Unit-ll Python Study Material - Section 3/3

Section-3: Strings: Accessing characters and Substring in Strings, Data Encryption, Strings
and Number Systems.

Accessing Characters and Substrings in Strings

Introduction:

A string in Python is an array of Unicode characters enclosed in quotes. Also, Python does not
have a character data type; a single character is simply a string with a length of 1.

String indexing in Python is zero-based: the first character in the string has index 0 , the next
has index 1, and so on.

Accessing Individual Characters:
In Python, we can access individual characters in a string using indexing. The characters in a
string in Python can be accessed using both normal indexing and negative indexing.

> Normal Indexing - Each character in the string is assigned a numerical index starting from
0 to n-1, where n is the length of the string. So characters in a string of size n, can be
accessed from 0 to n-1.

> Negative Indexing - A string will also have negative indexing. A negative index number
starting from -1 is assigned from the last character in a string. So, -1 for last character, -2
for 2nd from the last, -3 for 3rd from the last and so on.

index 0 1 2 3 4 5 6 7
string S o f t w a r e
-ve Index -8 -7 -6 -5 -4 -3 -2 -1

Individual characters in a string can be accessed by the string name followed by an index
number in square brackets [].

Syntax:

string_name [index]

Example:
Accessing characters in strings

st = "Software Pros!"
print(st[0]) # Output: S
print(st[5]) # Output: a
print(st[0:4]) # Output: Soft
print(st[-1]) # Output: !

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 43

Explanation:

Unit-ll Python Study Material - Section 3/3

In the above example, the first line creates a string variable st. The next three lines demonstrate
how to access individual characters in the string using indexing.

which is 'I'.

Accessing Substrings:

1st print statement outputs the character at index 0, which is 'S'.

2nd print statement outputs the character at index 5, which is 'a’.

3rd print statement outputs the characters between 0 and 3, ‘Soft’. (not including index 4).
4th print statement uses a negative index value to access the last character in the string,

In Python, you can access substrings from a string by using slicing. Slicing allows us to
extract a portion of the original string by using the starting and ending index values.

String slicing is the process of obtaining a range of characters or a substring of a string by
using its indices. Following are the 2 methods to slice a string.

1. Array slicing (: operator)
2. slice() function

1. Array slicing (: operator)
Definition:

Array slicing is used to obtain a portion of a string array or a list. It uses the slicing operator :

and square brackets to slice a string.

Syntax:

object [start : stop : step]

start - start index of the slice (included),
stop - end index of the slice (excluded), and
step - step size is the number of elements to skip between each element in the slice

Reverse
print(s[::-1]) # EGELLOC

print(s[5:1:-2]) #GL, in Reverse order

String Reverse

Palindrome")

Ex: level, madam, mom

Application on Array Slicing Application Find Palindrome
s = "COLLEGE" stl = input("Enter a string : ")
print(s[1l:6]) # OLLEG 6 excluded st2 = stl[:: - 1]
print(s{1:6:2]) # OLG 6 excluded if (stl == st2):
print(s[:31]) # COL 3 excluded print ("This string is a
print(s[5:]) # GE 5 to last .

.] Palindrome")
Negative index
print(s[-4:-1]) # LEG -1 excluded else:
print (s[1:-4]) # OL -4 excluded print("This string is not a

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 44

Unit-ll Python Study Material - Section 3/3

Table shows how the string sequence is sliced using : operator

Index 0 1 2 3 4 5 6
s Cc o L L E G E
s[1:6] Cc o L L E G E
s[1:6:2] Cc o L L E G E
s[:3] Cc o L L E G E
s[0:end]

s[5:] Cc o L L E G E
s[beg :]

+ve index 0 1 2 3 4 5 6
-ve Index -7 -6 -5 -4 -3 -2 -1
s[-4:-1] Cc o L L E G E
s[1:-4] Cc o L L E G E
s[5:1:-2] C (o) L L E G E
Reverse a string

s[::-1] E G E L L o Cc

2, slice() Function

Definition:
1. The slice() returns a slice object (a portion size)
2. The slice object is used as an index to slice a sequence such as string, list, tuple, or
range.

Syntax:
slice (start, stop , step)

start - start index of the slice (included),
stop - end index of the slice (excluded), and
step - step size is the number of elements to skip between each element in the slice

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 45

Unit-ll Python Study Material - Section 3/3

Application: slice():
slice() function

s = "Our CIT College!"

sub = slice (0, 3) # Creates a slice object representing [0:3]
result = s[sub] # Slices the string s using the slice object sub
print(result) # Output: "Our"

Output: Our

String format methods

String formatting is the process of inserting a custom string or variable in predefined text.
Python allows string formatting using one of the following 5 methods.
1. % (String Format Operator)
format() method
f-strings
Built-in methods
String Template Class (external module: from string import Template)

Sl

1. % (String Format Operator):

The % Operator is called a String Format Operator or an Interpolation Operator. It is used for
simple positional formatting in strings. It allows you to insert values into a string, replacing
placeholders with actual values. The placeholders are represented by percent signs followed by
a format specifier that defines the type of the value being inserted.

Syntax:

<”format specifiers”> % <datalvars>

e format specifiers - carries any string with %formatSpecifiers as placeholders (%d, %f, %s)
e ‘%’ is the String Format Operator that substitutes data/variable value into format specifier
e datalvars - values to replace format specifiers

<”format specifiers”> may have format specifiers with Padding for data values as specified
below:

%<fieldwidth>.<precision>f %6.2f
%<fieldwidth>d %3d
Y%<fieldwidth>s %10s

<fieldwidth> is the total number of digits given for the value
<precision> is the number of decimal digits out of the given total digits
The unfilled digit positions will be added as padding spaces on the left.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 46

Unit-ll Python Study Material - Section 3/3

Example:
name = "Raj"
age = 25

marks = 75.55

without padding

print ("Name:%s, Age:%d, Marks:%f" % (name, age, marks))
Output: Name:Raj, Age:25, Marks:75.550000

with padding
print ("Name:%$10s, Age:%3d, Marks:%6.2f" % (name, age, marks))
Output: Name: Raj, Age: 25, Marks: 75.55

Table: List of format specifiers in Python

Format Specifier Conversion

%c character

%s string conversion via str() prior to formatting
Y%i signed decimal integer

%d signed decimal integer

%u unsigned decimal integer

%0 octal integer

Yox hexadecimal integer (lowercase letters)
%X hexadecimal integer (UPPERcase letters)
%e exponential notation (with lowercase 'e')
%E exponential notation (with UPPERcase 'E')
%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 47

Unit-ll Python Study Material - Section 3/3

2. format() method
The format() method formats the given values and insert them at placeholders in a string. The
placeholders are represented by curly braces { }.

Syntax1: using format() with sequence of vars/values

.format (var0,varl...)

print(“{},{} ”.format(var0,varl))

e format() method must be preceded by . operator
e var1, var2,...var-n are variables or values we pass into format() method
e placeholder { } is a value specifier.
o Each pair of {}s represents a value from the variable passed into format()

o The sequence of variables in the format() method must match the sequence of { }

in quotes
Example:
name = "Venkat"
age = 20

print("My name is {} and I am {} years old.".format (name,age))

Output:
My name is Venkat and | am 20 years old.

Syntax2: using format() with index number of vars/values

.format (var0O,varl...)

print(“{var index0}, {var index0}, {var indexl}” . format (var0,varl))

format() method must be preceded by . operator

var1, var2,...var-n are variables or values we pass into format() method

Each variable is indexed starting from 0 and increments by 1

{var index#} represents the value of the variable specified in that position in the

format(var0, var1, var2, ...) function.
e The index/position of variables in format() function starts with 0 and increments by 1

Example:

name = "Venkat"
age = 20
grade = 'A'

print (" {0} has grade {2}. {0} is {1} years old.".format (name,age,grade))

Output:
Varsha has grade A. Venkat is 20 years old.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 48

Unit-ll Python Study Material - Section 3/3

s 3. f string format

a.

b.
C.
d

f or F means formatted strings that are more readable and faster. (>= 3.6).

To create an f-string, prefix the string with letter “f.

These f strings contain replacement fields in curly braces { }

The f or F in front of strings tells Python to look at the values, expressions, or objects
inside { } and substitute them with the values of the given variables or expressions.
Formatted strings are evaluated at run time (while other string literals always have a
constant value).

Example1: Basic fstrings

print (f"Cash from {name2}

namel = “Divya”

name2 = “Nitin”

cashl=5000

cash2=7000

total cash = cashl + cash2

#print in format method-2: Better one

print(f"Cash from {namel} = {cashl}")

{cash2}")

print (£f"Total amount = {total_cash}")

Output:

Cash from Nitin = 100
Cash from Naveen = 200
Total amount = 300

Example2: f string for precision, datetime and number conversion

import decimal

import datetime

precision: nested fields, output: 12.35

width = 12

precision = 4

value = decimal.Decimal ("12.3456789")

print (f"result: {value: {width}. {precision}}")

print (f"result: {value: {2}.{5}}")

date format specifier, output: March 27, 2017
today = datetime.datetime (year=2023, month=3, day=17)
print(f"{today:%B %d, %Y}")

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 49

Unit-ll Python Study Material - Section 3/3

number =

hex integer format specifier, output: 0x400
1024
print (£" {number:#0x}")

These are commonly used string format approaches in Python. We can customize the string
format using different arguments and formatting options.

4. Built-in methods to format strings

In Python, the class ‘str’ provides several built-in methods to format or convert strings. The
following table shows these methods and how they format the strings when they are used with a

string object.

Table: Built-in methods to format strings

s.capitalize()

Description

converts the first character to uppercase.

s="software Engineers”

Software Engineers

s.upper() Converts all the characters in a string to SOFTWARE ENGINEERS
uppercase.
s.lower() Converts all the characters in a string to software engineers
lowercase.
s.isupper() Returns True if all the characters are False
uppercase. Otherwise, False
s.islower() Returns True if all the characters are False
lowercase. Or else False.
s.find(substring, Returns the index of a specified character in s.find("Eng”)
[start, end]) the string or the start position of the given 9
substring.
s.count(substring,[st | Counts the occurrence of a character or s.count(“r’)
art,end]) substring in a string. 2

s.expandtabs([tabsi
ze))

Replaces tabs defined by \t with spaces.
Default tabsize = 8

s.endswith(substrin
g,[start, end])

Returns True if a string ends with the specified
substring. False otherwise.

s.endswith(“neers”)
True

Leadertain.com

For clarifications, contact Ast. Prof. Mr. M Rahul

50

Unit-ll Python Study Material - Section 3/3

s.startswith(substrin

Returns True if a string starts with the

s.startswith(“Soft”)

g, [start, end]) specified substring. False otherwise. True
s.isalnum() Return True if all characters in a string are False
alphanumeric. False otherwise.
s.isalpha() Return True if all characters in a string are True

alphabetic. False otherwise.
s.isdigit() Return True if all characters in a string are False

digits. False otherwise.

s.split([separator],[
maxsplit])

Splits a string separated by a
separator(defaults is whitespace) and an
optional maxsplit to determine the split limit.
Returns a list.

[“Software”,”"Engineers”]

sep.join(sequence)

Takes all items in an iterable sequence (list,
tuple, string), separates them by a given
separator, and Joins them into a single string.

» o

sep="_
seq="CIT”
sep.join(seq)=>C_|_T

s.replace(old,
new,[maxreplace])

Replace old substring contained in the string s
with a new substring.

s.(“Engineers”,”"Programmer”)
Software Programmers

s.swapcase()

Returns a new string with swapped case. i.e.,
uppercase becomes lowercase and vice
versa.

sOFTWARE pROGRAMMERS

s.strip([characters])

Removes whitespaces or optional characters
at the beginning and at the end of the string.

s.Istrip([characters])

Removes leading whitespace or optional
characters from a string.

s.rstrip([characters])

Removes trailing spaces at the end of the
string.

Application: Using Built-in format methods

built-in methods to format strings in class

s = "Software Pros"

print("capitalize:",s.capitalize())

print("upper:",s.upper())

print("lower:",s.lower())

print("isupper:",s.isupper())

print("islower:",s.islower())

Leadertain.com

For clarifications, contact Ast. Prof. Mr. M Rahul

'str'

51

Unit-ll Python Study Material - Section 3/3

print("index# find:",s.find("Pros"))
print("count:",s.count("r"))
print("isnum:",s.isalnum())
print("isalpha:",s.isalpha())
print("isdigit:",s.isdigit())
print("split:",s.split())

print("join:", "-"_.join(s))
print("replace:",s.replace ("Pros", "Engineers"))
print("swapcase:",s.swapcase ())

Output:

capitalize: Software pros
upper: SOFTWARE PROS
lower: software pros
isupper: False

islower: False

index# find: 9

count: 2

isnum: False

isalpha: False

isdigit: False

split: ['Software', 'Pros']

join: S-o-f-t-w-a-r-e- -P-r-o-s
replace: Software Engineers
swapcase: sOFTWARE pROS

Operators for String Operations

Python provides the following operators for string operations:
String concatenation operator “ + ”
String repetition operator “ * ”
String Slicing operator “ : ” to obtain substrings (See String slicing, p44)
Indexing to traverse through strings (See Accessing Individual Character, p43)
Membership operators (in, not in) to search for strings (See Operators in Unit-I)
e Relational operators (>, >=, <, <=) to compare strings (See Comparing Strings, p13)
Here, we will discuss + and * operators.
The + operator is used to concatenate 2 or more strings into one string.
The * operator is used to repeat a string up to a given number of times.

Operator Purpose Operation Description
+ Concatenation s1+s2 Concatenates two strings, s1 and s2.
* Repetition s*n Makes n copies of string s.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 52

Unit-ll Python Study Material - Section 3/3

(+) Concatenation Operator:

Definition:

The + operator is used to join or concatenate two strings.

This concatenation operator in Python concatenates only objects of the same type.

Usage:

concatenate_string = string1 + string2 # concatenate the two strings

(*) Repetition Operator:

Definition:

The * operator is used to repeat a given string n number of times (similar to multiplication).
Usage:

repeat_string = string1 * n # repeats string1 n times

Application:
Concatenate & Repetition of strings

sl = "Computer "
s2 "Science"
s3 = sl1 + s2
print(s3)

s4 = sl1*3
print(s4)

Output:
Computer Science
Computer Computer Computer

String padding functions in Python

Definition:

In Python, String padding functions add extra characters such as spaces or zeros, at the start or
end of a string to get a required length. Python does provide several built-in string padding
functions for this purpose.

The commonly used string padding functions are,
1. ljust(),
2. rjust(), and
3. center().

Purpose:
These methods are very useful for formatting text in the form of tables or displaying information

in a fixed-width format.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 53

Unit-ll Python Study Material - Section 3/3

1. ljust()

Syntax:

svar.ljust(width[, fillchar])

ljust() function returns left-justified string of given width. The string is padded with fillchar
(default is space) to make up the length.

Example:

s = 'Guntur'

padded s = s.ljust (10, '*'")
print (padded_s) # Guntur**x*
2. rjust()

Syntax:

svar.rjust(widthl, fillchar])

rjust() function returns right-justified string of given width. The string is padded with fillchar
(default is space) to make up the length.

Example:

s = 'Guntur'

padded s = s.rjust(10, '*')
print (padded_s) # ****Guntur

3. center()

Syntax:

svar.center(width[, fillchar])

center() function returns centered string in the given width. The string is padded with fillchar
(default is space) to make up the length.

Example:

s = 'Guntur'

padded s = s.center (10, '*')
print (padded_s) # **Guntur**

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 54

Unit-ll Python Study Material - Section 3/3

Data Encryption

Definition:

The process of converting information that cannot be understood by the unauthorized user is
called data encryption. The reverse process is called decryption. Data encryption is used to
protect the information transmitted over the network. The encrypted data prevents data
corruption, sniffing, stealing, or security attacks.

The network protocols such as FTPS and HTTPS do provide security to the information
transmitted over the network.

Security attacks:
Any action or a breach that compromises the security of information owned by an individual or

an organization is called a security attack. Security attacks are classified into two: Passive and
Active
> Passive Attacks - Unauthorized persons secretly reading or listening to private messages
or message patterns while transmitting between a sender and a receiver.
> Active Attacks - Modification of the original data stream or the creation of a false data
stream. Also includes,
o Masquerade - one entity pretends to be a different entity
o Replay- Passively capture and Unauthorized retransmission
o DOS (Denial Of Service) - Disruption of an entire network
Process of Data Encryption:
e The information that is to be transmitted is called ‘Plain Text'.
The sender encrypts the message by translating it into a secret code called ‘Cipher Text'.
The receiver decrypts the cipher text into the original message or plain text.

Both parties use secret keys (public key & private key) to encrypt and decrypt messages.
Caesar cipher is a simple encryption method that has been in use for thousands of years.

Caesar cipher Encryption:

e Letterin a given plain text is changed to a letter that appears a certain number of positions
farther down the alphabet set.

e For the characters near the end, the method goes back to the beginning of the alphabet set
to locate the replacement characters.

e For example, if the distance value of a Caesar cipher is right-shift by 2 characters, the string
“day” would be encrypted as “fca”

‘M b (c lBle [f |g|h|1|] |k]|]l I m|n|jo|p|q|r |s|t|u]|Vv|Ww|x BMz

W d |c B g |h |1 |J |k |l |Im|n|o|p|q|r s |t |u]|Vv|wW|x|y |z EMDb

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 55

Unit-ll Python Study Material - Section 3/3

Application: Caesar cipher encryption

Caesar Cypher Encryption - Methodl
msg = input('Enter your message: ')
dist= int (input('Enter cipher distance: '))
cmsg=""
for ch in msg:
ordnum=ord (ch)
ciphernum=ordnum+dist
if ciphernum>ord('z'):
ciphernum=ord('a')+dist-(ord('z')-ordnum+l)
cmsg=cmsg+chr (ciphernum)

print (cmsg)

Caesar Cypher Encryption - Method2

msg = input('Enter your message: ')
dist= int(input('Enter cipher distance: '))
cmsg= nmn

for ch in msg:

Add space for space

if ch==" ":

cmsg+=" "
uppercase encryption
elif (ch.isupper()):
cmsg+=chr ((ord (ch) +dist-65) $26+65)
lowercase encryption
else:
cmsg+=chr ((ord (ch) +dist-97) $26+ 97)

print (cmsg)

Output:

Enter your message: day
Enter cipher distance: 2
fca

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 56

Unit-ll Python Study Material - Section 3/3

Application: Caesar cipher decryption

Caesar Cypher Decryption
code=input ('Enter your text: ')
dist=int (input ('Enter distance: '))
msg=""
for ch in code:
ordnum=ord (ch)
ciphernum=ordnum-dist
if ciphernum<ord('a'):
ciphernum=ord('z')-(dist-(ord('a')-ordnum+l))
msg=msg+chr (ciphernum)

print (msg)

Output:

Enter your text: fca
Enter distance: 2
day

Number Systems

Number systems are the technique to represent numbers in the computer system architecture,
every value that we save or read has a defined number system.
Computer architecture supports the following number systems.

Binary number system

Octal number system

Decimal number system
Hexadecimal (hex) number system

N2

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 57

Unit-ll Python Study Material - Section 3/3

Number System

el N ™

Decimal Binary Octal Hexadecimal

Numbers Numbers Numbers Numbers

Base 10 Base 2 Base & Base 16
(0-9) (o0 (0-7) (0-9,A-F)

1) Binary Number System (Base: 2, Digits: 0, 1)
A Binary number system has only two digits 0 and 1. All binary numbers are represented in Os
and 1s.

2) Octal number system (Base: 8, Digits: 0-7)
Octal number system has only 8 digits from 0 to 7. All octal numbers are represented in
0,1,2,3,456 and 7.

3) Decimal number system (Base: 10, Digits: 0-9)
Decimal number system has only 10 digits from 0 to 9. All decimal numbers are represented in
0,1,2,3,4,5,6, 7,8, and 9.

4) Hexadecimal number system (Base: 16, Digits: 0-9, A-F)

A Hexadecimal number system has 16 alphanumeric values from 0 to 9 and Ato F. All
hexadecimal numbers are represented in 0,1,2,3,4,5,6, 7,8,9,A,B,C,D,E, and F. Here A is 10, B
is11,Cis12,Dis 13,Eis 14 and F is 15.

Table: Number Systems & Representation in Python

Number system Base Digits used Example Python assignment

Binary 2 0,1 (11110000), | var = 0b11110000

Octal 8 0,1,2,3,4,5,6,7 (360); var = 00360

Decimal 10 0,1,2,3,4,5,6,7,8,9 (240),, var = 240

Hexadecimal 16 0,1,2,3,4,5,6,7,8,9, (FO0)46 var = 0xFO0
A,B,C,D,E,F

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 58

Unit-ll Python Study Material - Section 3/3

Decimal to Binary Conversion:
e Manual conversion - Decimal number is divided by 2 until we get 1 or 0 as the final

remainder.
28 ,,=11100,
Base target | Decimal | Remainder
2 28 0
2 14 0
2 7 1
2 3 1
2 1

Decimal to Octal Conversion:
e Manual conversion - Decimal number is divided by 8 until we get 0 to 7 as the final

remainder.

28 =34,
Base target | Decimal | Remainder
8 28 4
8 3

Decimal to Hexadecimal Conversion:
e Manual conversion - Decimal number is divided by 16 until we get 0 to 15 as the final

remainder.

28 ,,=1C
Base target | Decimal | Remainder
16 28 12 = C
16 1

Automatic conversion: Decimal to Binary, Octal, Hexadecimal
From decimal to binary, octal or hexadecimal, use bin(), oct(), hex() functions respectively.
From binary, octal or hexadecimal to decimal, use int(other num, base) function..

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 59

Unit-ll Python Study Material - Section 3/3

Application:
Aim: Program to convert Decimal to Binary, Octal and Hexadecimal

Decimal to Binary, Octal, Hexadecimal

n = 28

bn = bin(n)

ot = oct(n)

hx = hex(n)

print ("Decimal to Binary ", n, "=", bn)
print ("Decimal to Octal ", n, "=", ot)
print("Decimal to Hexadecimal ", n, "=", hx)

#Binary to Decimal

print ("Binary to Decimal = ",int(bn,62))
#0Octal to Decimal

print("Octal to Decimal = ",int(ot,8))

#Hexadecimal to Decimal

print ("Hexa to Decimal = ",int(hx,16))

Output:

Decimal to Binary 28 = 0b11100
Decimal to Octal 28 = 0034
Decimal to Hexadecimal 28 = 0x1c
Binary to Decimal = 28

Octal to Decimal = 28

Hexa to Decimal = 28

Binary to Decimal Conversion

Binary Number = 11100 ,

1 1 1 0 0
1x2* 1x23 1x2? 0x2' 0x2°
16 8 4 0 0

=16+8+4+0+0
Decimal number = 28 ,,

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 60

Unit-ll Python Study Material - Section 3/3

Octal to Decimal Conversion

Octal Numberis : 34 4

3 4
3x8' 4x8°
24 4

=24+4

Decimal number = 28 ,,

Hexadecimal to Decimal Conversion

Hexadecimal Number is : 1¢ 44

1 c=12
1x16' 12x16°
16 12

=16+124 +4

Decimal number = 28 ,,

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 61

