10 Implementing Heaps
	18.11 Using a Heap to Implement a Priority Queue
	Summary
	Review Questions
	Projects

	Chapter 19 Unordered Collections: Sets and Dictionaries
	19.1 Using Sets
	19.2 List Implementations of Sets and Dictionaries
	19.3 Hashing Strategies
	19.4 Case Study: Profiling Hashing Strategies
	19.5 Hashing Implementation of Dictionaries
	19.6 Hashing Implementation of Sets
	19.7 Sorted Sets and Dictionaries
	Summary
	Review Questions
	Projects

	Chapter 20 Graphs
	20.1 Graph Terminology
	20.2 Why Use Graphs?
	20.3 Representations of Graphs
	20.4 Graph Traversals
	20.5 Trees Within Graphs
	20.6 Topological Sort
	20.7 The Shortest-Path Problem
	20.8 Developing a Graph ADT
	20.9 Case Study: Testing Graph Algorithms
	Summary
	Review Questions
	Projects

	Appendix A: Python Resources
	A.1 Installing Python on Your Computer
	A.2 Using the Terminal Command Prompt, IDLE, and Other IDEs

	Appendix B: Installing the turtlegraphics and images Libraries B
	Appendix C: APIs for Graphics and Image Processing
	C.1 The turtlegraphics API
	C.2 The images API

	Appendix D: Transition from Python to Java and C++
	Glossary/Index

