Unit-ll Python Study Material - Section-1

Section-1: Decision Structures, Boolean Logic, and Control Statements: if, if-else,
if-elif-else statements, Nested Decision Structures, Comparing Strings, Logical Operators,
Boolean Variables. P1-20

Section-2: Repetition Structures: Introduction, while loop, for loop, Calculating a Running
Total, Input Validation Loops, Nested Loops.

Section-3: Strings: Accessing characters and Substring in Strings, Data Encryption, Strings
and Number Systems.

Decision Structures

A decision structure is a set of program statements that makes a decision and changes the
flow of the program based on that decision. These are also called Control Flow Statements.
The decisions are made based on True or False of a Boolean Logic test.

The control flow statements are classified as follows:
A. Selection or Decision or Conditional Statements
a. if, if-else, elif
B. Loop or Repetition or Iterative Statements
a. for, while
C. Jump Statements
a. break, continue, pass

A. Selection or Decision or Conditional Statements
In decision statements, the conditional expressions are evaluated with an outcome of either

True or False.

a. The selection statements are 3 types:

Type Single Selection = Two-Way Selection Multi-Way Selection

(00N if statement if - else statement Nested if - else statements
elif Ladder statements

Single Selection in Python (““if”” statement)
e “if” is a simple selection statement in Python. It is used to modify the flow of execution
of a program.
e “if” consists of a condition (boolean expression), colon :, and a block of statements
with the same indentation,
o When the condition is True, the ‘if’ block of statements will be executed,
o Otherwise, the first statement outside the ‘if” block will be executed.

e All the statements inside the ‘if” block must have the same indentation of spaces

Leadertain.com 1

Unit-Il Python Study Material - Section-1

Syntax:

if condition:
True block of statements
statement 1
statement 2

statement n

Statements outside if block

if
Condition
or
Expression

Execute code
inside if block

Qutside if block

[Execute code] 1 A4

Application:
#if statement example

m, n=77, 87

if(m < n):
result = "m is smaller than n"
print (result)

Output:

m is smaller than n

Leadertain.com 2

Unit-Il Python Study Material - Section-1

Two-Way Selection in Python (“if-else” statement)

An if statement can also be followed by an optional else statement. if-else is a two-way
decision statement which means, we have only two alternative choices.

if statement will have a Boolean_Expression; else statement has NO
Boolean_Expression.

if-else consists of a condition (Boolean_Expression), a block of statements for ‘if’, and
another block of statements for ‘else’.

o When the Boolean_Expression is True, the ‘if’ block of statements will be

executed

o When the Boolean_Expression is False, the ‘else’ block of statements will be
executed

e Indentation:

o All the statements inside the ‘if’ block must have the same indentation with
spaces

o All the statements inside the ‘else’ block must have the same indentation with
spaces

o However, a different indentation can be used for ‘if’ block and ‘else’ block.

Syntax:

if condition:

else:

Statements outside if-else block

True block of statements
statement 1

statement 2

statement n

False block of statements

statement 1

statement 2

statement n

Leadertain.com 3

Unit-Il Python Study Material - Section-1

[Start

if

or

{ Execute code

Condition

Expression

~

[Execute code]

inside if block J

||

inside else block

vy

Execute code
Qutside if block

Application-1:

if-else construct using Membership operator

Strings are case sensitive in Python;

'in' and 'set' of names

Upper case strings are different from Lower case strings

cse = {"Saida", "Ajay", "Sai", "Veda"}

sname = input ("Enter a name to search
if sname in cse:

print("Yes,
else:

print ("No,

Output:
Enter a name to search : Veda
Yes, Veda is in CSE branch!

Enter a name to search : veda
No, veda is Not in CSE branch!

Leadertain.com

")

{} is in CSE branch!".format (sname))

{} is Not in CSE branch!".format (sname))

Unit-Il Python Study Material - Section-1

Application-2:

LI B

Aim: Program to Check whether the given number is Even or 0dd.
R
num = int(input("Enter an integer : ")) ;
true if num is perfectly divisible by 2
if(num % 2 == 0):
print("{} is even.".format (num))

else:

print("{} is odd.".format (num))

Notice that if block has 4 space indentation and else block has 2 space indentation

Output:

Enter an integer : 7
7 is odd.

Enter an integer : 4
4 is even.

Application-3:

lab-7: Write a program that asks the user for two numbers and prints

Close if the numbers are within .001 of each other and not close

otherwise.

a = float(input("Enter first number : "))
b = float(input("Enter second number : "))
c = abs(a - b)

if ¢ > 0.0009 and ¢ <= 0.001
print("Close")
else
print ("Not Close")

Output:

Enter first number : 4.001
Enter second number : 4.002
Close

Multi-Way Selection - Nested “if-else”

When a series of decisions is required, the multi-way selection statements are used.
There are 2 types of multi-way selection statements

Leadertain.com 5

Unit-Il Python Study Material - Section-1

1. Nested “ if-else ’ statements
2. “elif ” Ladder statements

1. Nested if-else statements
Nesting means using one “if-else’” construct within another “if-else” construct. Use nested
“if-else” when you need to decide more within the parent “if”” condition or parent “else”
condition. The nested *‘if-else” is used when multiple paths of decisions are required.

Syntax:
if (Condition/Expression) : # Outer if block
if (Condition/Expression) : # Inner if block
Statements
else: # Inner else block
Statements
else: # Outer else block
if (Condition/Expression) : # Inner if block
Statements
else: # Inner else block
Statements

Leadertain.com 6

Unit-Il Python Study Material - Section-1

\
V' TRUE FALSE TRUE FaLse Y

if - if if-else el‘se-if else-else
Statement Statement Statement Statement

Application-1:
#Checks whether input marks are pass or fail

JustPass=40, pass>40, fail<40
marks = int(input("Enter marks 0-100 : "))
if marks >= 40:
if marks==40:
print("Just Passed with ", marks)
else:
print ("Passed with ", marks);
else:

print("Failed with ", marks)

Leadertain.com 7

Unit-Il Python Study Material - Section-1

Output:
Enter marks 0-100 : 75
Passed with 75

Enter marks 0-100 : 40
Just Passed with 40

Enter marks 0-100 : 30
Failed with 30

Application-2: Write a program to find whether the given year is a Leap Year?

rra

Aim: Find whether the given year is a Leap Year.

Note: A Century year ends with 00 or divisible by 100

Conditions:

Non-Centuary years that are exactly divisible by 4 are leap years.

A century year divisible by 4, 100, and 400 is a leap year.

A century year divisible by 4, 100, but not divisible by 400 is not a

leap year.

For example,
1900 is not a leap year (Century year, Divisible by 4 & 100; but not
by 400)
1999 is not a leap year (Non-Centuary, Not divisible by 4)
2000 is the leap year (Century year, Divisible by 4, 100, and 400)
2004 is the leap year (Non-Centuary, Divisible by 4)
2024 is the leap year (Non-Centuary, Divisible by 4)
year=int (input('Enter a year:'))
if year%4==0:
if year%100==0: # Centuary year
if year%$400==0: # Century year divisible by 400
print(f'{year} is a leap year')
else: # Century year Not divisible by 400
print (f' {year} is not leap year')
else: # Non-Centuary year, Divisible by 4
print (f'{year} is a leap year')
else: # not divisible by 4

print (f'{year} is not a leap year')

Leadertain.com 8

Unit-Il Python Study Material - Section-1

Output:
Enter a year:2022
2022 is not a leap year

Enter a year:2024
2024 is a leap year

Enter a year:3000
3000 is not leap year

2. “elif’ Ladder statements

In Python, “elif” keyword is a short form of “else if”’. The “elif”’ is useful when you need to
decide a series of decisions after each of the previous “if” conditions.
e The series of conditions are evaluated from top to bottom.
e When one condition becomes true, the statements of that condition will be executed and
the control comes out of the whole “if”” block.
o When all the conditions are false, then the last default “else” statement is executed and
the control comes out of the whole “if”” block.

Syntax:

if boolean expressionl:
statement (s)

elif boolean expression2:
statement (s)

elif boolean_expression3:
statement (s)

else:
statement (s)

Leadertain.com 9

o

Unit-Il Python Study Material - Section-1

if
condition

False

elif
condition

False

elif

condition
True
Vv
execute execute execute execute
if statements elif statements elif statements else statements

J

VvV

49[

Execute code

o

Outside if block

Application-1:

elif conditional
X 20

y 70

if x > y:

statements

print("x is greater than y")

elif vy > x:

print ("y is greater than x")

else:

print("x and y

Output:
y is greater than x

Leadertain.com

are equal")

10

Unit-Il Python Study Material - Section-1

Application-2: Grades
Write a Program to Prompt for Marks between 0 and 100. If the Marks Is Out of Range, Print an

Error. If the Marks are between 0 and 100, Print a Grade Using the Following Table.

Score >=90 >=80 >=70 >=50 >=40 <40
Grade A+ A B C D F

elif conditional statements

marks=int (input ("Enter marks 0-100 : "))

if (marks,0 or marks>100):
print("Marks out of range.")

elif (marks>=90) :
print("Grade A+")

elif (marks>=80) :
print("Grade A")

elif (marks>=70) :
print("Grade B")

elif (marks>=50):
print("Grade C")

elif (marks>=40) :
print("Grade D")

else:

print("Grade F")

Output:
Enter marks 0-100 : 70
Grade B

Application-3:

LA |

Lab-16. Write a program that asks the user to enter a length in feet.
The program should then give the user the option to convert from feet
into inches, yards, miles, millimeters, centimeters, meters, or
kilometers. Say if the user enters a 1, then the program converts to
inches, if they enter a 2, then the program converts to yards, etc.
While this can be done with if statements, it is much shorter with

lists and it is also easier to add new conversions if you use lists.

T

Leadertain.com 11

Unit-Il Python Study Material - Section-1

feet=int (input ("Input distance in feet: "))
print("Choose your option: ")
print("1. inches")
print("2. yards")
print("3. miles")
print("4. millimeters")
print("5. centimeters")
print("6. meters")
print("7. kilometers")
option=int (input ("Enter the option : "))
if option==1:

dist=round (feet*12,2)

units="inches"

print ("The distance in {} is {} inches.".format (units,dist))
elif option==2:

dist=feet/3

units="yards"

print ("The distance in %s is %.2f yards."%$(units,dist))
elif option==3:

#idist=round (feet*0.000189394, 3)

dist=feet/5280

units="miles"

print ("The distance in %s is %.2f miles."$%$(units,dist))
elif option==4:

dist=feet*304.8

units="millimeters"

print ("The distance in %s is %.2f millimeters."%(units,dist))
elif option==5:

dist=feet*30.8

units="centimeters"

print("The distance in %s is %.2f centimeters."% (units,dist))
elif option==6:

#dist=round (feet*0.3048,3)

dist=feet*0.3048

units="meters"

print (£f"The distance in %s is %.2f meters."%$(units,dist))
elif option==7:

dist=feet/3280.8

Leadertain.com 12

Unit-Il Python Study Material - Section-1

units="kilometers"
print ("The distance in %s is %.2f kilometers."$%$(units,dist))
else:
print ("Invalid choice!!!")
Output:
Input distance in feet: 456
Choose your option:
1. inches
2. yards
3. miles
4. millimeters
5. centimeters
6. meters
7. kilometers
Enter the option : 7
The distance in kilometers is 0.14 kilometers.

Comparing Strings

In Python, string comparison is the process of comparing two strings to determine whether they
are equal or not.

Strings in Python are stored as objects with an ID (memory address).
Python reuses the same memory for two equal strings to save memory, and run faster & easier.

Reference-only
Objects in Python consist of 3 properties:
1. ldentity - address of the memory where the string is stored
2. Type - data type of the string ‘str’
3. Value - content stored in the object

Commonly used string comparison methods in Python are,
A. using Built-in Operators
B. using Built-in Functions

A. Using Built-in Operators for String Comparison:

e Equality/Inequality Operators (==, !=) compare similarity
Identity Operators (is, is not) compare address (use id() function to find the address of
an object)

e Comparision/Relational Operators (<, <=, >, >=) compare alphabetical order

Leadertain.com 13

Unit-Il Python Study Material - Section-1

Equality/Inequality Operators (==, !=):
The “==" and “!=" operators checks if two strings are equal or not. The strings are
case-sensitive. So, upper-case strings are different from lower-case strings.

Syntax: string1 == string2 (returns True if 2 strings are Equal)
Syntax: string1 != string2 (returns True if 2 strings are Not Equal)

Identity Operators (is, is not):

The “is” and ‘is not’ operators compare the address of two strings and find they are of the
same object or different object.

Python considers equal strings as the same object and stores them in the same memory
location. So, the ‘is’ and ‘is not’ operators compare their address locations.

Syntax: string1 is string2
Syntax: string1 is not string2

ASCII 83 111 102 116 119 97 114 101
String1 S o f t w a r e
String2 S (0] F T w A R E
ASCII 83 79 70 84 87 65 82 69

ASCII Values - A-Z : 97-122, a-z : 65-90, 0-9 : 48-57

Application:

Equality/In-Equality operators: ==, !=
Identity Operators: is, is not # compare memory address
sl = "Software"

s2 = "Software"

s3 = "SOFTWARE"

print(sl == s2) # True

print (sl == g3) # False

print(sl !'= s3) # True

print (sl is s2) # True

print(sl is s3) # False

print (sl is not s3) # True

Notice the address of sl and s2 are same

print ("Address of sl : ", id(sl))
print("Address of s2 : ", id(s2))
print ("Address of s3 : ", id(s3))

Leadertain.com 14

Output:
True
False
True

True
False
True

Address of s1
Address of s2
Address of s3

Comparision Operators (<, <=, >, >=):

: 2295811751536
: 2295811751536
2295811751344

Unit-Il Python Study Material - Section-1

The comparison operators check two strings lexicographically, that is based on their
alphabetical order. The alphabetical order is determined by comparing the ASCII values of the

characters in the strings.

Syntax: string1 > string2
Syntax: string1 < string2

ASCII 67 83 69

String1 S E

String2 A |

ASCII 65 73
Application:

deptl = "CSE"
dept2 = "AI"

if deptl < dept2:

print(£"{deptl} comes before {dept2}")

else:

print (£" {dept2} comes before {deptl}")

Output:

Al comes before CSE

Leadertain.com

15

Unit-Il Python Study Material - Section-1

B. Using Built-in Functions for String Comparison:

starstwith() and endswith() functions return True or False depending on whether the given
substring is found at the beginning, end, or anywhere in the string.

find() function will return the position number (index) of the searched substring in the main
string. It returns -1 if the searched string is not found.

count() function will return a number of times the given string has occurred in the main string.

Function Definition & Syntax Example
s1="Hi CIT Engineers”
startswith() | Returns True if a string1 starts with a prefix s1.startswith(“Hi”)
(substring / tuple - True if any one tuple member
matches) t1=("Hi", “Hello”)
string.startswith(prefix, start, end) 514ﬁanwnhﬁ1)
endswith() Returns True if a string2 ends with a suffix s1.endswith(“eers”)
(substring / tuple - True if any one tuple member
matches) t2=(“fine”, “Engineers”)
string.endswith (suffix,start, end) s1.endswith(t2)
find() Returns position# (index#) of substring in string1; s1.find(“CIT”)
Returns -1 if not found.
string.find ("substring", start, end) Output: 3
(optional) start=0, end=last-index
count() Returns no.of times given value occurs in a string | s1.count(“i”)
string.count ("substring", start, end) (Default & optional,
(optional) start=0, end=last-index start=0, end=last)
Application:

#String built-in functions startswith(), endswith(), find(), count()
sl = "Hi CIT Engineers"
if sl.startswith("Hi"):

print ("The string starts with 'Hi'")
tpl=(“Hi”,"”Hello”)
result = sl.startswith(tpl):

print (“Start word in tuple?”,result) # True
if sl.endswith("eers"

print ("The string ends with 'Engineers'")
if sl.£find("CIT") !'= -1:

print ("The string contains 'CIT'")
n = sl.count("i")

print ("Number of i letters in the string: ",n)

Leadertain.com 16

Unit-Il Python Study Material - Section-1

Output:
The string starts with 'Hi'
Start word in tuple? True

The string ends with 'Engineers'
The string contains 'CIT'
Number of i letters in the string: 2

Logical Operators (and, or, not)

The logical operators are the keywords that combine multiple conditions into a single

condition. The following table provides information about logical operators.

Operator Meaning Example
and Returns True if all conditions are True otherwise returns False | 10 <5and 12 > 10 is False
or Returns False if all conditions are False otherwise returns True | 10 <5 o0r 12> 10 is True
not Returns True if condition is False and returns False if the not(10 <5and 12 > 10) is
condition is True True

e Logical and - Returns True only if ALL conditions are True, if any one of those
conditions is False then whole condition becomes False.

e Logical or - Returns True if ANY condition is True, if all conditions are False then the
whole condition becomes False.

Application-1: Basic Logical Operators

#Logical Opertaors

a = True

b = False

print(a and b) #output: False
print(a or b) #output: True
print (not a) #output: False

a=10

b=5

la = (a<b) and (b<c) # Combined two conditions
lo = (a<b) or (b<c) # Combined two conditions
1ln = not(a<b)

",la) #False
", lo) #True
",1n) #True

print ("Logical AND

print ("Logical OR

print ("Logical NOT

Leadertain.com 17

Unit-Il Python Study Material - Section-1

Application-2: if-else using Logical Operators

Find smallest of three numbers using elif statement
a=10
b=5
c=12
if ((a<b) and (a<c)):
print("a is smallest")
elif ((b<a) and (b<c)):
print("b is smallest")
else:

print("c is smallest")

Output:
b is smallest

Boolean Variables

A boolean variable can have only two values: True or False

The variables with the boolean values True or False are called Boolean type variables.

These boolean values are case sensitive; hence, the T and F of True and False must be capital
letters.

Syntax:

Variable = Boolean value
Variable = Boolean expression

We can define a boolean variable by simply assigning a True or False value or even an
expression that gets evaluated to one of these values.

Application:
Boolean variables & assignment

False # assigned boolean value False

a
b = True # assigned boolean value True
print (type(a))
print (type (b))

c = (5>2) # assigned boolean expression
print("c value : ", c)

print("c data type : ", type(c))

Output:

Leadertain.com 18

Unit-Il Python Study Material - Section-1

<class 'bool">
<class 'bool">
c value : True
¢ data type : <class 'bool">

bool() built-in function:
bool() method evaluates any value or a variable or any expression and returns a Boolean
value either True or False.

bool() method
e returns True for one argument of any value or expression; and

e returns False for 0, None, False, empty values "", (), {}, []
Syntax:
bool () # False
bool (value) # True
bool (variable) # True
bool (expression) # True
Application:

bool() function will always return True for any value

except 0, None, False, empty values such as "", (), {}, [].
print ("Returns True for any value")

print (bool ("CSE AI ML"))

print (bool('''Guntur'''"))

print (bool (75))

print(bool ([10, 20, 40]))

print (bool (-11))

print(bool (3.14))

print (bool (25> (50/3)))

print ("Returns False for 0, None, False, empty values \"\", (), {}, [1")
print (bool ())

print (bool (0))

print (bool (None))

print (bool (False))

print (bool([]))

print(bool (""))

print(bool({}))

print(bool (()))

Leadertain.com 19

Unit-Il Python Study Material - Section-1

Output:

Returns True for any value
True

True

True

True

True

True

True

Returns False for 0, None, False, empty values ", (), {}, []
False

False

False

False

False

False

False

False

Leadertain.com 20

