Unit-ll Python Study Material - Section 2/3

Section-2: Repetition Structures: Introduction, while loop, for loop, Calculating a Running
Total, Input Validation Loops, Nested Loops.

Repetition or lterative or Looping Structures/Statements

Introduction

In Python, repetition structures are used to execute a block of code repeatedly. These
structures allow you to execute the same code repeatedly for a finite number of times or until a
condition is satisfied.

Each repetition of a block of code is known as a loop or an iteration. So, the repetition structures
are also called looping or iterative structures.

There are two types of repetition structures in Python..
1. Indefinite or Condition Controlled Loop - A loop that repeats an action until the
program finds that it needs to stop based on a condition. (while loop)
2. Finite or Sequence Controlled Loop - A loop that repeats a block of code a predefined
number of times or over a sequence of elements. (for loop)

Python provides two repetition or looping or iterative statements,
1. ‘while’ loop
2. ‘for’ loop
3. Nested loops

1. The ‘while’ loop:

Definition:

A “while” loop executes a block of statements repeatedly until the given condition is True.

The “while” loop is used when we DO NOT KNOW the number of iterations.

Entry controlled or a Pre-Test loop because the ‘while’ loop first checks the “condition” to
decide if it needs to execute the block of statements.

Event-controlled loop because the termination of the ‘while’ loop depends on an event instead
of executing a fixed number of times.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 21

Syntax of ‘while’ loop:

Unit-ll Python Study Material - Section 2/3

Initialization (optional)
while (condition):
Loop Body statements
Incr or Decr (optional)
else: (optional)

Block of statements

Initialization (optional)
while (condition):
if (condition):
continue (optional)
if (condition):
break (optional)
Loop Body statements
Incr or Decr (optional)
else: (optional)

Block of statements

Different ways to write ‘while’ loop condition:

while(true) while(i<5) while(i<=n)
statements statements statements
Flow Chart of ‘while’ loop
while loop

% while loop

Test Fasle

Condition

Execute while Loop |_Ex_ec_ut; e_Ese_ B_IDEK_]
Statements | Statements |

{optional)

Exit
While Loop

Leadertain.com

= -
Yes _ “continue ? ~

(optional) break
{optional) else

False

Test
Condition

True

HE: ~

-, (optional) _ -~

-
e et

lNo
p—, .1

{Execute \while Loop| | Execute else Block |

Body Statements I Statements I

l (optipnal)

Ty
£ -

& b
“ break ? ~ Exit
-
i : B)
Mo ™ (optional) _ ~ Yes while Loop
T -

-~
e

For clarifications, contact Ast. Prof. Mr. M Rahul 22

Unit-ll Python Study Material - Section 2/3

HILE loop:

e Here, the condition is a boolean expression that is evaluated before each iteration of
the loop. If the condition is True, the code inside the loop is executed. This will
continue until the condition becomes False.

Application: Write a program to print 1-5 using a ‘while’ loop.
program to print 1-5 using a ‘while’ loop.

i=1
while loop for i = 1 to 5
while i <= 5:

print (i)
i+=1
Output:

1
2
3
4
5

Explanation: The while loop continued as long as i is less than or equal to 5. The i += 1
statement increments the value of i by 1 on each iteration of the loop.

HILE loop with ELSE:

e When the ‘while’ condition becomes False, the loop checks for the optional ‘else’
block.
o If ‘else’ block is available, it executes the ‘else’ block and then exits the loop.
o If ‘else’ block is not available, then simply exits the loop.

Application: Write a program to print 1-5 using a ‘while’ loop with ‘else’
program to print 1-5 using a ‘while’ loop and 'else' block
i=1
while loop for i =1 to 5
while i <= 5:
print (i)
i+=1
else:
print ("Reached end of the loop")

Output:
1
2
3

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 23

Unit-ll Python Study Material - Section 2/3

4

5

Reached end of the loop

Explanation: The while loop continued until from 1 to 5. Once the loop is complete, the 'else’
block is executed. Then, exited the loop.

The i += 1 statement increments the value of i by 1 on each iteration of the loop.

Application:

Aim: Generate Fibonacci series up to a given number of terms
n = int (input("Enter how many Fibinacci terms : "))

i=0

Terml and Term2
terml, term2 = 0, 1

Is the nth term positive?
if n <= 0:

print ("Enter a positive integer>0.")

If n is only 1 term
elif n ==
print ("Fibonacci series of",n,"terms is:")

print(terml)

Find and generate Fibonacci series up to n term
else:
print ("Fibonacci series of",n,"terms: ")
while i < n:
print(terml, end=" ")
next = terml + term2
terml = term2
term2 = next
i+=1

Output:
Enter how many Fibinacci terms: 5

Fibonacci series of 5 terms:
01123

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 24

Unit-ll Python Study Material - Section 2/3

2. The ‘for’ loop:

Definition:

e Aforloop is used to iterate over a sequence of elements such as string, range(), list,
set, tuple or dictionary.

e The code inside the loop is executed repeatedly once for each element in the
sequence.

e The “for” loop is used when we KNOW number of iterations.

Syntax: for

for var in sequence: for var in sequence:
Loop body statements if (condition):

continue (optional)
else: (optional)

P F — .
Block of statements if (congseion)

break (optional)
Loop body statements
else: (optional)

Block of statements

var - an iterator variable

sequence - a sequence of elements; a sequence can be a string, range(), list, set, tuple or
dictionary

Loop body statements - a block of for loop statements

else - is an optional block in ‘for’. When the for loop completes, it enters ‘else’ block of
statements.

e var is an iterator variable that takes one element at a time from the sequence on each
iteration.
After taking the element in var, the loop statements execute.
for loop continues until the last value of the sequence is reached.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 25

Unit-ll Python Study Material - Section 2/3

Flow chart - for loop

for loop
{optional) break
(optional) else

For each element
in sequence

Yes

Is it

Isit Yes Last Element?
Last Element?
L ~
- ~
Yes _ “continue ? ~
. ~ ., (optional) _ ~
. i3 = Fd
[Execute ITEJ:_Exc_ut;e_ls;EﬁoEk_] l No
for Loop Body I Statements I e ¥
e _o_ t:i_on_al_ — Execute for Loop | Execute else Block |
(op) Body Statements I Statements [
optipnal
Exit (op)
Loop
- o
- —
.~ ‘break? ™~ Exit
No ~ . (optional) _ - Yes @
s -
S -~

-

Uses of for loop:

for loop through values or a string: iterates through each value or each character of a

string sequence

for loop using values sequences

print ("Iterate data sequence")

for i in (10,20,30,40,50): # for block is exected for each value
print(i, end=' ")

else:
print("\nEnd of the loop")

Output:

lterate data sequence

10 20 30 40 50

End of the loop

for loop using string sequence

print("Iterate string sequence")
for i in "CIT Python": # for block is exected for each character

print(i, end=' ')

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 26

Unit-ll Python Study Material - Section 2/3

Output:

Iterate string sequence
CIT Python

for loop through a list: iterates through each element of a list/set/tuple/dict sequences

for loop using list sequence
print ("Iterate a list")
for block is exected for each element of the list
branches=["CIT","CSE", "AI", "AIML","ECE"]
for i in branches:

print (i, end=' ")

Output:
lterate a list
CIT CSE Al AIML ECE

for loop using range() function: iterates through a range of values in sequence

for loop using sequence of range () function

Method-1: range(end value)

Default start value is 0

Parameter - is the end value, (Goes up to end - 1, not including end value)
Default Increment by 1

print("Iterate in range(stop)")

for i in range(5): # 0-4, the 5 not included
print (i)

Output:

Iterate in range(stop)
0

A WON =

Method-2: range(start, end value)

Parameter-1 is start value,

Parameter-2 is end value, (Goes up to end - 1, not including end value)
Default - Increment by 1

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 27

Unit-ll Python Study Material - Section 2/3

print("Iterate in range(start, stop)") #

for i in range(1,5): # 1-4, the 5 not included
print (i)

Output:

Iterate in range(start, stop)
1

2
3
4

Method-3: range(start, end, incr/decr value) -

Parameter-1 is start value,

Parameter-2 is end value, (Goes up to end - 1, not including end value)
Parameter-3 is Increment or decrement value.

print ("Iterate in range(start, stop, inc/dec)")

for i in range(1,5,2): # 1,3 the 5 not included
print (i)

Output:

Iterate in range(start, stop, inc/dec)
1
3

Application-1: Program to count number of even integers in the given list using for loop.
for loop: Program to count the number of even integers in a list.

List of integer numbers
numbers = [10, 5, 7, 4, 20, 37, 9]
variable to track the even count
ecount = 0
repete over the list
for n in numbers:

if n & 2 ==

ecount += 1

print("Count of even numbers is", ecount)

Output:
Count of even numbers is 3

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 28

Unit-ll Python Study Material - Section 2/3

Application-2: Write a program to Find GCD of 2 numbers
Storing user input into numl and num2

numl int (input ("Enter integer numberl : "))

num2 int (input ("Enter integer number2 : "))
identify smallest of 2 numbers and assign to limit
if (numl<num?2) :

limit = numl
else:

limit = num2
for i in range(l,limit+1):

Checks if the current value of i is

factor of both the integers numl & num2

if (numl%i==0 and num2%i==0) :

ged = 1

print (£"GCD of input numbers {numl} and {num2} is: {gcd}")

Output:

Enter integer number1 : 50

Enter integer number2 : 100

GCD of input numbers 50 and 100 is: 50

Application-3: Write a program to print ASCIl value & character set in Python
print ("ASCII ==> Character\n");
for i in range(0,127):

print (£"{i} ==> {chr(i)}")

Output:

120 ==> x
121 ==>y
122 ==>2
123 ==>{
124 ==> |
125 ==>}
126 ==> ~

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 29

Unit-ll Python Study Material - Section 2/3

Calculating Running Total

Definition:

A running total is the sum of numbers that accumulates over a sequence of numbers.

To calculate a running total in Python, you can use a loop to iterate through a range or list of
numbers and keep track of the running total using a variable.

For example, if you have a list of numbers [1, 2, 3, 4], the running total would be [1, 3, 6, 10],
where each element is the sum of all the elements that came before it.

Purpose:
A running total provides subtotals for any further calculations or for preparing a report.

Application:

LI |

Program to find running total within a given range (using for loop)

rra

runningTotal = 0;
num = int(input("Enter +ve integer 1-100 : "))
if (num<0 or num>100) :

print ("Out of range")

exit (0)

for loop terminates when num is less than count
for i in range (num+l) :
runningTotal += i

print (£"{i} {runningTotal} ")

Output:

Enter +ve integer 1-100 : 5
00
11
2 3
3 6
4 10
5 15

Explanation:

The program takes an input number between 1 and 100 from the user. If the given number is
outside the range of 1-100, then the programs exits. If the given number is with in the range of
1-100 then the running total is calculated in ‘for’ loop and prints the result for each iteration.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 30

Unit-ll Python Study Material - Section 2/3

Input Validation Loop

Definition:

An input validation loop prompts the user to enter input data, checks the input for validity, and
repeats the prompt until valid input is entered. The loop continues until the user enters valid
input and then the program can proceed with the remaining steps.

Purpose:
Input validation loops in Python ensure that the user enters valid input data. This is important
because invalid data can cause errors or unexpected behavior in the program.

Application:

rra

Aim: Check the input number is valid. If invalid, then repeat the
prompt to reenter another number
while True:
user_input = input("Enter a number between 1 and 10 : ")
num = int(user_ input)
if num < 1 or num > 10:
print("Invalid number.")
else:
print("Valid number.")

break

Output:
Enter a number between 1 and 10 : 27

Invalid number.
Enter a number between 1 and 10 : 7
Valid number.

Explanation:

In this example, the loop continues until the user enters a valid number between 1 and 10. The
input is first converted to an integer using the int() function. If the input is an invalid integer, the
loop continues. If the input is a valid and within the range, the loop is exited and the program
can proceed with the remaining steps.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 31

Unit-ll Python Study Material - Section 2/3

Nested Loops in Python

Definition:

Nested loop in Python is a loop that is placed inside another loop. The nested loops are used to
iterate over multiple groups of data or to perform a task repeatedly for each element of multiple
lists or collections of data.

We have for and while loops in Python. We can nest these loops in any combination in Python.
Two such combinations are as follows:

e for loop nested with another for loop,

e for loop nested with a while loop

Purpose:
Nested loops are typically used for working with patterns, multidimensional data structures, such

as printing two-dimensional arrays, iterating a list that contains a nested list.

General Syntax: Nested Loop in Python

OuterLoop Expression:

InnerLoop Expression:
Statements inside InnerLoop

Statements inside Outer_Loop

Syntax: Nested for Loops

for outer_var in outer_sequence:

for inner_var in inner_sequence:
Statements in inner for loop

Statements in outer for loop

Note: Each iteration of the outer for loop triggers a complete iteration of the inner for loop.

Syntax: Nested for - while Loops

for outer_var in outer_sequence:

while (condition):
Statements in inner while loop

Statements in outer for loop

Note: Each iteration of the outer for loop triggers a complete iteration of the inner while loop.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 32

Unit-ll Python Study Material - Section 2/3

Application-1:
Lab-5: Use a for loop to print a triangle using *s.

Allow the user to specify how high the triangle should be.
rows = int(input('Enter rows: '))
for i in range(l,rows+l):
for j in range(0,i):
print('*', end=' ")

print('"')

Output:
Enter rows: 5

*

* %
* % %
* k k %

* %k k k%

Application-2:
#Program to print multiplication tables using nested “for” loop

Outer loop - tables 5 and 6

for i in range(5, 7):
Inner loop from 1 to 10
for j in range(1l, 11):

print(i, "*", j, "=", i*j)
print()

Output:

5*1=5 6*1=6
5*2=10 6*2=12
5*3=15 6*3=18
5*4=20 6*4=24
5*5=25 6*5=30
5*6=230 6*6=236
5*7=35 6*7=42
5*8=40 6*8=48
5*9=45 6*9=54
5*10=50 6*10=60

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 33

Unit-ll Python Study Material - Section 2/3

Application-3:
#Program to print a number pattern using nested “while” loop

i=1
while i<=5:
j=1
while j<=i:
print(j,end=" ")

j=3+1
print("")
i=i+l
Output:
1
12
123
1234
12345
Application-4:
#Find Prime numbers in an Interval using nested “for - while” loop
lownum = int(input("Enter low number of interval : "))
highnum = int(input("Enter high number of interval : "))

print ("Prime numbers between", lownum, "and", highnum, "are:")
for num in range (lownum, highnum + 1):
Primes are always > 1
if num > 1:
i=2
while (i<num) :
if (num % i) ==
break
i+=1
else:
print (num, end=’ ‘')
Output:
Enter low number of interval : 1
Enter high number of interval : 20

Prime numbers between 1 and 20 are:
2357 1113 17 19

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 34

Unit-ll Python Study Material - Section 2/3

Jump Statements in Python

The Jump Statements are loop Control Statements in Python. The loop Control Statements are
used to change the normal flow of a loop based on a condition.

The 3 jump or loop control statements in Python are,
1. break statement

2. continue statement

3. pass statement

1. “break” statement
Definition:

e The break statement in Python is used to terminate the loop and brings the control out of
the loop. The break statement is used in both the while and the for loops.

e The break statement is especially useful to quit from a nested loop (loop within a loop). It
terminates the inner loop and control shifts to the statement in the outer loop.

Note: The “break” statement almost always needs an “if”” condition to work properly.

break
Using break in while loop: Using break in for loop:
while (condition): for var in sequence:
#statements #statements
if (condition): if (condition):
M I break = break
#statements #statements
) —ir

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 35

Application:

Unit-ll Python Study Material - Section 2/3

BREAK in WHILE loop :

If the ‘while’ loop encounters an optional
‘break’, the loop simply exits even though the
‘while’ condition is True.

BREAK in FOR loop :

If the ‘for’ loop encounters an optional ‘break’,
the loop simply exits even though the ‘for’
sequence is not completed.

Application: Write a program to print 1-5
using a ‘while’ loop with ‘break’ to stop at 4.

i=1
while loop with i =1 to 3

while i <= 5:

print (i)
i+=1
if (i==4):
break
Output:
1
2
3

Explanation: The while loop continued until it
encountered 4 and then exited while loop. The i
+= 1 statement increments the value of i by 1
on each iteration of the loop.

Application: Write a program to print 1-5
using a ‘for’ loop with ‘break’ to stop at 4.

for loop with i = 1 to 3

for i in range (1,6):

if (i==4):
break
print (i)
Output:
1
2
3

Explanation: The ‘for’ loop continued until it
encountered 4 and then exited ‘for’ loop.

2. ‘“‘continue” statement

Definition:

The “continue” statement forces the control to skip the current iteration and go to the next

iteration of the loop.

A. In “while” statement, the “continue” statement will directly jump the execution control

to ““condition”,

B. In “for” statement, the “continue” statement will jump the execution control to the

next element in the given sequence.

Leadertain.com

For clarifications, contact Ast. Prof. Mr. M Rahul 36

Unit-ll Python Study Material - Section 2/3

continue
Using continue in while loop:
—p While (condition):

#statements
if (condition):

continue
#statements

Using continue in for loop:

-,—}'For* var in seguence:
#statements
if (condition):

continue
#statements

Application:

CONTINUE in WHILE loop:

If the ‘while’ loop encounters an optional
‘continue’, the loop simply skips the current
iteration and jumps to the ‘condition’ for next
iteration.

CONTINUE in FOR loop :

If the loop encounters an optional ‘continue’,
the loop simply skips the current iteration and
jumps to next iteration in the sequence.

Application: Program to print even humbers
between 1 and 5 using while loop & continue
(skip) on odds

n=1

while n < 5:
n +=1
if (n & 2) '= 0:

continue

print(n)

Output:

2

4

Explanation: The while loop continued until 2.
When it encountered 3, the value incremented
to 4 and executed ‘continue’ to skip the
iteration.

Application: Program to print even numbers
between 1 and 5 using 'for' loop & continue
(skip) on odds

for n in range(1,6):

if (n $ 2) '= 0:
continue
print(n)
Output:
2
4

Explanation: The ‘for’ loop continued until 2.
When it encountered 3, it executed ‘continue’ to
skip 3 and continued with 4 in the sequence.

Leadertain.com

For clarifications, contact Ast. Prof. Mr. M Rahul

37

Unit-ll Python Study Material - Section 2/3

3. “pass” statement

Nothing happens when the “pass” statement is executed. Hence, it is a null operation and is
considered a placeholder for future code.

e Empty code is not allowed in loops, function definitions, class definitions, or if
statements and causes errors in Python.

e So, “pass” statement is used to write empty loops, control statements, functions,
or classes to avoid errors.

pass
Application:
PASS in IF and WHILE loop PASS in FOR loop
n=1 college = "Chalapathi"
while (n<5): for i in college:
if (n==3): pass
pass
n+=1
PASS in Function PASS in Class
def func(): class name:
pass pass
func()

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 38

Unit-ll Python Study Material - Section 2/3

Quick Reference

Comparison of Loops

‘for’ loop ‘while’ loop

Pre-Test or Entry controlled loop - Checks
for LAST ELEMENT at TOP

Pre-Test or Entry controlled loop -
CONDITION is specified at TOP

Sequence controlled loop (Known number of
elements)

Event (or Condition) controlled loop

Use it when you know how many times to
iterate

Use it when you don’t know how many times
to iterate

Repeats for all elements in a sequence,
except the last one.

Repeats until a condition is met

Syntax:

for var in sequence:
loop statements

else: (optional)
block of statements

Syntax:
Initialization (optional)
while (Condition):
Loop Block of statements
Incr/Decr (optional)
else: (optional)

Block of statements

1

2
3
4

Example: for Example: while
i=1
1-4, the 5 not included # while loop for i =1 to 5
for i in range(1,5): while i <= 5:
print (i) print (i)
i+=1
Output: Output:

ar ON -

Leadertain.com

For clarifications, contact Ast. Prof. Mr. M Rahul 39

Unit-ll Python Study Material - Section 2/3

Comparison of “break’ and “‘continue” statements

break continue

Used to terminate the loop

Used to SKIP current iteration and go to
NEXT iteration

Control passed to outside the loop

Control passed to the beginning of the loop
for next iteration

EXIT from control loop

Loop takes NEXT iteration

“break” is used in LOOPS (for, while)

“continue” is used in LOOPS (for, while)

Syntax:
for var in sequence:

#body of loop
if (condition)

break

Syntax:
for var in sequence:

#body of loop
if (condition)

continue

Example:

for i in range(5):

Example:

for i in range(5):

if (i==3): if (1==3):
break continue
print (i) print (i)
Output: Output:
0 0
1 1
2 2
4
5
Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 40

Unit-ll Python Study Material - Section 2/3

Comparison of “break”, exit(), sys.exit(), quit()

break

break is a keyword in Python;
therefore it can't be used as a
variable name.

exit () or sys.exit()

exit() is a standard library
function in Python.

exit can be used as a variable
name.

sys module can also be used:
import sys
sys.exit()

quit ()

quit() is a standard library
function in Python.

quit can be used as a
variable name.

break causes an immediate
termination from a loop (for,
while) and jumps to the
remaining program.

exit() terminates whole
program execution.

quit() terminates whole
program execution.

break transfers the control to
outside the loop (for, while).

exit() returns the control to
the operating system or

another program that uses
this one as a sub-process.

Example of break

/l some code here before
while loop

while(true)

if(condition)
break;
some code after while loop

Example of exit()

/I some code here before
while loop

while(true)

if(condition)
exit()
some code after while loop

Example of quit()

/l some code here before
while loop

while(true)

if(condition)
quit()
some code after while loop

In the above code, break
terminates the while loop and
some code after the while
loop will be executed after
breaking the loop.

In the above code, when
if(condition) returns True,
exit() will be executed and the
program will get terminated.

In the above code, when
if(condition) returns True,
quit() will be executed and
the program will get
terminated.

Conclusion:

break is a statement that
terminates loops and jumps
to the next program
statements.

Conclusion:

exit() is a library function that
causes the immediate
termination of the entire
program.

Conclusion:

quit() is a library function that
causes the immediate
termination of the entire
program.

Leadertain.com

For clarifications, contact Ast. Prof. Mr. M Rahul

41

Unit-ll Python Study Material - Section 2/3

Application: Scenario based solution using while-else loop
'''" Scenario: A team of players play a game. There is a qualified

score per the game. Each players can score and add up to total scored.
Aim: Find whether the team scored more or less of the qualified score.

Use while loop. '''
moreScores = 'yes'
totalScores = 0
player = 1
Qualified Score per game
totalToQualify = int(input('What is the qualified score per game? '))
while moreScores == 'yes':
Get score per player
scoresPerPlayer = int(input(f'Enter score for player {player}: '))
totalScores += scoresPerPlayer
player += 1
Ask if user wants to input another score
moreScores = input('Do you want to enter score for another player? yes or
no : ')
else:
print("*** End of the game ***")

#Calculate scores less/more than qualified score per game
if totalScores >= totalToQualify:
print('Your team scored', abs(totalToQualify - totalScores), f'points
more than qualified score {totalToQualify} per game.')
elif totalScores <= totalToQualify:
print (f'Your team scored', totalToQualify - totalScores, f'points less

than qualified score {totalToQualify} per game.')

Output:

What is the qualified score per game? 100

Enter score for player 1: 50

Do you want to enter score for another player? yes or no : yes

Enter score for player 2: 40

Do you want to enter score for another player? yes or no : yes

Enter score for player 3: 20

Do you want to enter score for another player? yes or no : no

*** End of the game ***

Your team scored 10 points more than qualified score 100 per game.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 42

