
PTC Unit II

A. Operators, Expressions, Precedence and Associativity, Evaluating
Expressions, Type Conversion Statements, Simple Programs.

B. Selection & Making Decisions: Logical Data and Operators, Two Way
Selection, Multiway Selection, More Standard Functions.

C. Repetition: Concept of Loop, Pre-test and Post-test Loops, Initialization and
Updating, Event and Counter Controlled Loops, Loops in C, Other
Statements Related to Looping.

A. Operators

Operators, Expressions, Precedence, and Associativity, Evaluating Expressions, Type
Conversion Statements, Simple Programs.

c

Special Operators (sizeof, pointer, address, typecasting, comma, dot, etc.)

The following are the special operators in the C programming language.

sizeof() Operator

This operator is used to find the size of the memory (in bytes) allocated for a variable.

Syntax: sizeof(variableName);

Example: sizeof(A);⇒ the result is 2 bytes if A is an integer

//sizeof() Operator

#include <stdio.h>

int main()

{int a;

char b;

float c;

double d;

printf("Storage size of data type int is :%d \n",sizeof(a));

printf("Storage size of data type char is :%d \n",sizeof(b));

printf("Storage size of data type float is :%d \n",sizeof(c));

CITY Leadertain.com Ast. Prof. M. Rahul 1

For C
IT Students

Only

PTC Unit II

printf("Storage size of data type double is :%d\n",sizeof(d));

return 0;

}

Pointer operator (*)

This operator is used to define pointer variables in the C programming language.

Address operator (&)

This operator is used to get the memory address of a variable in the C programming language.

Example:
//Pointer and Address Operators

#include <stdio.h>

int main()

{int *ptr, q;

q = 10;

ptr = &q;

printf("\n q value: %d", *ptr);

printf("\n q address: %p", ptr);

return 0;

}

/*Output

q value: 10

q address: 0061FF18

*/

Type Conversion in C

Converting value of one data type into another data type is called type conversion. There are 2
types of type conversions in C.

1. Implicit Conversion - The C compiler automatically converts the data type of a value into
another data type AUTOMATICALLY.

Example:
int b;

CITY Leadertain.com Ast. Prof. M. Rahul 2

For C
IT Students

Only

PTC Unit II

b = 3.5; //3.5 first converts to integer 3 and then assigns to b

Example:
#include<stdio.h>

int main() {

// create a double variable

double value = 7125.17;

printf("Double Value: %.2lf\n", value);

// convert double value to integer

int number;

number = value;

printf("Integer Value: %d", number);

return 0;

}

// Output: 7125

Here, the C compiler automatically converts the double value 7125.17 to integer value 7125.

Since the conversion is happening automatically, this type of conversion is called implicit type
conversion.

2. Explicit Conversion -We have to MANUALLY convert one data type into another data
type. We need to use Typecasting operator () for explicit conversion.

Typecasting operator: ()

Typecasting in C is the process of converting one data type to another data type by the
programmer using the casting operator (). This is also called Explicit conversion because
we force the type conversion using this operator.

Syntax for Explicit conversion:

(type) variable or value

Example:
int x;
float y;

y = (float) x;

CITY Leadertain.com Ast. Prof. M. Rahul 3

For C
IT Students

Only

PTC Unit II

Example:

int main() {

// create an integer variable

int number = 97;

printf("Integer Value: %d\n", number);

// (char) converts number to character

char alphabet = (char) number;

printf("Character Value: %c", alphabet);

return 0;

}

/* OUTPUT

Integer Value: 97

Character Value: a */

Here,

● (char) - explicitly converts a number into character
● number - value that is to be converted to char type

Comma operator (,)

Comma operator is used for 2 purposes:

1. Separator - when we declare multiple variables, we use comma as separator.

int a, b, c;

int m=7, n=10;

2. Operator - when we assign multiple number of values to a variable, we use comma.

x = 10, 20, 30, 40;

y = (10, 20, 30, 40);

Example:
//Comma as Seperator and Operator

#include <stdio.h>

int main()

{

//comma as seperator

CITY Leadertain.com Ast. Prof. M. Rahul 4

For C
IT Students

Only

PTC Unit II

int x,y;

//comma as operator

x = 10,20,30; //x=10 because = has higher priority than ,

y = (10,20,30); //x=30 because () has higher priority than =

printf("x= %d, y= %d\n",x,y);

return 0;

}

//Output: x= 10, y= 30

/*Note: int a = 1,2,3; //Wrong, compile time error to initialize with

comma separator while declaring a variable */

Dot operator (.)

This operator is used to access members of a structure or union.

Example:
#include <stdio.h>

struct Pair {

int first, second;

};

int main(void) {

struct Pair p;

p.first = 10;

p.second = 20;

printf("%d %d\n", p.first, p.second);

}

/* Output: 10 20 */

What are Expressions in C?

An expression is a sequence of operators (symbols) and operands (constants or variables)
that represents a specific value. An Expression always reduces to a single value.

Operators are symbols that perform tasks such as arithmetic operations, logical operations,
conditional operations, etc.

CITY Leadertain.com Ast. Prof. M. Rahul 5

For C
IT Students

Only

PTC Unit II

Operands are the constant or variable values on which the operators perform the task. The
operand can be a direct value or variable or address of memory location.

● Simple Expression - contains only one operator.
○ 2 + 5

○ - a

● Complex Expression - contains more than one operator
○ 2 + 5 * 7 (we reduce it to a series of simple expressions)

○ First, we calculate the expression 5 * 7 to 35 and

○ Then, we calculate the expression 2 + 35 to 37 as a result.

● Expressions return values as a boolean, an integer, or any other data type of C.

● Expression may consist of other expressions; in this case, first inner expressions are
calculated, then the overall expression will be evaluated.

6 Types of Simple Expressions in C

1. Primary Expressions
2. Postfix Expressions
3. Prefix Expressions
4. Unary Expressions
5. Binary Expressions
6. Ternary Expressions

1. Primary Expressions:
● Names - A name is any identifier for a variable, function, or any other object in the

language.
Ex: x y10 cost

● Constants - A constant is a piece of data whose values can’t change during the
execution of a program.

Ex: 10 47.35 ‘A’ “Hello”

● Parenthetical Expressions - Any value or expression enclosed in parentheses must be
reduced to a single value.

Ex: (5 * 7 + 2) (a = 45 + b +10)

2. Postfix Expressions:
● The operator comes after the operand.

CITY Leadertain.com Ast. Prof. M. Rahul 6

For C
IT Students

Only

PTC Unit II

a++ (same as a = a + 1)
The operand in a postfix expression must be a variable.

3. Prefix Expressions:
● The operator comes before the operand.

++a (same as a = a + 1)
The operand of a prefix expression must be a variable.

Note:
● For a++ : First, current value of a is used in the expression; Then, a will be incremented
● For ++a : First, a will be incremented; Then, new value of a will be used in the expression

4. Unary Expressions:
● Consists of One Operand and One Operator

Example:

int a = 5;

printf("\n Unary expression - : %d",-a);

//Output: Unary expression - : -5

Example:

CITY Leadertain.com Ast. Prof. M. Rahul 7

For C
IT Students

Only

PTC Unit II

int n;

printf("%d",sizeof(n)); //unary because sizeof operator needs 1 variable

5. Binary Expressions:
● Formed by Operand-Operator-Operand combination

Example:

int m1 = 50, m2 = 60;

printf("\n Total marks = %d", m1 + m2);
//Output: 110

6. Ternary Expressions:
● Ternary expression needs 1 Condition, 2 Operands, and 2 Operators
● Formed by Condition-Operator-Operand-Operator-Operand

Example:

int x = 55;

(x>=25) ? printf("Pass") : printf("Fail");

//Output: Pass

7. Assignment Expressions:
● Evaluates the Operand on the right-hand side of the Operator (=) and place the value

in the variable on the left.
Example - Simple Assignment

a = 5 b = x + 1 i = i + 1

8. Compound Assignment:
● A compound assignment is a shorthand format for a simple assignment

CITY Leadertain.com Ast. Prof. M. Rahul 8

For C
IT Students

Only

PTC Unit II

Example - Compound Assignment
x += 7 is same as x = x + 7
x -= 3 is same as x = x - 3
x *= 5 is same as x = x * 5
x *= y + 3 is same as x = x * (y + 3)
x /= 2 is same as x = x / 5
x %= 3 is same as x = x % 3

What are Precedence and Associativity?

Precedence (priority) is used to find the order of different operators to be evaluated in a single
statement.
2 + 3 * 4 // * evaluates first
2 + 12 // + evaluates next
14

Associativity is used to find the order of operators with same precedence to be evaluated in a
single statement.

//left to right associativity
3 * 8 / 4 * 5 //both * and / has same precedence or priority
24 / 4 * 5 //left to right associativity
6 * 5
30

//right to left associativity
a = b = c = 0 // all = have same precedence or priority

For commonly used arithmetic calculations, you may use the simple BODMAS order of priority
to easily remember the precedence or priority of evaluation.
B - Bracket
O - Of Squareroot or Of Exponent

CITY Leadertain.com Ast. Prof. M. Rahul 9

For C
IT Students

Only

PTC Unit II

DM - Division orMultiplication (same priority)
AS - Addition or Subtraction (same priority)

C has about 45 operators. The following table shows the Precedence and Associativity of all
opetators.

Operator Precedence (Priority) and Associativity Chart

Precedence Operator Description Associativity

1

() Parentheses (function call) left-to-right

[] Brackets (array subscript) left-to-right

. Member selection via object name left-to-right

-> Member selection via a pointer left-to-right

a ++ / a - - Postfix increment/decrement (a is a variable) left-to-right

2

++ a / - - a Prefix increment/decrement (a is a variable) right-to-left

+ / - Unary plus / minus right-to-left
! ~ Logical negation / bitwise complement right-to-left

(type) Cast (convert value to temporary value of type) right-to-left

* Dereference right-to-left
& Address (of operand) right-to-left

sizeof Determine size in bytes on this implementation right-to-left
3 *, /, % Multiplication/division/modulus left-to-right
4 + / - Addition/subtraction left-to-right
5 << , >> Bitwise shift left, Bitwise shift right left-to-right

6
< , <= Relational less than/less than or equal to left-to-right

> , >= Relational greater than/greater than or equal to left-to-right

CITY Leadertain.com Ast. Prof. M. Rahul 10

For C
IT Students

Only

PTC Unit II

7 == , != Relational is equal to/is not equal to left-to-right
8 & Bitwise AND left-to-right
9 ^ Bitwise exclusive OR left-to-right
10 | Bitwise inclusive OR left-to-right
11 && Logical AND left-to-right
12 || Logical OR left-to-right
13 ? : Ternary conditional right-to-left

14

= Assignment right-to-left

+= , -= Addition/subtraction assignment right-to-left

*= , /= Multiplication/division assignment right-to-left

%= , &= Modulus/bitwise AND assignment right-to-left

^= , |= Bitwise exclusive/inclusive OR assignment right-to-left

<> = Bitwise shift left/right assignment right-to-left

15 , expression separator
left-to-right

Side Effects
A side effect is an action that results from the evaluation of an expression.

Expressions with Side Effects
x = 4 // x receives value 4
x = x + 4 // x receives value 7
y = ++x * 2 // y receives 16 and ALSO x value changes to 8

Expressions without Side Effects
a=4, b=4, c=5
result = a * 4 + b / 2 - c * b //values of a, b, c, d do not change

B. Selection & Making Decisions

Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard
Functions.

Logical Data and Operators in making decisions

CITY Leadertain.com Ast. Prof. M. Rahul 11

For C
IT Students

Only

PTC Unit II

The conditions play an important role in the selection and decision-making process in C language.
The results of conditions control the flow of execution of the programs. We use 2 types of
operators to write conditions in C programs.

1. Relational Operators (== != < <= > >=)
2. Logical Operators (&& || !)

Both of these operators result in either TRUE or FALSE.

● TRUE is a non-zero value (ex: 1).

● FALSE is a 0 value. (Ex: 0)

The Relational and Logical Operators are discussed in detail with examples in our previous
section. So, please refer to the previous section to review how these work.

Summary of relational operators:

operator Meaning examples

> greater than 6 > 3 --> true
3 > 6 --> false

< less than 2 < 5 --> true
5 < 2 --> false

>= greater than or equal to 4 >= 4 --> true
5 >= 4
3 >= 4 --> false

<= less than or equal to 2 <= 2 --> true
1 <=2
3 <= 2 --> false

== equivalence, same as. Note the use
of two equal signs, not 1. 1 equal sign is
an assignment, 2 equal sign is equivalence

1 == 1 --> true
2 == 1 --> false

!= not equivalent, different 4 != 3 --> true
3 != 3 --> false

Summary of Logical Operators:

CITY Leadertain.com Ast. Prof. M. Rahul 12

For C
IT Students

Only

PTC Unit II

Operator Meaning Example

&& Logical AND - Returns TRUE if all conditions are
TRUE otherwise returns FALSE

10 < 5 && 12 > 10 is
FALSE

|| Logical OR - Returns FALSE if all conditions are
FALSE otherwise returns TRUE

10 < 5 || 12 > 10 is
TRUE

! Logical NOT - Returns TRUE if condition is FALSE
and returns FALSE if the condition is TRUE

!(10 < 5 && 12 > 10) is
TRUE

Note1: We use Logical operators to Join 2 or more conditions with Relational operators

Note2: If the result of a condition is zero, the expression is FALSE. If the condition results in
non-zero, then it is TRUE.

What is a Selection Statement in C?
Selection Statements in C are used to make decisions based on the results of conditions. The
program statements normally execute sequentially. If you put some condition for a block of
statements, the execution flow may change based on the result evaluated by the condition. This
process is called decision-making in ‘C.’

These Selection Statements are also called,
● Conditional Statements
● Flow-Control Statements
● Decision Making Statements

The conditional statements are possible with the help of the following 3 selection types:

Type Single Selection Two-Way Selection Multi-Way Selection

Command if statement if - else statement Nested if - else statements
else - if Ladder statements
switch - case statements

Single Selection in C (“if” statement)

CITY Leadertain.com Ast. Prof. M. Rahul 13

For C
IT Students

Only

PTC Unit II

The basic method to perform selection in C is to use the “if” statement. “if” statement is
responsible for modifying the flow of execution of a program. “if” statement is always used with a
condition. The condition is evaluated first before executing any statement inside the body of “if”.

● The condition evaluates to either TRUE or FALSE.

● True is a non-zero value, and

● False is a zero value.
The if statement allows you to do something if a condition is TRUE, and do nothing if the
condition is FALSE.

Syntax:

if (condition){
//do the code in here if the condition is true

}

● “if” statement is always used with a condition.

● First, the condition is evaluated for TRUE or FALSE

● TRUE, then the “if” block statement is executed

● FALSE, then the “if” block skipped and continues the flow to the outside “if” block

➢ One statement within “if” block does NOT need to be enclosed in curly brackets { }.

Example: (one statement in single selection “if” block)
#include<stdio.h>

int main()

{

int num1=1;

int num2=2;

if(num1 < num2) //condition check

printf("num1 is smaller than num2");
return 0;

}

CITY Leadertain.com Ast. Prof. M. Rahul 14

For C
IT Students

Only

PTC Unit II

Example: (one statement in single selection “if” block)

int x = 30;

if (x == 35) // False

x = x+ 1; // this is skipped because the condition is false

printf("%d",x); // x still has the original value 30

/* Output

30

*/

Example: (one statement in single selection “if” block)
int measured = 1;

if (measured)

printf("Done with measurement \n");

/* Output

Done with measurement (because “if” condition is non-zero 1 [TRUE])

*/

Many statements in single selection “if” condition
An “if” condition may also have many statements.
➢ Many statements within the “if” block need to be enclosed in curly braces { }.

Example: (many statements in single selection “if” block)
int a=10, b=20, c;

if (a<b)

{ a = b + 5;

c = a * 2;

}

printf("%d", c); //prints 60

return 0;

}

Two Way Selection (if-else statement)
Description: [if-else statement]

● If the condition is TRUE, then the true (“if”) block of statements will be executed.

● If the condition is FALSE, then the false (“else”) block of statements will be executed.

CITY Leadertain.com Ast. Prof. M. Rahul 15

For C
IT Students

Only

PTC Unit II

● After the execution of either “if” or “else” block statements, the control will be
automatically transferred to the statements outside the “if-else” block.

The flow chart of the “if-else” block is as follows:

Syntax:
The “ if-else ” statement is an extended version of “ if ”. The syntax of “if-else” is as follows:

if (condition)

{

True block of statements

statement 1;

statement 2;

...

statement n;

}

else

{

False block of statements

statement 1;

statement 2;

...

CITY Leadertain.com Ast. Prof. M. Rahul 16

For C
IT Students

Only

PTC Unit II

statement n;

}

Statements outside if-else block

Example1: [if-else statement, two-way selection]
#include<stdio.h>

#include<conio.h>

void main()

{ int a=40, b=20;

clrscr();

if(a==b)

{

printf("a and b are same");

}

else

{

printf("a and b are not the same");

}

getch();

}

// Output: a and b are not the same

Example2: [if-else statement, two-way selection]
//Find Pass or Fail based on pass marks of 35

#include<stdio.h>

int main()

{ int total=70;

if(total>35)

printf("Passed");

else

printf("Failed");

return 0;

}

/*Output : Passed */

Example3: [if-else statement, two-way selection]
/* Aim: Program to Check whether the given number is Even or Odd.

CITY Leadertain.com Ast. Prof. M. Rahul 17

For C
IT Students

Only

PTC Unit II

Even number: an integer exactly divisible by 2. Ex: 0, 8, -24

Odd number: an integer not exactly divisible by 2. Ex: 1, 7, -11, 15 */

#include <stdio.h>

int main() {

int num;

printf("Enter an integer: ");

scanf("%d", &num);

// true if num is perfectly divisible by 2

if(num % 2 == 0)

printf("%d is even.", num);

else

printf("%d is odd.", num);

return 0;

}

/* Output

Enter an integer: 6

6 is even.

Enter an integer: 7

7 is odd.

*/

Multiway Selection
When a series of decisions is required, the multi-way selection statements are used.
There are 3 types of multi-way selection statements

1. Nested “ if-else ” statements
2. “ else-if ” Ladder statements
3. “ switch-case ” statements

1. nested if-else statements
Nesting means using one “if-else” construct within another “if-else” construct. Use nested
“if-else” when you need to decide more within the parent “if” condition.

Example: (Nested if-else statements, multi-way selection)
#include<stdio.h>

int main()

{ int result=75;

if(result >= 35)

{

CITY Leadertain.com Ast. Prof. M. Rahul 18

For C
IT Students

Only

PTC Unit II

if(result==35)

{

printf("Just Passed with %d \n",result);

}

else

{

printf("Passed with %d, which is more than 35",result);

}

}

else

{

printf("Failed with %d, which is less than 35", result);

}

return 0;

}

/* Output

Passed with 75, which is more than 35 */

Note: The above program checks if a number is equal or greater than 35 and prints the result
using nested if-else construct.

2. else-if ladder
“if-else-if” ladder is used when multiple paths of decisions are required. Use the “else-if” ladder
when you need to decide a series of decisions after each of the previous “if” conditions.

Description:
● This is called “else-if” ladder or nested “if-else-if” statements
● The conditions are evaluated from top to bottom.

● If any condition is true, the statement associated with that condition is executed.

● When all the conditions are false, then the last default “else” statement is executed.

Syntax:
if (condition 1)
{
statement1;

} else if (condition 2)
{
Statement2;

CITY Leadertain.com Ast. Prof. M. Rahul 19

For C
IT Students

Only

PTC Unit II

} else if (condition n)
{
Statement n;

} else
{
Default statement;

}
Statement in the main program

Example1: [“else-if” ladder statements, multi-way selection]
#include<stdio.h>

int main()

{

int marks=75;

if(marks>=75){

printf("First class");

}

else if(marks>=65){

printf("Second class");

}

else if(marks>=55){

printf("Third class");

}

else if(marks>=35){

printf("Just pass");

}

else {

printf("Failed");

}

return 0;

}

Example2: [“else-if” ladder statements, multi-way selection]

Aim: Find whether the given year is a Leap Year?

Conditions:

● The century year is a leap year only if it is perfectly divisible by 400.

CITY Leadertain.com Ast. Prof. M. Rahul 20

For C
IT Students

Only

PTC Unit II

● Century years (years ending with 00 or divisible by 100) that are not divisible by 400 are

not leap years.

● A leap year is exactly divisible by 4 except for century years (years ending with 00).

For example,

1900 is not a leap year

1999 is not a leap year

2000 is the leap year

2004 is the leap year

2012 is the leap year

#include <stdio.h>

int main() {

int year;

printf("Enter a year nnnn: ");

scanf("%d", &year);

// leap year if perfectly divisible by 400

if (year % 400 == 0) {

printf("%d is a leap year.", year);

}

// not a leap year if divisible by 100

// but not divisible by 400

else if (year % 100 == 0) {

printf("%d is not a leap year.", year);

}

// leap year if not divisible by 100

// but is divisible by 4

else if (year % 4 == 0) {

printf("%d is a leap year.", year);

}

// all other years are not leap years

else {

CITY Leadertain.com Ast. Prof. M. Rahul 21

For C
IT Students

Only

PTC Unit II

printf("%d is not a leap year.", year);

}

return 0;

}

/* Output1:

Enter a year nnnn: 1900

1900 is not a leap year.

Output2:

Enter a year nnnn: 2012

2012 is a leap year.

*/

3. “switch-case” statement
Switch statement in C tests the value of an expression and compares it with multiple cases. Once a
case value is matched, a block of statements associated with that particular case is executed.

The “switch” statement is one of the decision control statements of the C language. It is primarily
used when the user has to make a decision among many alternatives or choices.

In a switch statement,

● the “case” value can be an integral constant (“char” and “int” type),

● the “case” value cannot be a “float” type or a string value,

● duplicate “case” values are not allowed.

Syntax:
switch(expression) // Expression evaluates to a single value

{

CITY Leadertain.com Ast. Prof. M. Rahul 22

For C
IT Students

Only

PTC Unit II

case value-1: //Case is picked when expression gives Value-1

Block-1;
Break;

case value-2: //Case is picked when expression gives Value-2

Block-2;
Break;

case value-n: //Case is picked when expression gives Value-n

Block-n;
Break;

default: // when value of expression didn't match with any case

Block-1;
}
Statement outside switch block

How does switch statement work?
1. First, the <expression> inside the switch clause is evaluated to an integral constant (int or

char).
2. The result is then compared against the case value inside each case statement.
3. If a match is found, all the statements in the matched case are executed until a “break” or

end of the switch is reached.
4. The “break” statement brings the control outside “switch” block.
5. *** If “break” is not present after the matching case statements are executed, it will

continue to execute all the statements in the below cases including default, till the end of
“switch” statement.

6. If no matched case, then control goes to “default” block if it exists (default is optional)
and then comes out of the block.

7. Also, there must be only one “case” to be executed; if not, the “default” is to be executed.

Flow chart for Switch case:

CITY Leadertain.com Ast. Prof. M. Rahul 23

For C
IT Students

Only

PTC Unit II

Example1: [switch-case statements; multi-way selection]

Aim: Print the given ranks of 1, 2, or 3 in English words

#include<stdio.h>

int main()

{ //opening switch block

int rank;

printf("\n Enter rank 1,2 or 3: ");

scanf("%d",&rank);

CITY Leadertain.com Ast. Prof. M. Rahul 24

For C
IT Students

Only

PTC Unit II

switch (rank) { //opening switch block

case 1: printf("\n First Rank");

break;

case 2: printf("\n Second Rank");

break;

case 3: printf("\n Third Rank");

break;

default:

printf("\n You are not ranked");

} //closing switch block

return 0;

} //closing main function

/* Output

Enter rank 1,2 or 3: 2

Second Rank

Enter rank 1,2 or 3: 4

You are not ranked

*/

Valid Expressions Invalid Expressions

Rule int & char types are valid float & string types are invalid

2 + 3, 9 * 16 % 2, 10 / 2 + 5,

‘a’ , ‘a’ + 1

3.5, 7.0 / 2.5,

“Surya Kumar”

int a=1
char c=’B’

a, a – 4, a + c p, p + 2.5, p * 10 float p=2.5

Example - Valid switch expression:
switch (2+5) {

case 5:

printf("2+5 makes 7");

break;

case 4:

printf("2+5 is not 4");

break;

CITY Leadertain.com Ast. Prof. M. Rahul 25

For C
IT Students

Only

PTC Unit II

}

/* Output

Output:

2+5 makes 7

*/

Example - Invalid switch expression:
switch (4.5) { //error: Switch quantity not an integer

case 5:

printf("I am 5");

break;

default:

printf("I am default");

break;

}

C. Repetition

Concept of Loop, Pre-test and Post-test Loops, Initialization and Updating, Event
and Counter Controlled Loops, Loops in C, Other Statements Related to Looping.

Iterative Statements or Looping Statements
The process of executing block statements many times repeatedly until the given condition is
satisfied is called iterative statements or looping statements. The 3 types of iterative statements:

1. ‘for’ loop (also, Nested ‘for’ loop)
2. ‘while’ loop

CITY Leadertain.com Ast. Prof. M. Rahul 26

For C
IT Students

Only

PTC Unit II

3. ‘do-while’ loop

‘for’ loop:
A for loop is to run a block of statements many times until the given condition satisfied. We
choose “for” loop when we KNOW how many times we need to repeatedly execute the block of
statements.

“for” loop is an ENTRY-controlled loop or a PRE-TEST loop;
Meaning: it first checks the “condition” to decide if it needs to execute the block of statements.

“for” is a Counter-controlled loop because it is controlled by a counter variable, where the
number of times the loop will execute is known ahead of time.
Examples:

read 5 numbers
print 7 items
sort n items

Syntax:

for (Initialization; Condition Expression; Increment or Decrement)

{

CITY Leadertain.com Ast. Prof. M. Rahul 27

For C
IT Students

Only

PTC Unit II

//Block of statements inside this loop

}

Flow Chart of “for” loop:

How does the “for” loop work?
1. First, the initialization statement is executed only once.
2. Second, the “condition” is evaluated.

a. If the “condition” is FALSE, the control will exit the “for” loop
b. If the “condition” is TRUE, the statements inside the body of the “for” loop are

executed; then, the Update Counter will either Increment or Decrement.
3. Again the “condition” is tested.
4. This process of steps 2 and 3 will repeat until the “condition” is FALSE. When the test

expression is false, the control exits the loop.

Example: [for loop]
// Print numbers from 1 to 5

#include <stdio.h>

int main() {

int counter;

for (counter = 1; counter < 11; ++counter)

{

printf("%d ", counter);

}

return 0;

CITY Leadertain.com Ast. Prof. M. Rahul 28

For C
IT Students

Only

PTC Unit II

}

Output:

1 2 3 4 5

Example2: [for loop]
// Program to find the sum of first n natural numbers

// Natural numbers: Positive integers 1,2,3...n

#include <stdio.h>

int main()

{

int num, count, sum = 0;

printf("Enter +ve integer (max of natural number 1-100: ");

scanf("%d", &num);

// for loop terminates when num is less than count

for(count = 1; count <= num; ++count)

{

sum += count;

}

printf("Sum = %d", sum);

return 0;

}

Output

Enter +ve integer (max of natural number 1-100): 10

Sum = 55

Example3: [for loops with if condition]
//Find GCD of 2 numbers

#include <stdio.h>

int main()

{ int num1, num2, i, gcd;

printf("Enter two integers: ");

//Storing user input into num1 and num2

scanf("%d %d", &num1, &num2);

for(i=1; i <= num1 && i <= num2; ++i)

CITY Leadertain.com Ast. Prof. M. Rahul 29

For C
IT Students

Only

PTC Unit II

{

// Checks if the current value of i is

// factor of both the integers num1 & num2

if(num1%i==0 && num2%i==0)

gcd = i;

}

printf("GCD of input numbers %d and %d is: %d", num1, num2, gcd);

return 0;

}

/* Output

Enter two integers: 9 27

GCD of input numbers 9 and 27 is: 9

*/

Example4: [FOR Loop]
/* C program to print all the characters of C character Set */

#include<stdio.h>

int main() {

int i;

printf("ASCII ==> Character\n");

for(i = -128; i <= 127; i++)

printf("%d ==> %c\n", i, i);

return 0;

}

Example5: [FOR Loop & Conditional]
/* C Program to print character type using ASCII table */

#include <stdio.h>

#include <ctype.h>

int main() {

printf("| Character | ASCII | Type |\n");

printf("| :-------: | ----: | :---------- |\n");

for (int i = 32; i < 128; i++) {

printf("| %3c | %3d | ", i, i);

if (isalpha(i))

printf("Alphabet |\n");

CITY Leadertain.com Ast. Prof. M. Rahul 30

For C
IT Students

Only

PTC Unit II

else if (isdigit(i))

printf("Digit |\n");

else if (ispunct(i))

printf("Punctuation |\n");

else if (isspace(i))

printf("Space |\n");

else if (iscntrl(i))

printf("Control |\n");

}

return 0;

}

Output:
Character	ASCII	Type
	32	Space
!	33	Punctuation
"	34	Punctuation
#	35	Punctuation

- - - - - - - -
| 0 | 48 | Digit |
| 1 | 49 | Digit |

- - - - - - - -
| A | 65 | Alphabet |
| B | 66 | Alphabet |

- - - - - - - -

‘while’ loop:
A “while” loop is to run a block of statements many times until the given condition satisfied. A
while loop has one specific condition and executes as long as the given condition is TRUE. We
choose “while” loop when we DO NOT KNOW how many times we need to repeatedly execute
the block of statements.

“while” loop is an ENTRY controlled loop or a PRE-TEST loop;
Meaning: it first checks the “condition” to decide if it needs to execute the block of statements.

“while” and “do-while” statements can be Event-controlled loops because termination of

CITY Leadertain.com Ast. Prof. M. Rahul 31

For C
IT Students

Only

PTC Unit II

the loop depends on an event instead of executing a fixed number of times.
Examples: read until input ends

read until a number encountered
search through data until item found

Syntax of ‘while” loop:

Initialization;

while (ConditionExpression)

{

// code block of the loop

Increment or Decrement (optional)

}

Flow Chart of ‘while’ loop

How “while” loop works?
1. First, while loop tests the “condition” inside the parentheses ().
2. If “condition” is TRUE, statements inside the body of “while” loop are executed.

a. Counter will be incremented or decremented if it is there (Optional in while loop)
3. Then, “condition” is tested again.
4. The steps 2 and 3 will repeat until “condition” is FALSE.
5. When the “condition” is FALSE, the control will exit the loop.

Different ways to write ‘while’ loop structure:

while(true) while(i<5) while(i<=n)

CITY Leadertain.com Ast. Prof. M. Rahul 32

For C
IT Students

Only

PTC Unit II

{

}

{

}

{

}

Example1: [while loop]
// Print numbers from 0 to 5

#include <stdio.h>

int main() {

int i = 0;

while (i <= 5) {

printf("%d\n", i);

++i;

}

return 0;

}

/* Output : 0 1 2 3 4 5 */

Example2: [while loop]
#include<stdio.h>

int main ()

{ /* local variable Initialization */

int i = 1,times=5;

/* while loops execution */

while(i <= times)

{ printf("while loop#: %d\n", i);

i++;

}

return 0;

}

Output:
while loop#:1

while loop#:2

while loop#:3

while loop#:4

while loop#:5

“do-while” loop

CITY Leadertain.com Ast. Prof. M. Rahul 33

For C
IT Students

Only

PTC Unit II

The “do..while” loop is similar to the “while” loop with one important difference.
The body of “do..while” loop is Executed At Least Once regardless of the “condition”.
Only then, the “condition” is checked.

“do-while” loop is an EXIT-controlled loop or a POST-TEST loop;
Meaning: it first executes the block of statements at least once and then checks the “condition”
It can also be an EVENT-controlled loop.

Syntax of the “do..while” loop:

Initialization;

do {

// code block of the loop

Increment or Decrement (optional)

}

while (ConditionExpression);

Flow Chart of ‘do-while’ loop:

How do-while works?
1. First, the body of “do-while” loop is executed AT LEAST ONCE.
2. Only then, the “condition” is checked.

a. If TRUE, the block of statements in the body of the loop is executed

3. Then, the “condition” is checked once again.

4. Steps 2 and 3 will repeat until the “condition” becomes FALSE.

5. If the “condition” is FALSE, the control will exits the loop.

Example1: [do - while]

CITY Leadertain.com Ast. Prof. M. Rahul 34

For C
IT Students

Only

PTC Unit II

#include <stdio.h>

int main() {

// Initialization statement

int i = 0;

do {// loop body

printf("%d ", i);

i++; // update expression : i = i + 1

} while (i > 0); // condition

return 0;

}

Output: 0

Example 2: [do-while]
// Program to add numbers until the user enters zero

#include <stdio.h>

int main() {

double number, sum = 0;

// the body of the loop is executed at least once

do {

printf("Enter a number: ");

scanf("%lf", &number);

sum += number;

}

while(number != 0.0);

printf("Sum = %.2lf",sum);

return 0;

}

OUTPUT:

Enter a number: 10

Enter a number: 5.25

Enter a number: 0

Sum = 15.25

Here, we have used a do...while loop to prompt the user to enter a number. The loop works as
long as the input number is not 0.

CITY Leadertain.com Ast. Prof. M. Rahul 35

For C
IT Students

Only

PTC Unit II

Unconditional Statements

The statements that do not need any condition to control the flow of execution of a program are

called Unconditional statements. They are,

1. break statement

2. continue statement

3. goto statement

“break” statement

The “break” statement is used to
1. terminate a “switch-case” statement
2. terminate looping statements “for”, “while” and “do-while”

Note: The “break” statement almost always needs “if” condition to work properly.

“break” Syntax:

break;

“break” Execution Flow:

CITY Leadertain.com Ast. Prof. M. Rahul 36

For C
IT Students

Only

PTC Unit II

Example1: [break in while]
//break statement in while loop

#include<stdio.h>

int main()

{ int i = 0;

while (i<=5)

{

if(i==3)

break;

printf("%d ",i);

i++;

}

return 0;

}

/* OUTPUT

0 1 2 */

“continue” statement

CITY Leadertain.com Ast. Prof. M. Rahul 37

For C
IT Students

Only

PTC Unit II

The “continue statement forces the control to skip the current iteration and go to the next iteration
of the loop.

1. In “while” and “do-while” statements, the “continue” statement will directly jump the
execution control to “condition”,

2. In “for” statement, the “continue” statement will jump the execution control to
increment/decrement part of the loop.

“continue” Syntax:

continue;

“continue” Execution Flow:

Example1: [continue statement in for loop]

//continue statement in for loop
#include<stdio.h>
int main()
{ int i;

for(i=0; i<=5; i++)
{

if(i==4)
continue;

printf("%d ",i);
}
return 0;

}

/* OUTPUT */

0 1 2 3 5

“goto” statement

CITY Leadertain.com Ast. Prof. M. Rahul 38

For C
IT Students

Only

PTC Unit II

The “goto” statement is used to jump the execution control from one statement to another
statement in the same function.

“goto” Syntax:

//code
LABEL:
//code

//code
goto LABEL;
//code

The “LABEL” can be any name defined by the user.
Note: The use of “goto” statement is dangerous as the control flow of the program is not easily
manageable. Instead, prepare the logic using “break or continue’ and avoid using ‘goto’ unless it
is necessary.

Example1: [goto label jump statement]
//goto jump statement
#include<stdio.h>
int main()
{ int rank;

ENTRY:
printf("\n Enter rank [1-3] : ");
scanf("%d",&rank);

if ((rank<1)||(rank>3))
{

printf("\n Rank must be 1, 2 or 3. Please ReEnter!");
goto ENTRY;

}
printf("\n The Rank is %d. Thank you.", rank);
return 0;

}

/* OUTPUT
Enter rank [1-3] : 0
Rank must be 1, 2 or 3. Please ReEnter!

Enter rank [1-3] : 1
The Rank is 1. Thank you. */

Quick Reference

CITY Leadertain.com Ast. Prof. M. Rahul 39

For C
IT Students

Only

PTC Unit II

Differences between “switch” and “if-else-if” (“else-if” ladder)

switch if-else-if (else-if ladder)

The control directly jumps to the matched
“case” of the value in “switch”

The control goes through every “else-if” until
it finds TRUE

“switch” is considered more readable “if-else-if” ladder is compact than Nested
“if-else”

Use of “break” statement in “switch-case” is
essential

Use of “break” statement in “else-if” is not
required

Data type of the variable or value used in
“switch” can be “int” or “char” only.
The “float” or string are NOT allowed.

else-if ladder accepts any data type

Switch can only be used for a specific value; a
range of values is not allowed.

If condition generally uses relational operators
(< or >) to test values.

Switch-case statement works on Equality
operator

If-else condition works on TRUE or FALSE
boolean value

Syntax:
switch(expression) {

case value-1:
Block-1;
Break;

case value-2:
Block-2;
Break;

case value-n:
Block-n;
Break;

default:
Block-1;

}
Statement outside switch block

Syntax:
if (condition 1)
{
statement1;

} else if (condition 2)
{
Statement2;

} else if (condition n)
{
Statement n;

} else
{
Default statement;

}
Statement in the main program

Comparison of Loops

CITY Leadertain.com Ast. Prof. M. Rahul 40

For C
IT Students

Only

PTC Unit II

‘for’ loop ‘while’ loop ‘do-while’ loop

Entry controlled loop -
CONDITION is specified at
TOP

Entry controlled loop -
CONDITION is specified at
TOP

Exit controlled loop -
CONDITION is specified at
BOTTOM

COUNTER (Inc/Dec)
controlled loop

EVENT (or Condition)
controlled loop

EVENT (or Condition)
controlled loop

Use it when you know how
many times to iterate

Use it when you don’t know
how many times to iterate

Use it when you don’t know
how many times to iterate

If the condition is TRUE, the
body of “for” will be executed.

If the condition is TRUE, the
body of “while” will be
executed.

The body of “do-while” be
executed at least once before
checking the condition.

Repeats a Preset number of
times

Repeats until a condition is
met

Block of statements is
executed at least once; then
Repeats until a condition is
met

No BRACKETS { } for single
statement

No BRACKETS { } for single
statement

BRACKETS { } are
compulsory even for a single
statement

Syntax:

for(initialization;

condition;

Inc/Dec)

{

// code block

}

Syntax:

Initialization;

while(condition)

{

// code block

Inc/Dec;(optional)

}

Syntax:

Initialization;

do

{

// code block

Inc/Dec;(optional)

}while(condition);

Example: for

#include <stdio.h>

int main() {

int i;
//for(init;cond;Inc/Dec)

for (i=0; i<=5; i++)

{

//loop body

printf("%d ", i);

Example: while

#include <stdio.h>

int main() {

int i = 0;

//while condition

while (i<=5){

//loop body

printf("%d ", i);

//update expression

i++;

Example: do-while

#include <stdio.h>

int main() {

int i = 0;

do {

//loop body

printf("%d ", i);

//update expression

i++;

} while (i > 0);

CITY Leadertain.com Ast. Prof. M. Rahul 41

For C
IT Students

Only

PTC Unit II

}

return 0;

}

}

return 0;

}

//condition

return 0;

}

Output:

0 1 2 3 4 5

Output:

0 1 2 3 4 5

Output:

0

CITY Leadertain.com Ast. Prof. M. Rahul 42

For C
IT Students

Only

PTC Unit II

Comparison of “break” and “continue” statements

break continue

Used to terminate the loop Used to SKIP current iteration and go to
NEXT iteration

Control passed to outside the loop Control passed to the beginning of the loop

EXIT from control loop Loop takes NEXT iteration

“break” may be used in both SWITCH and all
LOOPS (for, while, do-while)

“continue” may only be used in LOOPS (for,
while, do-while)

Syntax:
for (init; condition; inc/dec)

{

//body of loop

if(condition to break)

break;

}

Syntax:
for (init; condition; inc/dec)

{

//body of loop

if(condition to break)

continue;

}

Example:

#include<stdio.h>

int main()

{ int i;

for(i=0;i<=5;i++)

{

if(i==3)

break;

printf("%d ",i);

}

return 0;

}

Example:

#include<stdio.h>

int main()

{ int i;

for(i=0;i<=5;i++)

{

if(i==3)

continue;

printf("%d ",i);

}

return 0;

}

Output:

0 1 2

Output:

0 1 2 4 5

CITY Leadertain.com Ast. Prof. M. Rahul 43

For C
IT Students

Only

PTC Unit II

break exit (return value)

break is a keyword in C. exit() is a standard C library function in
stdlib.h

break causes an immediate termination from
the switch or loop (for, while or do-while) and
continues the remaining program.

exit() terminates whole program execution.

break is a reserved word in C; therefore it can't
be used as a variable name.

exit() can be used as a variable name.

No header files need to be included to use
break statement.

stdlib.h needs to be included to use exit().

break transfers the control to outside the
switch or loop (for, while or do-while).

exit() returns the control to the operating
system or another program that uses this one
as a sub-process.

Example of break
// some code here before while loop
while(true)
{
...
if(condition)
break;

}
// some code hereafter while loop

Example of exit()
// some code here before while loop
while(true)
{
...
if(condition)
exit(1);

}
// some code hereafter while loop

In the above code, break terminates the while
loop and some code here after the while loop
will be executed after breaking the loop.

In the above code, when if(condition) returns
true, exit(1) will be executed and the program
will get terminated. Upon call of exit(1).

Conclusion:
break is a statement that terminates a switch or
loops and continues the next program
statements.

Conclusion:
exit() is a library function that causes the
immediate termination of the entire program.

CITY Leadertain.com Ast. Prof. M. Rahul 44

For C
IT Students

Only

PTC Unit II

CITY Leadertain.com Ast. Prof. M. Rahul 45

For C
IT Students

Only

