
Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Python Unit-II, Assignment - II

1. Illustrate different types of decision statements used in Python programming.
Decision statements make a decision and change the flow of the program based on that
decision. These are also called Selection statements or Conditional statements.

The decisions are made based on a given condition that results in a boolean result of either
True or False.

There are 3 types of decision statements

Type 1. Single-Selection 2. Two-Way Selection 3. Multi-Way Selection

Command if statement if - else statement a. Nested if - else statements
b. elif Ladder statements

1, Single Selection in Python (“if” statement only)
Definition:

● “if” is a simple selection statement in Python. It is used to modify the flow of execution
of a program.

● “if” consists of a condition (boolean expression), colon : and a block of statements
with the same indentation,

○ When the condition is True, the ‘if’ block of statements will be executed,
○ but when the condition is False, the flow comes out of “if” block & continues

with nest program statements

● All the statements inside the ‘if’ block must have the same indentation with spaces

Syntax:

if condition:
True block of statements

Statements outside if-else block

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 1

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Application for “if”:
#if statement example
m, n = 77, 87
if(m < n):

result = "m is smaller than n"
print(result)

Output:
m is smaller than n

2. Two-Way Selection in Python (“if-else” statement)
Definition:

● if-else is a two-way decision statement to decide between two alternative choices.
● if statement will have a condition; else statement has NO condition.
● if-else consists of

○ a condition (Boolean_Expression),
○ a block of statements for ‘if’, and
○ A block of statements for ‘else’.

● When the condition is True, the ‘if’ block of statements will be executed

● When the Boolean_Expression is False, the ‘else’ block of statements will be executed

● Indentation:
○ All the statements inside the ‘if’ block must have the same indentation with spaces

○ All the statements inside the ‘else’ block must have the same indentation with
spaces

○ However, a different indentation can be used for ‘if’ block and ‘else’ block.

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 2

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Syntax:

if condition:
True block of statements

else:
False block of statements

Statements outside if-else block

Application for “if-else”:
Aim: Program to Check whether the given number is Even or Odd.
num = int(input("Enter an integer : "));
true if num is perfectly divisible by 2
if(num % 2 == 0):

print("{} is even.".format(num))
else:
print("{} is odd.".format(num))

Notice that if block has 4 space indentation and else block has 2 space indentation

Output:
Enter an integer : 7
7 is odd.
Enter an integer : 4
4 is even.

3. Multi-Way Selection - Nested “if-else”
When a series of decisions is required, the multi-way selection statements are used.
There are 2 types of multi-way selection statements

A. Nested “ if-else ” statements
B. “ elif ” Ladder statements

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 3

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

A. Nested if-else statements
Definition:
Nesting means using one “if-else” construct within another “if-else” construct. Use nested
“if-else” when you need to decide more within the parent “if” condition or parent “else”
condition. The nested “if-else” is used when multiple paths of decisions are required.

Syntax:

if(Condition/Expression): # Outer if block
if(Condition/Expression): # Inner if block

Statements
else: # Inner else block

Statements
else: # Outer else block

if(Condition/Expression): # Inner if block
Statements

else: # Inner else block
Statements

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 4

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Application for Nested “if-else”:
#Checks whether input marks are pass or fail
JustPass=40, pass>40, fail<40
marks = int(input("Enter marks 0-100 : "))
if marks >= 40:

if marks==40:
print("Just Passed with ", marks)

else:
print("Passed with ", marks);

else:
print("Failed with ", marks)

Output:
Enter marks 0-100 : 75
Passed with 75

Enter marks 0-100 : 40
Just Passed with 40

Enter marks 0-100 : 30
Failed with 30

B. “elif” Ladder statements
Definition:
In Python, “elif” keyword is a short form of “else if”. The “elif” is useful when you need to
decide a series of decisions after each of the previous “if” conditions.

● The series of conditions are evaluated from top to bottom.

● When one condition becomes true, the statements of that condition will be executed and
the control comes out of the whole “if” block.

● When all the conditions are false, then the last default “else” statement is executed and
the control comes out of the whole “if” block.

Syntax:

if boolean_expression1:
statement(s)

elif boolean_expression2:
statement(s)

elif boolean_expression3:
statement(s)

else:
statement(s)

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 5

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Application-1:
elif conditional statements
x = 20
y = 70
if x > y:

print("x is greater than y")
elif y > x:

print ("y is greater than x")
else:

print("x and y are equal")

Output:
y is greater than x

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 6

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

2. a. Describe various repetition statements in Python with appropriate syntax.
Explain how they are executed with the help of flow diagrams.

In Python, repetition statements are used to execute a block of code repeatedly. Each
repetition of a block of code is known as a loop or an iteration. So, the repetition statements
are also called looping or iterative structures.

There are two types of repetition statements in Python..
1. Indefinite or Condition Controlled Loop - A loop that repeats a block of code until a

condition is satisfied. (while loop)
2. Finite or Sequence Controlled Loop - A loop that repeats a block of code a specific

number of times over a sequence of elements. (for loop)

Python provides two repetition or looping or iterative statements,
1. ‘while’ loop
2. ‘for’ loop
3. Nested loops

1. The ‘while’ loop:
Definition:

A “while” loop executes a block of statements repeatedly until the given condition is True.

The “while” loop is used when we DO NOT KNOW the number of iterations.
It is also called an Entry controlled or a Pre-Test loop.

Syntax of ‘while” loop:

Initialization (optional)
while (condition):
Loop Body statements
Incr or Decr (optional)

else: (optional)
Block of statements

Different ways to write ‘while’ loop condition:

while(true)
statements

while(i<5)
statements

while(i<=n)
statements

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 7

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Flow Chart of ‘while’ loop:

WHILE loop:
● “while” loop has a boolean condition that is checked before each iteration of the loop.

If the condition is True, the code inside the while loop is executed. This will continue
until the condition becomes False.

WHILE loop with ELSE:
● When the ‘while’ condition becomes False, the loop checks for the optional ‘else’

block.
○ If ‘else’ block is available, it executes the ‘else’ block and then exits the loop.
○ If ‘else’ block is not available, then simply exit the loop.

2. The ‘for’ loop:
Definition:

● A for loop is used to iterate over a sequence of elements such as string, range(), list,
set, tuple or dictionary.

● The code inside the loop is executed repeatedly once for each element in the
sequence.

● The “for” loop is used when we KNOW a number of iterations.

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 8

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Syntax: for

for var in sequence:
Loop body statements

else: (optional)
Block of statements

var - an iterator variable
sequence - a sequence of elements; a sequence can be a string, range(), list, set, tuple or
dictionary
Loop body statements - a block of for loop statements
else - is an optional block in ‘for’. When the for loop completes, it enters ‘else’ block of
statements.

Flow chart - for loop

Application:

for loop using range() function: iterates through a range of values in sequence

for loop using sequence of range()function
range(start value, end value, Incr/decr)

print("Iterate in range(start, stop)") #
for i in range(1,5): # 1-4, the 5 not included

print(i)

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 9

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Output:
Iterate in range(start, stop)
1
2
3
4

3. Nested Loops
Definition:
Nested loop in Python is a loop that is placed inside another loop. The nested loops are used to
iterate over multiple groups of data.

We can nest for and while loops in any way in Python. One such way is as follows:
● for loop nested with a while loop

Purpose:
Nested loops are typically used for working with patterns, and multidimensional data structures,
such as printing two-dimensional arrays, iterating a list that contains a nested list.

General Syntax: Nested Loop in Python

OuterLoop Expression:

InnerLoop Expression:
Statements inside InnerLoop

Statements inside Outer_Loop

Syntax: Nested “for - while” Loops

for outer_var in outer_sequence:

while (condition):
Statements in inner while loop

Statements in outer for loop

Note: Each iteration of the outer for loop triggers a complete iteration of the inner while loop

Application: (Optional)
#Find Prime numbers in an Interval using nested “for - while” loop
lownum = int(input("Enter low number of interval : "))
highnum = int(input("Enter high number of interval : "))
print("Prime numbers between", lownum, "and", highnum, "are:")

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 10

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

for num in range(lownum, highnum + 1):
Primes are always > 1
if num > 1:

i = 2
while (i<num):

if (num % i) == 0:
break

i += 1
else:

print(num, end=’ ‘)
Output:
Enter low number of interval : 1
Enter high number of interval : 20
Prime numbers between 1 and 20 are:
2 3 5 7 11 13 17 19

b. Write a Python program to generate a Fibonacci series between a range, such as 0-n.
[Fibonacci series: 0, 1, 1, 2, 3, 5, 8, 13, …]
Aim: Generate Fibonacci series up to a given number of terms
n = int(input("Enter how many Fibinacci terms : "))
i = 0

Term1 and Term2
term1, term2 = 0, 1

Is the nth term positive?
if n <= 0:

print("Enter a positive integer>0.")

If n is only 1 term
elif n == 1:

print("Fibonacci series of",n,"terms is:")
print(term1)

Find and generate Fibonacci series up to n term
else:

print("Fibonacci series of",n,"terms: ")
while i < n:

print(term1, end=" ")
next = term1 + term2
term1 = term2
term2 = next
i+=1

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 11

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Output:
Enter how many Fibinacci terms: 5
Fibonacci series of 5 terms:
0 1 1 2 3

3. a. Describe input validation loops and nested loops with appropriate examples.

Input validation loops:
Definition:
An input validation loop prompts the user to enter input data, checks the input for validity, and
repeats the prompt until valid input is entered. The loop continues until the user enters valid input
and then the program can proceed with the remaining steps.

Purpose:
Input validation loops in Python ensure that the user enters valid input data. This is important
because invalid data can cause errors or unexpected behavior in the program.

Application:
'''
Aim: Check the input number is valid. If invalid, then repeat the
prompt to reenter another number
'''
while True:

user_input = input("Enter a number between 1 and 10 : ")
num = int(user_input)
if num < 1 or num > 10:

print("Invalid number.")
else:

print("Valid number.")
break

Output:
Enter a number between 1 and 10 : 27
Invalid number.
Enter a number between 1 and 10 : 7
Valid number.

Explanation:
In this example, the loop continues until the user enters a valid number between 1 and 10. The
input is first converted to an integer using the int() function. If the input is an invalid integer, the
loop continues. If the input is valid and within the range, the loop is exited and the program can
proceed with the remaining steps.

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 12

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Nested loops:
(Refer to Q 2.a)

b. Write a Python program to print a multiplication table of a given number.
Aim: Generate a multiplication table of a gven number
t = int(input("Enter a number to generate multiplication table: "))
for j in range(1, 11): # j ranges from 1 to 10

print(t, "*", j, "=", t*j)
print()

Output:

3 * 1 = 3
3 * 2 = 6
3 * 3 = 9
3 * 4 = 12
3 * 5 = 15
3 * 6 = 18
3 * 7 = 21
3 * 8 = 24
3 * 9 = 27
3 * 10 = 30

4. What is ‘else’ clause in looping structures in Python? Explain how it works with ‘for’
loop and ‘while’ loop with simple examples.

Definition:
In Python, the “else” clause in looping structures is an optional block of code that is executed
after the loop has completed all its iterations.

Purpose:
The purpose of the else clause is to provide a way to execute code when the loop has finished
running normally, i.e., without being interrupted by a break statement.

Syntax of “else” with loops:

for variable in iterable:
for loop statements

else:
Statements after for loop has completed all iterations

while condition:
while loop statements

else:
statements after while loop has completed all iterations

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 13

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

● The “else” clause is executed only if the loop completes all its iterations without being
interrupted by a break statement.

● In case, the loop gets terminated by the “break” statement, the else clause is not
executed.

Application: Using “for-else”:
Aim: Find a given number is prime or not
n = int(input("Enter a number: "))
for i in range(2, n):

if n % i == 0:
print(n, "is not a prime number")
break

else:
print(n, "is a prime number")

Output:
Enter a number: 7
7 is a prime number

Enter a number: 6
6 is not a prime number

Application: Using “while-else”:
Aim: Find first 5 even numbers
count = 0
num = 0
while count < 5:

num += 1
if num % 2 == 0:

print(num, end=' ')
count += 1

else:
print("\nAll 5 even numbers are printed")

Output:
2 4 6 8 10
All 5 even numbers are printed

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 14

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

5. a. Is string a mutable data type? Describe string slicing using the built-in slicing
method and array slicing in detail with an example.

Strings are immutable

In Python, strings are immutable data types. This means that once a string is created, it
cannot be changed. If you want to modify a string, you need to create a new string with the
desired changes.

Assume the given string is: S = “cse”

If you want to change the first character to 'C', you cannot simply do:
S[0] = “C” # raises an error because a string is immutable

Instead, you need to create a new string with the required change.
S = “C” + S[1:] # Concatenates into a new string
print(S) # prints Cse

This creates a new string by concatenating the letter 'C' with the rest of the original string (i.e.,
s[1:]). The original string remains unchanged, and S now refers to the new string "Cse".
Explanation:

String slicing

Strings - A string in Python is an array of Unicode characters enclosed in quotes. The strings
are indexed from 0 to n-1, where n is the size of the string. So characters in a string of size n
can be accessed from 0 to n-1.

String slicing is the process of obtaining a range of characters or a substring of a string by
using its indices. Following are the 2 methods to slice a string.

1. Array slicing (: operator)
2. slice() function

1. Array slicing (: operator)
Definition:
Array slicing is used to obtain a portion of a string array or a list. It uses the slicing operator :
and square brackets to slice a string.

Syntax:

object [start : stop : step]

start - start index of the slice (included),
stop - end index of the slice (excluded), and
step - step size is the number of elements to skip between each element in the slice

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 15

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Application Array Slicing:
s = "COLLEGE"
print(s[1:6]) # OLLEG index 1 included, 6 excluded
print(s[1:6:2]) # OLG index 1 included, 6 excluded
print(s[:3]) # COL index 3 excluded
print(s[5:]) # GE index 5 untill last index
Negative index
print(s[-4:-1]) # LEG index -4 included, -1 excluded
print(s[1:-4]) # OL index 1 included, -4 excluded
print(s[5:1:-2]) # GL index 5 included, 1 excluded, in Reverse order
Reverse
print(s[::-1]) # EGELLOC String Reverse

Optional - This table shows how the string sequence is sliced using : operator

Index 0 1 2 3 4 5 6

s C O L L E G E

s[1:6] C O L L E G E

s[1:6:2] C O L L E G E

s[:3]
s[0:end]

C O L L E G E

s[5:]
s[beg :]

C O L L E G E

+ve index 0 1 2 3 4 5 6

-ve Index -7 -6 -5 -4 -3 -2 -1

s[-4:-1] C O L L E G E

s[1:-4] C O L L E G E

s[5:1:-2] C O L L E G E

Reverse a string

s[::-1] E G E L L O C

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 16

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

2. slice() Function
Definition:
The slice() returns a slice object or a portion which is used to slice a sequence such as string,
list, tuple, or range.

Syntax:

slice (start , stop , step)

start - start index of the slice (included),
stop - end index of the slice (excluded), and
step - step size is the number of elements to skip between each element in the slice

Application Array Slicing:
slice() function
s = "Our CIT College!"
sub = slice(0, 3) # Creates a slice object representing [0:3]
result = s[sub] # Slices the string s using the slice object sub
print(result) # Output: "Our"

Output: Our

5. b. How do you encrypt and decrypt strings in Python? Explain them with suitable examples.

Definition:
The process of converting information that cannot be understood by the unauthorized user is
called data encryption. The reverse process is called decryption. Data encryption is used to
protect the information transmitted over the network. The encrypted data prevents data
corruption, sniffing, stealing, or security attacks.

The network protocols such as FTPS and HTTPS do provide security to the information
transmitted over the network.

Security attacks:
Any action or a breach that compromises the security of information owned by an individual or
an organization is called a security attack. Security attacks are classified into two: Passive and
Active
➢ Passive Attacks - Unauthorized persons secretly reading or listening to private messages

or message patterns while transmitting between a sender and a receiver.
➢ Active Attacks - Modification of the original data stream or the creation of a false data

stream. Also includes,

○ Masquerade - one entity pretends to be a different entity

○ Replay- Passively capture and Unauthorized retransmission
○ DOS (Denial Of Service) - Disruption of an entire network

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 17

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Process of Data Encryption:
● The information that is to be transmitted is called ‘Plain Text’.
● The sender encrypts the message by translating it into a secret code called ‘Cipher Text’.
● The receiver decrypts the cipher text into the original message or plain text.
● Both parties use secret keys (public key & private key) to encrypt and decrypt messages.
● Caesar cipher is a simple encryption method that has been in use for thousands of years.

Caesar cipher Encryption:

● Letter in a given plain text is changed to a letter that appears a certain number of positions
farther down the alphabet set.

● For the characters near the end, the method goes back to the beginning of the alphabet set
to locate the replacement characters.

● For example, if the distance value of a Caesar cipher is right-shift by 2 characters, the string
“day” would be encrypted as “fca”

a b c d e f g h i j k l m n o p q r s t u v w x y z

c d e f g h i j k l m n o p q r s t u v w x y z a b

Application: Caesar cipher encryption

Caesar Cypher Encryption

msg = input('Enter your message: ')

dist= int(input('Enter cipher distance: '))

cmsg=""

for ch in msg:

ordnum=ord(ch)

ciphernum=ordnum+dist

if ciphernum>ord('z'):

ciphernum=ord('a')+dist-(ord('z')-ordnum+1)

cmsg=cmsg+chr(ciphernum)

print(cmsg)

Output:
Enter your message: day
Enter cipher distance: 2
fca

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 18

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Application: Caesar cipher decryption

Caesar Cypher Decryption

code=input('Enter your text: ')

dist=int(input('Enter distance: '))

msg=""

for ch in code:

ordnum=ord(ch)

ciphernum=ordnum-dist

if ciphernum<ord('a'):

ciphernum=ord('z')-(dist-(ord('a')-ordnum+1))

msg=msg+chr(ciphernum)

print(msg)

Output:
Enter your text: fca
Enter distance: 2
day

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 19

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Tutorial Questions:

1. Define and Demonstrate the use of jump statements (break, continue, pass) in Python.
Write a program to compute the sum of odd numbers within the given natural number
using a continue statement.

The Jump Statements are loop Control Statements in Python. The loop Control Statements are
used to change the normal flow of a loop based on a condition.

The 3 jump or loop control statements in Python are,
1. break statement
2. continue statement
3. pass statement

1. “break” statement
Definition:
The “break” statement is used to exit a loop. It can be used in both while and for loops. The
purpose of “break” statement is to end the execution of the loop (for or while) immediately and
the program control goes to the statement after the loop. If there is an optional else statement in
“for” or “while” loop, “break” also skips the optional “else” clause.

● The “break” statement almost always needs an “if” condition to work properly.
● The “break” statement is especially useful to quit from a nested loop (loop within a loop).

It terminates the inner loop and the control shifts to the statement in the outer loop.

Syntax:

break

Using break in while loop: Using break in for loop:

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 20

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Application:

BREAK in WHILE loop :
If the ‘while’ loop encounters an optional
‘break’, the loop simply exits even though the
‘while’ condition is True.

BREAK in FOR loop :
If the ‘for’ loop encounters an optional ‘break’,
the loop simply exits even though the ‘for’
sequence is incomplete.

Application: Write a program to print 1-5
using a ‘while’ loop with ‘break’ to stop at 4.

i=1
while loop with i = 1 to 3
while i <= 5:

print(i)
i += 1
if(i==4):

break
Output:
1
2
3
Explanation: The while loop continued until it
encountered 4 and then exited while loop. The i
+= 1 statement increments the value of i by 1
on each iteration of the loop.

Application: Write a program to print 1-5
using a ‘for’ loop with ‘break’ to stop at 4.

for loop with i = 1 to 3
for i in range (1,6):

if(i==4):
break

print(i)

Output:
1
2
3
Explanation: The ‘for’ loop continued until it
encountered 4 and then exited ‘for’ loop.

2. “continue” statement
Definition:
The “continue” statement forces the control to skip the current iteration, not execute the rest of
the statements in the loop and go to the next iteration of the loop.

A. In “while”, the “continue” statement will directly jump the execution control to
“condition”,

B. In “for”, the “continue” statement will jump the execution control to the next element
in the given sequence.

Syntax:

continue

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 21

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Using continue in while loop: Using continue in for loop:

Application:

CONTINUE in WHILE loop:
If the ‘while’ loop encounters an optional
‘continue’, the loop simply skips the current
iteration and jumps to the ‘condition’ for next
iteration.

CONTINUE in FOR loop :
If the loop encounters an optional ‘continue’,
the loop simply skips the current iteration and
jumps to next iteration in the sequence.

Application: Program to print even numbers
between 1 and 5 using while loop & continue
(skip) on odds

n = 1
while n < 5:

n += 1
if (n % 2) != 0:

continue
print(n)

Output:
2
4
Explanation: The while loop continued until 2.
When it encountered 3, the value incremented
to 4 and executed ‘continue’ to skip the
iteration.

Application: Program to print even numbers
between 1 and 5 using 'for' loop & continue
(skip) on odds

for n in range(1,6):
if (n % 2) != 0:

continue
print(n)

Output:
2
4
Explanation: The ‘for’ loop continued until 2.
When it encountered 3, it executed ‘continue’ to
skip 3 and continued with 4 in the sequence.

3. “pass” statement
Definition:
“pass” statement is a placeholder for an empty code in loops, functions, classes, or if
statements. “pass” statement is a null operation and nothing happens when it is executed.

● Empty code causes errors in loops, functions, classes, or if statements.
● So, we can use “pass” statement to avoid errors.

Syntax: pass

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 22

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Application:

PASS in IF and WHILE loop
n=1
while (n<5):

if (n==3):
pass

n += 1

PASS in FOR loop
college = "Chalapathi"
for i in college:

pass

PASS in Function
def func():

pass
func()

PASS in Class
class name:

pass

2. a. What are string format methods? Explain the string format operator % with examples.
String formatting is the process of inserting a custom string or variable in predefined text.
Python allows string formatting using one of the following 4 methods.

1. % (String Format Operator)
2. format() method
3. f-strings
4. String Template Class (module: from string import Template)

% (String Format Operator):
The % Operator is called a String Format Operator or an Interpolation Operator. It is used for
simple positional formatting in strings. It allows you to insert values into a string, replacing
placeholders with actual values. The placeholders are represented by percent signs followed by
a format specifier that defines the type of the value being inserted.

Syntax:

<”format specifiers”> % <data/vars>

● format specifiers - carries any string with %formatSpecifiers as placeholders (%d, %f, %s)
● ‘ % ’ is the String Format Operator that substitutes data/variable value into format specifier
● data/vars - values to replace format specifiers

<”format specifiers”> may have format specifiers with Padding for data values as specified
below:
%<fieldwidth>.<precision>f %6.2f
%<fieldwidth>d %3d
%<fieldwidth>s %10s
<fieldwidth> is the total number of digits given for the value
<precision> is the number of decimal digits out of the given total digits
The unfilled digit positions will be added as padding spaces on the left.

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 23

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Example:
name = "Raj"
age = 25
marks = 75.55
without padding
print("Name:%s, Age:%d, Marks:%f" % (name, age, marks))
Output: Name:Raj, Age:25, Marks:75.550000

with padding
print("Name:%10s, Age:%3d, Marks:%6.2f" % (name, age, marks))
Output: Name: Raj, Age: 25, Marks: 75.55

Table: List of format specifiers in Python

Format Specifier Conversion

%c character

%s string conversion via str() prior to formatting

%i signed decimal integer

%d signed decimal integer

%u unsigned decimal integer

%o octal integer

%x hexadecimal integer (lowercase letters)

%X hexadecimal integer (UPPERcase letters)

%e exponential notation (with lowercase 'e')

%E exponential notation (with UPPERcase 'E')

%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 24

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Table: Built-in string format methods

Method Description s=”software Engineers”

s.capitalize() converts the first character to uppercase. Software Engineers

s.upper() Converts all the characters in a string to
uppercase.

SOFTWARE ENGINEERS

s.lower() Converts all the characters in a string to
lowercase.

software engineers

s.isupper() Returns True if all the characters are
uppercase. Otherwise, False

False

s.islower() Returns True if all the characters are
lowercase. Or else False.

False

s.find(substring,
[start, end])

Returns the index of a specified character in
the string or the start position of the given
substring.

s.find(“Eng”)
9

s.count(substring,[st
art,end])

Counts the occurrence of a character or
substring in a string.

s.count(“r”)
2

s.expandtabs([tabsi
ze])

Replaces tabs defined by \t with spaces.
Default tabsize = 8

s.endswith(substrin
g,[start, end])

Returns True if a string ends with the specified
substring. False otherwise.

s.endswith(“neers”)
True

s.startswith(substrin
g, [start, end])

Returns True if a string starts with the
specified substring. False otherwise.

s.startswith(“Soft”)
True

s.isalnum() Return True if all characters in a string are
alphanumeric. False otherwise.

False

s.isalpha() Return True if all characters in a string are
alphabetic. False otherwise.

True

s.isdigit() Return True if all characters in a string are
digits. False otherwise.

False

s.split([separator],[
maxsplit])

Splits a string separated by a
separator(defaults is whitespace) and an
optional maxsplit to determine the split limit.
Returns a list.

[“Software”,”Engineers”]

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 25

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

s.join(iterable) Joins all items in an iterable into a single string
separated by the string s.

s.replace(old,
new,[maxreplace])

Replace old substring contained in the string s
with a new substring.

s.(“Engineers”,”Programmer”)
Software Programmers

s.swapcase() Returns a new string with swapped case. i.e.,
uppercase becomes lowercase and vice
versa.

sOFTWARE pROGRAMMERS

s.strip([characters]) Removes whitespaces or optional characters
at the beginning and at the end of the string.

s.lstrip([characters]) Removes leading whitespace or optional
characters from a string.

s.rstrip([characters]) Removes trailing spaces at the end of the
string.

2. b. How + and * operators work with strings?
Python provides the following operators for string operations:

● String concatenation operator “ + ”
● String repetition operator “ * ”
● String Slicing operator “ : ” to obtain substrings
● Indexing to traverse through strings,
● Membership operators (in, not in) to search for strings
● Relational operators (>, >=, <, <=) to compare strings

Here, we will discuss + and * operators.
The + operator is used to concatenate 2 or more strings into one string.
The * operator is used to repeat a string up to a given number of times.

Operator Purpose Operation Description

+ Concatenation s1 + s2 Concatenates two strings, s1 and s2.

* Repetition s * n Makes n copies of string s.

(+) Concatenation Operator:
Definition:
The + operator is used to join or concatenate two strings.
This concatenation operator in Python concatenates only objects of the same type.
Usage:

concatenate_string = string1 + string2 # concatenate the two strings

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 26

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

(*) Repetition Operator:
Definition:
The * operator is used to repeat a given string n number of times (similar to multiplication).
Usage:

repeat_string = string1 * n # repeats string1 n times

Application:
Concatenate & Repetition of strings
s1 = "Computer "
s2 = "Science"
s3 = s1 + s2
print(s3)

s4 = s1*3
print(s4)

Output:
Computer Science
Computer Computer Computer

3. What are string padding functions in Python? Explain with simple examples.
Definition:
In Python, String padding functions add extra characters such as spaces or zeros, at the start or
end of a string to get a required length. Python does provide several built-in string padding
functions for this purpose.

The commonly used string padding functions are,
1. ljust(),
2. rjust(), and
3. center().

Purpose:
These methods are very useful for formatting text in the form of tables or displaying information
in a fixed-width format.

1. ljust()

Syntax:

svar.ljust(width[, fillchar])

ljust() function returns left-justified string of given width. The string is padded with fillchar
(default is space) to make up the length.

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 27

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Example:
s = 'Guntur'
padded_s = s.ljust(10, '*')
print(padded_s) # Guntur****

2. rjust()

Syntax:

svar.rjust(width[, fillchar])

rjust() function returns right-justified string of given width. The string is padded with fillchar
(default is space) to make up the length.

Example:
s = 'Guntur'
padded_s = s.rjust(10, '*')
print(padded_s) # ****Guntur

3. center()

Syntax:

svar.center(width[, fillchar])

center() function returns centered string in the given width. The string is padded with fillchar
(default is space) to make up the length.

Example:
s = 'Guntur'
padded_s = s.center(10, '*')
print(padded_s) # **Guntur**

4. What are the different types of number systems? Write a program to convert a decimal
number into binary and octal numbers.

Number systems are the technique to represent numbers in the computer system architecture,
every value that we save or read has a defined number system.
Computer architecture supports the following number systems.

1. Binary number system
2. Octal number system
3. Decimal number system
4. Hexadecimal (hex) number system

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 28

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

1) Binary Number System (Base: 2, Digits: 0, 1)
A Binary number system has only two digits 0 and 1. All binary numbers are represented in 0s
and 1s.

2) Octal number system (Base: 8, Digits: 0-7)
Octal number system has only 8 digits from 0 to 7. All octal numbers are represented in
0,1,2,3,4,5,6 and 7.

3) Decimal number system (Base: 10, Digits: 0-9)
Decimal number system has only 10 digits from 0 to 9. All decimal numbers are represented in
0,1,2,3,4,5,6, 7,8, and 9.

4) Hexadecimal number system (Base: 16, Digits: 0-9, A-F)
A Hexadecimal number system has 16 alphanumeric values from 0 to 9 and A to F. All
hexadecimal numbers are represented in 0,1,2,3,4,5,6, 7,8,9,A,B,C,D,E, and F. Here A is 10, B
is 11, C is 12, D is 13, E is 14 and F is 15.

Table: Number Systems & Representation in Python

Number system Base Digits used Example Python assignment

Binary 2 0,1 (11110000)2 var = 0b11110000

Octal 8 0,1,2,3,4,5,6,7 (360)8 var = 0o360

Decimal 10 0,1,2,3,4,5,6,7,8,9 (240)10 var = 240

Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,
A,B,C,D,E,F

(F0)16 var = 0xF0

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 29

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Decimal to Binary Conversion:
● Manual conversion - Decimal number is divided by 2 until we get 1 or 0 as the final

remainder.
28 10 = 11100 2

Base target Decimal Remainder

2 28 0

2 14 0

2 7 1

2 3 1

2 1

Decimal to Octal Conversion:
● Manual conversion - Decimal number is divided by 8 until we get 0 to 7 as the final

remainder.
28 10 = 34 8

Base target Decimal Remainder

8 28 4

8 3

Decimal to Hexadecimal Conversion:
● Manual conversion - Decimal number is divided by 16 until we get 0 to 15 as the final

remainder.
28 10 = 1C 16

Base target Decimal Remainder

16 28 12 = C

16 1

Automatic conversion: Decimal to Binary, Octal, Hexadecimal
From decimal to binary, octal or hexadecimal, use bin(), oct(), hex() functions respectively.
From binary, octal or hexadecimal to decimal, use int(other num, base) function..

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 30

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Application:
Aim: Program to convert Decimal to Binary, Octal and Hexadecimal
Decimal to Binary, Octal, Hexadecimal
n = 28
bn = bin(n)
ot = oct(n)
hx = hex(n)
print("Decimal to Binary ", n, "=", bn)
print("Decimal to Octal ", n, "=", ot)
print("Decimal to Hexadecimal ", n, "=", hx)

#Binary to Decimal
print("Binary to Decimal = ",int(bn,2))
#Octal to Decimal
print("Octal to Decimal = ",int(ot,8))
#Hexadecimal to Decimal
print("Hexa to Decimal = ",int(hx,16))

Output:
Decimal to Binary 28 = 0b11100
Decimal to Octal 28 = 0o34
Decimal to Hexadecimal 28 = 0x1c
Binary to Decimal = 28
Octal to Decimal = 28
Hexa to Decimal = 28

(OPTIONAL)

Binary to Decimal Conversion

Binary Number = 11100 2

1 1 1 0 0

1x24 1x23 1x22 0x21 0x20

16 8 4 0 0

= 16 + 8 + 4 + 0 + 0
Decimal number = 28 10

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 31

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Octal to Decimal Conversion

Octal Number is : 34 8

3 4

3x81 4x80

24 4

= 24 + 4
Decimal number = 28 10

Hexadecimal to Decimal Conversion

Hexadecimal Number is : 1c 16

1 c = 12

1x161 12x160

16 12

= 16 + 124 + 4
Decimal number = 28 10

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 32

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

List of Programs

1. Write a Python program to display all prime numbers up to 200.
No = int(input("Please Enter any No: "))
print("Prime Nos between", 1, "and", No, "are:")
for Number in range(1, No + 1):

if Number > 1:
for i in range(2, Number):

if (Number % i) == 0:
break

else:
print(Number)

Output:
Please Enter any No: 200
Prime Nos between 1 and 200 are:
2
3
5
7
. . .
2. Write a Python program to find the average of the top two test scores out of the three
test scores received.
m1=int(input("Enter the marks1: "))
m2=int(input("Enter the marks2: "))
m3=int(input("Enter the marks3: "))
total=0
if(m1>m2):

if(m2>m3):
total=m1+m2

else:
total=m1+m3

elif(m1>m3):
total=m1+m2

else:
total=m2+m3

avg=total/2
print("The avg of best two test marks is:",avg)

Output:
Enter the marks1: 80
Enter the marks2: 50
Enter the marks3: 90
The avg of best two test marks is: 85.0

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 33

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

3. Write a Python program to check whether a given number is an Armstrong number
n=int(input("Enter a number: "))
s = n
b = len(str(n))
sum1 = 0
while n != 0:

r = n % 10
sum1 = sum1+(r**b)
n = n//10

if s == sum1:
print("The given number", s, "is Armstrong number")

else:
print("The given number", s, "is not Armstrong number")

Output:
Enter a number: 523
The given number 523 is not Armstrong number

Enter a number: 370
The given number 370 is Armstrong number

4. Write a program to find whether the given string is a palindrome by using functions
Method-1 - Using Functions
def reverse(str1):

if(len(str1) == 0):
return str1

else:
return reverse(str1[1 :]) + str1[0]

s1 = input("Enter a string : ")
s2 = reverse(s1)
print("String in reverse Order : ", s2)
if(s1 == s2):

print("This string is a Palindrome")
else:

print("This string is not a Palindrome")

Method-2: Using if-else (Simple)
st = input("Enter a string : ")
if(st == st[:: - 1]):

print("This string is a Palindrome")
else:

print("This string is not a Palindrome")

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 34

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Output:
Enter a string : GOOG
This string is a Palindrome

Enter a string : CIT
This string is not a Palindrome

5. Write a Python program to sort given input strings.
def sort_string(s):

chars = list(s)
n = len(chars)
for i in range(n):

for j in range(0, n-i-1):
if chars[j] > chars[j+1]:

chars[j], chars[j+1] = chars[j+1], chars[j]
return ''.join(chars)

s = "Engineers"
print("Original string:", s)
print("String after sorting:", sort_string(s))

Output:
Original string: Engineers
String after sorting: Eeeginnrs

6. Write a Python program to perform string concatenation and copy operations.
#Method 1 (Format())
var1 = "Guntur"
var2 = "City"
print("{} {}".format(var1, var2))
var3 = "{} {}".format(var1, var2)
print(var3)

Method 2 (,comma)
var1 = "Guntur"
var2 = "City"
print(var1, var2)

Method 3 (% operator)
var1 = "Guntur"
var2 = "City"
print("% s % s" % (var1, var2))

Method 4 (+ operation)
var1 = "Guntur "

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 35

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

var2 = "City"
var3 = var1 + var2
print(var3)

Method 5 (Join())
var1 = "Guntur"
var2 = "City"
print("".join([var1, var2]))
var3 = " ".join([var1, var2])
print(var3)

Output:
Guntur City
Guntur City
Guntur City
Guntur City
Guntur City
GunturCity
Guntur City

7. Write a Python program to demonstrate traversal through a string using a loop.
Method 1:
print("Using for loop")
st1 = "High"
count= len(st1)
for i in range(count):

print("At index",i,"=",st1[i])

Method 2:
print("Using while loop")
st2 ="Score"
count= len(st2)
i= 0
while i < count :

print("At index",i,"=",st2[i])
i=i+1

Output:
Using for loop
At index 0 = H
At index 1 = i
At index 2 = g
At index 3 = h

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 36

CIT Studen
ts

Refe
ren

ce

Python Unit-II Study Material - Answers to Assignment II, Tutorial & Programs (v1)

Using while loop
At index 0 = S
At index 1 = c
At index 2 = o
At index 3 = r
At index 4 = e

8. Write a Python program that interchanges the first and last characters of a given
string.
txt = input('Enter a string: ')
newtxt = txt[-1]+txt[1:-1]+txt[0]
print('New string:', newtxt)

Output:
Enter a string: CSE
New string: ESC

9. Write a Python program using ‘while’ loop to print the first N numbers divisible by 5
start = int(input("Enter start number:"))
end = int(input("Enter last number:"))
for i in range(start, end+1):

if(i%5==0):
print(i)

Output:
Enter start number:10
Enter last number:30
10
15
20
25
30

10. Write a Python program to calculate the number of seconds in a day.
def seconds_per_day(days):

hours = days * 24
minutes = hours * 60
seconds = minutes * 60
return seconds

print(seconds_per_day(2))

Output:
172800

Leadertain.com For any clarifications, please contact Ast Profs: Mr. M Rahul or Ms. Lavanya 37

CIT Studen
ts

Refe
ren

ce

