
PY Unit-I Study Material v1

Python Unit-I

Introduction: Introduction to Python, Program Development Cycle, Input, Processing, and Output,
Displaying Output with the Print Function, Comments, Variables, Reading Input from the Keyboard,
Performing Calculations, Operators. Type conversions, Expressions, and More about Data Output.

Data Types and Expressions, Strings Assignment, and Comments, Numeric Data Types and
Character Sets, Using functions and Modules.

Introduction to Python

​What is a computer programming language?
​Computer programming languages do communicate and provide instructions to computers. These
programming languages can represent data (like numbers, text or images, etc.) and also provide a
way to represent instructions that manipulate or work with that data.

What is Python?
Python is a high-level, interpreted computer programming language known for its simplicity,
readability, and versatility.

Python is
● Interpreted (bytecode-compiled) language,
● High-level language,
● Dynamic Object-Oriented Programming language.
● also supports Structural programming and Functional programming

Benefits of Python compared to other languages are,
● Easy to learn like English,
● Flexible syntax (125,000+ libraries available)
● Open-source language that’s free to use,
● Easy to customize as per your need.

Python is used to develop
● Software applications (desktop),
● Web applications,
● Mobile apps and
● Complex Scientific & Numerical applications

○ Artificial Intelligence & Machine learning

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 1

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

○ Task automation,
○ Data science,
○ Data analysis,
○ Data visualization.

Python is a great choice for:

● Web and Internet development (e.g., Django and Pyramid frameworks, Flask and Bottle
micro-frameworks)

● Scientific and numeric computing (e.g., SciPy – a collection of packages for the purposes of
mathematics, science, and engineering; Ipython – an interactive shell that features editing and
recording of work sessions)

● Education (it’s a brilliant language for teaching programming!)
● Desktop GUIs (e.g., wxWidgets, Kivy, Qt)
● Software Development (build control, management, and testing – Scons, Buildbot, Apache Gump,

Roundup, Trac)
● Business applications (ERP and e-commerce systems – Odoo, Tryton)
● Games (e.g., Battlefield series, Sid Meier’s Civilization IV…), websites and services (e.g.,

Dropbox, UBER, Pinterest, BuzzFeed...)

https://pythoninstitute.org/about-python

History of Python
The Python programming language was invented by Guido Van Rossum in the year 1989. Python
is a successor to the ABC programming language. The first version of Python was released into
the market on 20th Feb 1991, later it was released with different versions.

S. No. Version Release Date

1 Python 1.0 Jan 1994

2 Python 2.0 Oct 2000

3 Python 3.0 Dec 2008

4 Python 3.10 Oct 2021

5 Python 3.11 Oct 2022

6 Python 3.11.2 Feb 2023

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 2

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

What are the Features of Python?
Some of the Main Features of Python are:

1. Simple and easy to learn: Python has a clean and simple syntax, which makes it easy to
read and write as it uses Indentation instead of curly braces.

2. Interpreted: An interpreter executes Python code line by line, eliminating the need for
compiling and linking the code.

a. Python gives the output till the line of the program is correct. Whenever it finds any
error in the line, it stops running and generates an error statement.

b. This makes Python an efficient language for prototyping and testing.
c. IDLE (Interactive Development Environment) is an interpreter that comes with

Python. It follows the REPL (Read Evaluate Print Loop) structure just like in
Node.js. IDLE executes and displays the output of one line of Python code at a time.

3. Platform independent: Python code can be executed on various operating systems,
including Windows, Linux, Unix, and macOS, without any modifications.

4. Object-Oriented: Python is an object-oriented programming language that supports
Inheritance, Encapsulation, and Polymorphism. Python also supports Procedural
programming and Functional programming.

5. Dynamically typed: Python is a dynamically typed language. We do not need to specify
data types for variables.

a. The Python interpreter determines the data types of the variables at runtime based
on the values in an expression.

6. Extensive standard library: Python comes with a large standard library with many
packages and modules for various tasks such as file I/O, networking, regular expressions,
and more.

a. Programmers can save time and effort using these pre-built Python functions.
b. PyPI.org (Python Package Index) is a repository of many packages.
c. PIP is a package manager tool used to install additional packages that are not part

of the Python standard library in our PC from the PyPI repository.
7. Open Source and Free: Python is an open-source programming language. You can

download it for free from the python.org site. The Python users community constantly
contributes to improving Python.

8. High-level language: Python provides high-level data types such as Lists, Tuples, Sets,
and Dictionaries, that allow developers to write code that is more concise and expressive.

9. Interactive mode: Python provides an interactive mode where code can be entered and
executed immediately, making it ideal for exploratory programming and testing.

10. Easy integration: Python can be easily integrated with other languages such as C, C++,
and Java, which makes it an ideal language for building complex applications that require
multiple programming languages.

11. Graphical User Interface (GUI) Support: Using Python, we can create GUI (Graphical
User Interfaces). We can use Tkinter (tk), PyQt, wxPython, or Pyside packages for GUI
application development.

Program Development Life Cycle

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 3

CIT
 Stu

dents O
nly

https://pypi.org/
https://www.python.org/

PY Unit-I Study Material v1

Program development is the process of creating application programs using a variety of
computer "languages," such as Java, Python, and C++.

The program (or software) development life cycle (PDLC) consists of the following 6 stages.

1. Define & Analyze Problem: In this stage, understand the problem and clearly define how
to solve it. This includes identifying the inputs, outputs, and desired behavior of the
program.

2. Design the Plan: Design the algorithms, data structures, and tools that will be used to
implement the program. This is a visual diagram of the flow containing the program. This
step will help you break down the problem.

3. Coding: In this stage, the planned design is executed and the code is written. This involves
translating the algorithm into Python code.

4. Testing & Debugging: Once the code has been written, it is tested to ensure that it works
correctly. This includes identifying and fixing any bugs or errors that are found.

5. Production Deployment: Once the code has been tested and verified, it is deployed to
production. This involves making the program available to users.

6. Maintenance: After the program has been deployed, it may need to be updated or modified
over time to fix bugs, add new features, or improve performance. This involves ongoing
maintenance and support of the program.

Input, Processing, and Output in Python

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 4

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

In Python, Input, Processing, and Output are fundamental concepts of programming.
● Input refers to receiving data from the user or from an external source and bringing it into

the program for processing.
● Processing refers to manipulating the input data to produce a desired output. This may

involve performing calculations, executing conditional statements, and using loops to iterate
through data.

● Output refers to the result of the processing step, which is then presented to the user or
saved for later use.

In Python, you can use built-in functions to perform these steps.
● input() function is used to take input from the user,
● print() function is used to display output to the user.
● int() function is used to convert string integer input into a numeric integer to be used in

calculations.
● float() function is used to convert a string float input into a numeric float to be used in

calculations.
● str() function is used to convert a numeric number to a string for concatenation and

printing.

An example program in Python demonstrates Input, Processing, and Output:

#input section

name=input("Enter name : ")

age=int(input("Enter age : "))

#processing section

year = str((2023-age)+100)

#output section

print("Hi " + name + ", You are " + str(age) + " years old.")

print("You will be 100 in the year "+year)

Output:
Enter name : Nitin
Enter age : 20
Hi Nitin, You are 20 years old.
You will be 100 in the year2103

Explanation:
● the input step takes two pieces of data from the user: name and age.
● the processing step calculates the year to find when the user will be 100 years old.
● finally, the output step displays a personalized message to the user with their name and the

calculated year.
Python Interpreter

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 5

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

The Python Interpreter is a software that translates python code into machine language and
executes it line by line.

1. Lexer breaks the line of code into tokens (ex: variables, values)
2. Parser generates a relationship among those tokens (ex: var=value). This is called an AST

(Abstract Syntax Tree)
3. Compiler converts AST into Intermediate Code Object(s) that is one level higher than

machine code.
4. PVM - Python Virtual Machine interprets each code object into machine code for

execution.

You can run Python code in two modes.
1. Python Interactive mode
2. Python Script mode (Development mode)

1. Python Interactive mode
➔ Python interpreter waits for you to enter a command.
➔ When you type the command, the Python interpreter executes the command,
➔ Then it waits again for the next command.

Python interpreter in interactive mode is commonly known as Python Shell/REPL.
REPL is an interactive mode in Python to communicate with your computer.
The term “REPL” is an acronym for Read, Evaluate, Print, and Loop

1. Read the user input (reads Python commands).
2. Evaluate your code (processes Python commands).
3. Print any results (displays the results).
4. Loop back to step 1 (goes back to reread the Python command).

A. Python Interactive Shell in command prompt
➢ Open the command prompt on Windows and the terminal window on mac
➢ Type python or py and press enter
➢ A Python Prompt comprising of three greater-than symbols >>> appears, as shown

below.
➢ Start typing Python commands and see results

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 6

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

B. Python Interactive Shell in IDE such as IDLE: (Recommended)
➢ Open the IDLE application.
➢ A Python Prompt comprising of three greater-than symbols >>> appears, as shown

below.
➢ Start typing Python commands and see results

2. Python Script mode (Development mode)
In This mode,
➔ Write a Python script (or program) - Open the python shell (IDLE), Go to File/New

File, and Write a Python program,
➔ Save it as a separate file with an extension .py and
➔ then Run the Python file.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 7

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Similar to IDLE, the following are some of Python‘s commonly used IDEs:
● MS Visual Studio, Jupiter, Pycharm, Eclipse,
● PyDev, Komodo, NetBeans IDE for Python,
● PythonWin and others

Displaying Output with the Print Function

In Python, the print() function is used to display output on the console or terminal.

Syntax of the print() function:

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

● objects are the values to be printed. You can pass multiple objects separated by commas,
and they will be printed with a space between them by default.

● sep parameter specifies the separator between the objects. By default, it is a space
character.

● end parameter specifies the character that should be printed at the end of the output. By
default, it is a newline character.

● file parameter specifies the file object to which the output will be printed. By default, it is the
standard output (sys.stdout).

● flush parameter specifies whether the output stream should be forcibly flushed after
printing. By default, it is False.

Examples of using the print() function:
1. Printing a string:

print("Hello CIT")

Output:
Hello CIT

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 8

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

2. Printing a variable:

college="CIT"

print("Our college is", college

Output:
Our college is CIT

3. Printing a number:

sem = 2

age = 20

print("We are in",sem,"nd semester")

print("We are",age,"years old")

Output:
We are in 2 nd semester
We are 20 years old

4. Printing multiple items separated by a separator:

print("CO","DLD","DS","Math","Python", sep=', ')

Output:
CO, DLD, DS, Math, Python

5. Printing with format():
a. Syntax: .format(var0,var1...)
b. Value specifier: {}
c. Each pair of {}s represents a value of the variable specified in

the format() function.

d. The sequence of variables in format() function must match the

sequence of {} in quotes

name = "Varsha"

age = 19

print("My name is {} and I am {} years old.".format(name,age))

Output:
My name is Varsha and I am 19 years old.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 9

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

6. Printing with format() using position index:
a. Syntax: .format(var0,var1...)
b. Value specifier: {variable pos#}
c. {variable pos#} represents the value of the variable specified

in that position in the format(var0, var1, var2, ...) function.

d. The position of variables in format() function starts with 0 and

increments by 1

name = "Varsha"

age = 19

grade = 'A'

print("{0} has grade {2}. {0} is {1} years old.".format(name,age,grade))

Output:
Varsha has grade A. Varsha is 19 years old.

7. Printing with f string
a. f or F means formatted string literals that are more readable and faster. (>= 3.6).
b. To create an f-string, prefix the string with letter “f”.
c. These f strings contain replacement fields in curly braces {}
d. The f or F in front of strings tell Python to look at the values, expressions, or

instances inside {} and substitute them with the variables' values or results if they
exist.

e. Formatted strings are expressions evaluated at run time (while other string literals
always have a constant value).

#Example1: Basic fstrings

name1 = “Divya”

name2 = “Nitin”

cash1=5000

cash2=7000

total_cash = cash1 + cash2

#print in format method-2: Better one

print(f"Cash from {name1} = {cash1}")

print(f"Cash from {name2} = {cash2}")

print(f"Total amount = {total_cash}")

Output:
Cash from Nitin = 100
Cash from Naveen = 200
Total amount = 300

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 10

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

#Example2: f string for precision, datetime and number conversion

import decimal

import datetime

precision: nested fields, output: 12.35

width = 12

precision = 4

value = decimal.Decimal("12.3456789")

print(f"result:{value:{width}.{precision}}")

print(f"result:{value:{2}.{5}}")

date format specifier, output: March 27, 2017

today = datetime.datetime(year=2023, month=3, day=17)

print(f"{today:%B %d, %Y}")

hex integer format specifier, output: 0x400

number = 1024

print(f"{number:#0x}")

These are just some examples of how to use the print() function in Python. You can customize the
output by using different arguments and formatting options.

Describe Comments in Python
You can use both single-line and multi-line comments in Python.

1. Single-line comments start with #. Anything written after the # symbol will be ignored by
the Python interpreter and treated as a comment.

2. Multi-line comments are enclosed in triple quotes (" " " or ' ' '). Anything written within
the triple quotes will be ignored by the Python interpreter and treated as a comment.

Example:
""" Multi line comment or DocString

Title: Find and report grades

Author: Lakshmi

Date from: 01-01-2020 to: 31-12-22

Version: 2.5

Corrections: Line number - 45, Function - calc()

"""

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 11

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

#Single line comment

#Perform processing

print(".....") #End of line comment

#Generate Report

What are the Reserved Keywords in Python?
● Keywords are the reserved names in python.
● Each keyword has a fixed meaning.
● They are case-sensitive.
● We cannot use them as identifiers such as variable, function or class names.

Following are 35 reserved keywords and 3 reserved soft keywords.

False break finally lambda while

True class for nonlocal with

None continue from not yield

and def global or

as del if pass Soft Keywords

assert elif import raise match

async else in return case

await except is try _

Note: Soft keywords are context sensitive. They are used in special programming such as pattern
matching.

#List reserved keywords in Python

import keyword

print(keyword.kwlist)

print(keyword.softkwlist)

Output:

['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await',
'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except',
'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is',
'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try',
'while', 'with', 'yield']

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 12

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

>>> help("keywords")

Output:
Here is a list of the Python keywords. Enter any keyword to get more help.
False class from or
None continue global pass
True def if raise
and del import return
as elif in try
assert else is while
async except lambda with
await finally nonlocal yield
break for not

>>> help("if")

The "if" statement

The "if" statement is used for conditional execution:

if_stmt ::= "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else" ":" suite]

What are Identifiers and Rules for Creating Identifiers in Python?

In Python, an identifier is a name used to identify a variable, function, class, or other objects. Here
are the rules for creating identifiers in Python:

1. The name can only contain letters (a to z, A to Z), digits (0 to 9), and underscores (_).
2. The first character must be a letter or an underscore. It cannot be a digit.

3. Identifiers are case-sensitive. For example, "myVar" and "myvar" are two different

identifiers.

4. Special symbols or whitespace in between the identifier are NOT allowed. However, the

only underscore (_) symbol is allowed.

5. You cannot use reserved words as an identifier.

6. The name should be of a reasonable length. A good identifier is one that describes the

purpose of the variable, function, or class it represents.

7. Avoid using single-character names, except for temporary variables.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 13

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Valid Identifiers:
● bonus (It contains only lowercase alphabets)
● total_sum (It contains only '_' as a special character)
● _salary (It starts with an underscore '_')
● area_ (Contains lowercase alphabets and an underscore)
● num1 (Here, the numeric digit comes at the end)
● num_2 (It starts with lowercase and ends with a digit)

Invalid Identifiers:
● 5salary (it begins with a digit)
● @width (starts with a special character other than '_')
● int (it is a keyword)
● m n (contains a blank space)
● m+n (contains a special character)

Explain Variables in Python

● In Python, a variable is a name that refers to a value or object in memory. It is used to store

data so that it can be referenced and manipulated later in the program.

● Variables are used to store values of different data types such as numbers, strings, lists,

tuples, and dictionaries.

● Variables in Python are dynamically typed. It means we don't need to specify the data type

of a variable when we create it. Python automatically determines the data type of a variable

based on the value we assign to it.

● Python variables are case-sensitive.

● Variables must be assigned a value before being referenced.

● The interpreter allocates memory on the basis of the data type of a variable.

● The data type of a variable can change during runtime if a new value of a different data

type is assigned to it.

● For example,
○ x = ”Avinash”, Python automatically makes x as a string variable,
○ y = 10, Python automatically makes y as an integer variable

Variables in Python can have various data types, including

● Integer (int): A whole number, like 3 or -5

● Float (float): A decimal number, like 3.14 or -0.5

● Boolean (bool): A value that is either True or False

● String (str): A sequence of characters, like "hello world" or "42"

● Sequences, Sets or Mapping (list, tuple, set, dict)

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 14

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Variables can be used
● to assigning values,
● in expressions,
● to pass as arguments to functions, and
● in control structures like loops & conditional statements.

Scope of variables
A variable's scope is basically the lifespan of that variable. The 2 scopes are

● Global scope variables can be used throughout the entire program
● Local scope variables can only be accessed within the function or module in which they are

defined

Property Global Variable Local Variable

Definition Global variables are declared
outside the functions

Local variables are declared
within the functions

Keyword global None required

Scope Accessible throughout the code Accessible inside the
function

Lifetime Throughout the program
execution

Only during the function
execution

Storage Stored in a fixed location
selected by the compiler

Stored on the stack

Parameter Passing Parameter passing is not
necessary

Parameter passing is
necessary

Changes in a variable
value

Changes in a global variable are
reflected throughout the
program

Changes in a local variable
don't affect other functions
of the program

Example:
global pi=3.14 #Global variable

def area():

r = 10 #Local variable

print(pi*r*r)

area()

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 15

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

How to read input from the Keyboard in Python?
You can read input from the keyboard in Python using the built-in input() function. The input()
function reads a line of text from the keyboard and returns it as a string. Here's an example:
Example:
Prompt the user to enter college name
college = input() #or
college = input("Enter college name: ")
Print a greeting message
print("I am at " + name + "!")

Here, the input() function prompts the user to enter college name. The string "Enter college name:
" is passed as an argument to the input() function, which displays it as a prompt to the user. The
user's input is then stored in the college variable.

You can use the input() function to read any text input such as numbers, sentences, or even whole
paragraphs. Note: The input() function always returns a string. So, you must convert the input to
numeric data type using functions like int() or float() to perform numerical operations on it.

What is Type Conversion in Python? Demonstrate the conversion functions in a program.

Type conversion in Python refers to the process of casting or converting a value from one data
type to another data type. Python provides the following built-in functions to perform an explicit
type conversion or type casting.

Type Conversion Function Description

int() converts a value to an integer data type.

float() converts a value to a floating-point data type

str() converts a value to a string data type

bool() converts a value to a Boolean data type (True or False)

list() converts a value to a list data type

tuple() converts a value to a tuple data type

set() converts a value to a set data type

dict() converts a value to a dictionary data type

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 16

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Example code
converting string to integer

str_num = "100"

int_num = int(str_num)

print(int_num) # output: 100

converting integer to string

int_num = 200

str_num = str(int_num)

print(str_num) # output: "200"

converting string to float

str_num = "3.14"

float_num = float(str_num)

print(float_num) # output: 3.14

converting float to integer

float_num = 3.14

int_num = int(float_num)

print(int_num) # output: 3

converting list to set

num_list = [10, 20, 30, 40]

num_set = set(num_list)

print(num_set) # output: {10, 20, 30, 40}

converting dictionary to list of keys

grade_dict = {"A": 90, "B": 60, "C": 40}

grade_list = list(grade_dict.keys())

print(grade_list) # output: ["A", "B", "C"]

Note: Not all types of conversions are possible, and attempting to convert incompatible types can
result in errors. Therefore, it is important to carefully choose the appropriate type conversion
functions based on the data types involved in the conversion.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 17

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Performing Calculations in Python

Performing calculations in Python involves manipulating numerical values using,
A. Mathematical Operators,
B. math Functions,
C. Variables, and
D. Order of Operations (Precedence & Associativity in Expressions).

A. Mathematical Operators for Calculations:

An operator is a symbol used to perform arithmetic and logical operations in a program. It tells the
compiler to perform certain mathematical calculations. The Python programming language supports
the following 7 types of operators

1. Arithmetic Operators
2. Comparison (or Relational) Operators
3. Logical Operators
4. Assignment operators
5. Bitwise Operators
6. Membership Operators
7. Identity operators

1. Arithmetic Operators (+, -, *, /, %, **)

The arithmetic operators are the symbols used to perform basic mathematical operations like
addition, subtraction, multiplication, division, and percentage modulo. The following table provides
information about arithmetic operators.

Operator Meaning Example

+ Addition 10 + 5 = 15

- Subtraction 10 - 5 = 5

* Multiplication 10 * 5 = 50

/ / Division returns floating value 10 / 5 = 2.0

// // Division returns quotient integer 10 / 5 = 2

% Modulo (Remainder of the Division) 5 % 2 = 1

** Exponentiation 3**2 = 9

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 18

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

● Addition operator (+)
○ On Numerical data types, performs mathematical addition
○ On Character data types, performs concatenation or appending

● Modulo operator (%)
○ Used with integer data type only.

● Mixed-mode arithmetic: Calculations using both integers and floating-point numbers is
called Mixed-mode arithmetic. The less general type (int) will be automatically converted
into more general type (float) before operation is performed

○ Ex: If a circle has radius 5, we compute the area as follows:
○ >>> 3.14*5*5
○ 78.5
○ Here, the integer 5 will be converted to a float value 5.0 before calculation.

● eval () function is used to calculate an expression written inside the single quotes.
○ >>> eval('100/25*2')
○ 8.0

Example:

'''

Calculation using Arithmetic Operations

'''

a=10

b=5

print("{} + {} = ".format(a,b),end='')

print(a+b)

print("{} - {} = ".format(a,b),end='')

print(a-b)

print("{} * {} = ".format(a,b),end='')

print(a*b)

print("{} / {} = ".format(a,b),end='')

print(a/b) # Division with / returns in floating point data

print("{} // {} = ".format(a,b),end='')

print(a//b) # Division with // returns in integer quotient data

print("{} ** {} = ".format(a,b),end='')

print(a**b)

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 19

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Output:

10 + 5 = 15

10 - 5 = 5

10 * 5 = 50

10 / 5 = 2.0

10 // 5 = 2

10 ** 5 = 100000

2. Comparison or Relational Operators (<, >, <=, >=, ==, !=)

These operators are used to compare two values and always result in a boolean value
(True or False).

● Used to check the relationship between two values.

● Every relational operator has two results True or False.

● Used to define conditions in a program.

Operator Meaning Example

< Returns TRUE if the first value is smaller than second value,
otherwise returns False

10 < 5 is False

> Returns True if the first value is larger than second value,
otherwise returns False

10 > 5 is True

<= Returns True if the first value is smaller than or equal to
second value, otherwise returns False

10 <= 5 is False

>= Returns True if the first value is larger than or equal to second
value, otherwise returns False

10 >= 5 is True

== Returns True if both values are equal otherwise returns False 10 == 5 is False

!= Returns True if both values are not equal otherwise returns
False

10 != 5 is True

Example:

#Commparision or Relational Operators

a = 10

b = 5

print(a > b) #output: True

print(a < b) #output: False

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 20

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

print(a == b) #output: False

print(a != b) # not equal to, output: True

print(a >= b) #output: True

print(a <= b) #output: False

3. Logical Operators (and, or, not)

The logical operators are the symbols that combine multiple conditions into one condition. The
following table provides information about logical operators.

Operator Meaning Example

and Returns True if all conditions are True otherwise returns False 10 < 5 and 12 > 10 is False

or Returns False if all conditions are False otherwise returns True 10 < 5 or 12 > 10 is True

not Returns True if condition is False and returns False if the
condition is True

not(10 < 5 and 12 > 10) is
True

● Logical and - Returns True only if ALL conditions are True, if any of the conditions is
False then complete condition becomes False.

● Logical or - Returns True if ANY condition is True, if all conditions are False then the
complete condition becomes False.

Example:

#Logical Opertaors

a = True

b = False

print(a and b) #output: False

print(a or b) #output: True

print(not a) #output: False

a=10

b=5

la = (a<b) and (b<c)

lo = (a<b) or (b<c)

ln = not(a<b)

print("\n Logical AND = ",la) #False

print("\n Logical OR = ",lo) #True

print("\n Logical NOT = ",ln) #True

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 21

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

4. Assignment Operators (=, +=, -=, *=, /=, %=)

The assignment operators are used to assign the right-hand side value (Rvalue) to the left-hand side
variable (Lvalue).

The assignment operator is also used along with arithmetic operators. The following table describes
all the assignment operators in the Python programming language.

Operator Meaning Example

= Assign the right-hand side value to left-hand side variable A = 15

+ = Add both left and right-hand side values and store the result into
left-hand side variable

A += 10
⇒ A = A+10

- = Subtract right-hand side value from left-hand side variable value and
store the result into left-hand side variable

A -= B
⇒ A = A-B

* = Multiply right-hand side value with left-hand side variable value and
store the result into left-hand side variable

A *= B
⇒ A = A*B

/ = Divide left-hand side variable value with right-hand side variable value
and store the result into the left-hand side variable

A /= B
⇒ A = A/B

%= Divide left-hand side variable value with right-hand side variable value
and store the remainder into the left-hand side variable

A %= B
⇒ A = A%B

Multiple Assignment
You can assign a single value to more than one variable simultaneously.
Syntax
var1=var2=var3...varn= <expr>

Example:
x = y = z = 5

Example:
id, name, marks = 100, ‘Kiran’, 97
The variables id, name, marks simultaneously get the new values 100, ‘Kiran’, 97 respectively.

Example:
#Assignment operators

a = 2

a += 5 #equivalent to a = a + 5

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 22

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

print(a) #output: 7

a -= 3 #equivalent to a = a - 3

print(a) #output: 4

a *= 2 # equivalent to a = a * 2

print(a) # output: 8

a /= 4 #equivalent to a = a / 4

print(a) #output: 2.0

a %= 2 #equivalent to a = a % 2

print(a) #output: 0.0

5. Bitwise Operators (&, |, ^, ~, >>, <<)

The bitwise operators are used to perform bit-level operations in the Python programming language.
When we use the bitwise operators, the operations are performed based on the binary values. The
following truth table describes all the bitwise operators in Python programming language.

a b a & b
(AND)

a | b
(OR)

a ^ b
(XOR)

~ a
(NOT)

1 1 1 1 0 0

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

Let us consider two variables A and B as A = 25 (00011001) and B = 20 (00010100).

Operator Meaning Example

& the result of Bitwise AND is 1 if all the bits are 1;
otherwise, it is 0

A & B
⇒ 16 (00010000)

| the result of Bitwise OR is 0 if all the bits are 0;
otherwise, it is 1

A | B
⇒ 29 (00011101)

^ the result of Bitwise XOR is 0 if all the bits are same;
otherwise, it is 1

A ^ B
⇒ 13 (00001101)

~ the result of Bitwise once complement is the negation of the
bit (Flipping)

~A
⇒ 6 (00000110)

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 23

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

<< the Bitwise left shift operator shifts all the bits to the left by
the specified number of positions
Formula: x << y ⇒ x * 2y

A << 3
⇒ 200 (11001000)
or 200 (A * 23)

>> the Bitwise right shift operator shifts all the bits to the right
by the specified number of positions
Formula: x >> y ⇒ x / 2y

A >> 1
⇒ 12 (00001100)
or 12 (A / 21)

Example: [bitwise operators]

#Bitwise Operators

m = 10

n = 20

and_val = (m&n)

or_val = (m|n)

not_val = (~m)

xor_val = (m^n)

print("AND value = ",and_val) # 0

print("OR value = ",or_val) # 30

print("NOT value = ",not_val) # -11

print("XOR value = ",xor_val) # 30

print("left shift value = ", m << 1) # 20

print("right shift value = ", m >> 1) # 5

6. Membership Operators: Membership operators are used to testing if a value is a member of a
sequence.

Operator Syntax Description

in x in y Returns True if a sequence with the specified value is present in
the object.

not in x not in y Returns True if a sequence with the specified value is not
present in the object.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 24

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Example:
#Membership Operators in and not in

marks_list = [70, 40, 60, 90]

print(90 in marks_list) # output: True

print(66 not in marks_list) # output: True

branches = ["AI", "AIML", "CSE", "ECE"]

print("CSE" in branches) #True

branches = ["AI", "AIML", "CSE", "ECE"]

print("CSE" not in branches) #False

7. Identity Operators: Identity operators are used to comparing the memory addresses (or
locations) of two objects. These are used to check if two values (variable) are located on the same
part of the memory. If the x is a variable contain some value, it is assigned to variable y. Now both
variables are pointing (referring) to the same location on the memory.

Operator Syntax Description

is x is y This returns True if both variables are the same object or
same memory

is not x is not y This returns True if both variables are not the same
object or same memory

Example:
#Identity Operators compare addresses

x = 10

y = x

print(x is y) # output: True

a = [1, 2, 3]

b = [1, 2, 3]

print(a is b) # output: False

print(a is not b) # output: True

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 25

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

B. math Functions for Calculations:

Python has built-in math functions for more complex calculations such as trigonometric, square
root, log or constant values. You need to import the math module to access these functions.

Example:
import math

#Finding Small & Big numbers

smallnum = min(7, 17, 27)

bignum = max(7, 17, 27)

print("Min value: ", smallnum)

print("Max value: ", bignum)

#Finding absolute nos

absolutenum = abs(-7.25)

print("Absolute Positive Number: ", absolutenum)

#Finding exponent

powernum = pow(2, 3)

print("Power of Number: ", powernum)

#Finding square root

sqrtnum = math.sqrt(81)

print("Square root Number: ", sqrtnum)

#Finding ceil and floor

num1 = math.ceil(7.4)

num2 = math.floor(7.4)

print("Ceiling Number: ", num1)

print("Floor Number: ", num2)

Trigonometric functions

print(math.sin(math.pi/2)) # 1.0

print(math.cos(math.pi)) # -1.0

Logarithms

print(math.log10(100)) # 2.0

Constants

print(math.pi) # 3.141592653589793

print(math.e) # 2.718281828459045

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 26

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

C. Variables for Calculations:

You can assign values to variables and perform calculations with them.

#Calculate the area of the rectangle using height & width variables

h = 30

w = 20

area = h * w

print(area) # 600

Python also supports shorthand operators that allow you to perform a calculation and assign the
result to the same variable.

a = 10

print(a) # 10

a += 5

print(a) # 15

D. Order of Operations in Expressions for Calculations:

Expressions in Python

An expression in python consists of operators and operands (variables or values).
An expression may have several operations. The Python interpreter evaluates these
operations based on an ordered hierarchy. This is called Operator Precedence and
Associativity.

Operators are symbols that perform tasks such as arithmetic operations, logical operations,
membership operations, etc.

Operands are the constant values or variable values on which the operators perform the task. The
operand can be a direct value or variable.

Types of Expressions:
● Simple Expression - contains only one operator.

○ 2 + 5
○ - a

● Complex Expression - contains more than one operator
○ 2 + 5 * 7 (we reduce it to a series of simple expressions)
○ First, we calculate the expression 5 * 7 to 35 and
○ Then, we calculate the expression 2 + 35 to 37 as a result.

● Expressions return values as a boolean, an integer, or any other Python data type.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 27

CIT
 Stu

dents O
nly

https://www.scaler.com/topics/expression-in-python/

PY Unit-I Study Material v1

Precedence (priority) is used to find the order of different operators to be evaluated in a single
statement.
2 + 3 * 4 // * evaluates first
2 + 12 // + evaluates next
14

Associativity is used to find the order of operators with same precedence to be evaluated in a
single statement.

//left to right associativity
3 * 8 / 4 * 5 //both * and / has same precedence or priority
24 / 4 * 5 //left to right associativity
6 * 5
30

//right to left associativity
a = b = c = 0 // all = have same precedence or priority

👍The precedence rule of thumb arithmetic calculations could be BODMAS (or PEMDAS) order of
operations (precedence) when evaluating expressions. Parentheses can be used to specify the
order of operations.

B - Bracket
O - Of Squareroot or Of Exponent
DM - Division or Multiplication (same priority)
AS - Addition or Subtraction (same priority)

P - Parantheses
E - Exponent or Squareroot
MD - Multiplication or Division (same priority)
AS - Addition or Subtraction (same priority)

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 28

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Python Operators Precedence Table
Following is the operator Precedence table in Python. The operators are arranged in the
descending order of their precedence (Highest precedence at the top and Lowest precedence at
the bottom). By default, the Associativity is left-to-right except as mentioned below.

Precedence Operator Description Associativity

1 () Parentheses (Highest precedence)

2

x[index], x[index],
x(arguments…),
x.attribute

Subscription, slicing, call, attribute
reference

3 await x Await expression

4 ** Exponentiation right-to-left

5 +x, -x, ~x Unary plus, Unary minus, bitwise NOT right-to-left

6 *, @, /, //, %
Multiplication, matrix multiplication,
division, floor division, remainder

7 +, – Addition and subtraction

8 <<, >> Left and right Shifts

9 & Bitwise AND

10 ^ Bitwise XOR

11 | Bitwise OR

12 is, is not, in, not in,
Identity operators, Membership
operators

13 ==, != Equality operators

14 >, >=, <, <= Comparison operators

15 not x Boolean NOT

16 and Boolean AND

17 or Boolean OR

18 if-else Conditional expression

19 lambda Lambda expression

20 := Assignment expression

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 29

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Precedence of Operators:
Example1:
a = (10 + 12 * 3 % 34 / 8) #
print (a)
Output: 10.25
Explanation:
Precedence of /,% and ∗ are greater than Precedence of +
10 + 12 * 3 % 34 / 8 = 10 + 36 % 34 / 8 = 10 + 2/8 = 10 + 0.25 = 10.25

Example2:
b = (4 ^ 2 << 3 + 48 // 24)
print (b)
Output: 68
Explanation:
Precedence of // greater than + greater than << greater than ^ (XOR)
(4 ^ 2 << 3 + 48 // 24) = (4 ^ 2 << 3 + 2) = (4 ^ 2 << 5) = (4 ^ 64) = 68

Side Effects
A side effect is an action that results from the evaluation of an expression.

Expressions with Side Effects
x = 4 // x receives value 4
x = x + 4 // x receives value 7
y = ++x * 2 // y receives 16 and ALSO x value changes to 8

Expressions without Side Effects
a=4, b=4, c=5
result = a * 4 + b / 2 - c * b //values of a, b, c, d do not change

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 30

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Data Types in Python

Data types are the classification of data items. A Data type represents a kind of value to perform
an operation on a particular data. Python has several built-in data types. These data types are
used to store and manipulate different types of data in Python.

● Data types in Python are actually classes.
● Variables are instances or objects of those classes.
● No need to specify a datatype while declaring a variable.
● Python automatically sets a datatype based on the value we assign to a variable.

Python data types are classified into Primitive and Non-Primitive data types.
Primitive Data types: Numerics (int, float, complex), Character set (str), Boolean, Binary, and
None.
Non Primitive Data types: Sequences (str, list, tuple), Mapping (dict), and Sets (set)

type() function is used to find the data type of any variable.
● Syntax:

type(variable name)

● Ex: type(50)
Output: <class 'int'>

1. Python Numeric Data Type is used to hold numeric values. Python supports integers,
floating-point, and complex numbers. Integers are whole numbers, while floating-point numbers
have decimal points.

● int - holds signed integers of non-limited length. (Ex: 10)
● float- holds floating precision numbers and it’s accurate up to 15 decimal places. (Ex: 3.14)
● complex- holds complex numbers. (Ex: 5 +7j)

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 31

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Example:
#Data type of integer, float and complex numbers

a=70 # variable with integer value

b=70.2345 # variable with float value

c=70+5j # variable with complex value

print("Data type of",a, " is ", type(a))

print("Data type of",b, " is ", type(b))

print("Data type of",c, " is ", type(c))

Output:
Data type of 70 is <class 'int'>
Data type of 70.2345 is <class 'float'>
Data type of (70+5j) is <class 'complex'>

2. Python String Data Type

A string is a sequence of one or more characters enclosed in a single quote, double-quote, or
triple-quote. Multi-line strings are enclosed in triple quotes.
In python, there is no character data type. A character in Python is a string of length one. It is
represented by str class.

String Assignment using single quotes ‘ ‘ :
Syntax: var = ‘ string ‘ Ex: lang = ‘Python’

String Assignment using double quotes “ “ :
Syntax: var = “ string “ Ex: lang = “Python”

String Assignment using triple quotes ‘ ‘ ‘ or “ “ “ :
Syntax1: var = ‘’’ string ‘’’ Ex: lang = ‘’‘Python’’’

Triple quotes are used to assign a multi-line string to a variable.
Syntax2: var = “““ multi-line string ”””
Ex:

Ex: or “Python” or ‘’’Python’’’

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 32

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Access String Characters in Python

We can access the characters in a string in three ways.
● Indexing: Each character in a string is indexed starting from 0.

var[index]

● Negative Indexing: The index of the last character of a string is -1, the second from the last
is -2, and so on.
var[-index]

● Slicing: Access a range of characters in a string by using the slicing operator colon :
var[startIndex : endIndex-1]

Example:
string data type (str)

name = 'CIT'

city = "Guntur"

address = '''777, First line,

Guntur 522001'''

using , to concatenate 2 or more strings

print(name, city, address)

#using + to concatenate 2 or more strings

print("I study at " + name + " " +city)

print("t" in city) #True

print(city[0]) #G by accessing string using index

print("I study at %s in %s" % (name,city))

print("I study at {}s in {}".format(name,city))

Output:
True
CIT Guntur 777, First line,
Guntur 522001
I study at CIT Guntur

True
G
I study at CIT in Guntur
I study at CITs in Guntur

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 33

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Character Sets in Python

The Python character set is a valid set of characters recognized by the Python language. These
are the characters we can use during writing a script in Python. Python supports all ASCII /
Unicode characters that include:

● Alphabets: All 52 capital A-Z (65-90) and small a-z (97-122) alphabets.
● Digits: All digits 0-9 (48-57).
● Special Symbols: Python supports all kind of special symbols like, ~ @ # $ % ^ & * () _ -

+ = { } [] ; : ' " / ? . > , < \ | .
● White Spaces: White spaces like tab space(9), blank space(32), newline(10), and carriage

return(13) .
● Other: All ASCII and UNICODE characters are supported by Python which constitutes the

Python character set.
Note: See ASCII table for all ASCII codes in Reference section at the end of this document.

Every character in Python language has its equivalent ASCII (American Standard Code for
Information Interchange) value. ASCII character set is a subset of UNICODE (ex: UTF-8, UTF-16,
or UTF-32 namely Unicode Transformation Format). Python defaults to using UTF-8.

➔ chr() function converts a given integer (0–255) to its ASCII equivalent character string.
◆ Ex: ch1=chr(65), here ch1 contains ASCII character capital A
◆ Ex: ch2=chr(97), here ch2 contains ASCII character small a

➔ ord() function converts a given character to its ASCII equivalent integer (0–255)
◆ Ex: a1=ord('Z’), where a1 will be assigned the ASCII value 90.

3. Python List Data Type - The list is a collection of multiple data elements of same or different
data types. A list is ordered, mutable, indexed and allows duplicate elements.

● The list is a versatile data type exclusive to Python.
● The list is an ordered data sequence written in square brackets [] separated by commas , .

List Properties
A. Ordered - The list items have a defined order and the order will not change. If you add

new items to a list, the new items will be placed at the end of the list.
B. Mutable - The list is changeable. We can change, add, and remove items in a list after its

creation.
C. Indexed - The list items are indexed, the 1st item has index [0], the 2nd item has index [1]

and so on.
D. Allows Duplicates - Since lists are indexed, lists can have items with the same value.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 34

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Method-1:

Syntax: listvariable = [value-1, value-2, . . . value-n]

Method-2:
👉 list() as a Constructor
We can use the list() constructor to create a list in Python.

Syntax: listvariable = list ((value-1, value-2, . . . value-n)) #notice the 2 parantheses

Accessing Elements in List:
Each element in a List has an index. We can access any element of a List by its index position.

Syntax: listname[index]

● Indexing: The list elements are indexed starting from 0; which means, the first item in the
list is at index 0.

● Negative Indexing: Python also supports negative indexing. Negative indexing starts with
-1 at the last element in a list. We can use negative indexing without knowing the length of
the list to access the last item.

Example-1: Basic list
list data type

#list of integers

marks = [50,60,70]
print(marks)

#list of strings

subjects = ["English","Maths","Programming"]
print(subjects)

#list of both integers and strings

address = [245,"Amaravathi Rd","Guntur",522001]

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 35

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

print(address)

#index starts with 0, increments by 1 and prints a single element

print(address[2]) #this will print "Guntur" from list address

Output:
[50, 60, 70]
['English', 'Maths', 'Programming']
[245, 'Amaravathi Rd', 'Guntur', 522001]
Guntur

Example-2: Advanced list
list items are ordered.

dept_names = ["Software", "Physics", "Arts"]

dept_codes = [101, 102, 103]

status = [True, False, False]

print(dept_names)

print(dept_codes)

print(status)

list elements can be different data types

mult_list = ["CIT", 2023, True, 99.77, "2nd Sem"]

print(mult_list)

len() to find number of elements in a list

print("Length of list",len(dept_names))

Find the data type of list varaible

print("Data type is",type(dept_names))

list() as constructor

subjects = list(("English","Chemistry","Maths","Python")) # notice 2

parantheses

print(subjects)

Output:

['Software', 'Physics', 'Arts']
[101, 102, 103]
[True, False, False]

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 36

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

['CIT', 2023, True, 99.77, '2nd Sem']
Length of list 3
Data type is <class 'list'>
['English', 'Chemistry', 'Maths', 'Python']

Example-3: Accessing
Define a list

z = [3, 7, 4, 2]

Access the first item of a list at index 0

print(z[0])

print(z[2])

Access the lst item of a list at index -1

print(z[-1])

Output:
3
4
2

4. Python Tuple Data type - The tuple is a collection of many data items of same or different data
type. A tuple is ordered, immutable, indexed, and allows duplicate items.

● The tuple is an ordered sequence of data written in parentheses () separated by commas ‘,’

Tuple Properties
A. Ordered - The tuple items have a defined order and the order will not change. If you add

new items to a list, the new items will be placed at the end of the list.
B. Immutable - The list is immutable. That means data in a tuple is write-protected. We

cannot change, add or remove items after the tuple has been created.
C. Indexed - Tuple items are indexed, the first item has an index [0], the second item

has an index [1], and so on.
D. Allows Duplicates. Since lists are indexed, lists can have items with the same value

Method-1: tuple with many items

Syntax: setvariable = (value-1, value-2, . . . value-n)

Method-2: tuple with ONE item

Syntax: tuplevariable = (value-1,) #must use , after the element

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 37

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Method-3:
👉 tuple() as a Constructor
We can use the tuple() constructor to create a list in Python.

Syntax: tuplevariable = tuple ((value-1, value-2, . . . value-n)) #notice the 2 parantheses

Example-1: Basic tuple

tuple data type

#tuple of integers

marks = (50,60,50)
print(marks)

#tuple of strings

subjects = ("English","Maths","Programming")
print(subjects)

#tuple of both integers and strings

address = (245,"Amaravathi Rd","Guntur",522001)
print(address)

#index starts with 0, increments by 1 and prints a single element

print(address[2]) #this will print "Guntur" from tuple address

Output:
(50, 60, 50)
('English', 'Maths', 'Programming')
(245, 'Amaravathi Rd', 'Guntur', 522001)
Guntur

Example-2: Advanced tuple
tuple items are ordered.

dept_names = ("Software", "Physics", "Arts")

dept_codes = (101, 102, 103)

status = (True, False, False)

print(dept_names)

print(dept_codes)

print(status)

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 38

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

tuple elements can be different data types

mult_tuple = ("CIT", 2023, True, 99.77, "2nd Sem")

print(mult_tuple)

len() to find number of elements in a tuple

print("Length of tuple",len(dept_names))

Find the data type of tuple varaible

print("Data type is",type(dept_names))

tuple() as constructor

subjects = tuple(("English","Chemistry","Maths","Python")) # notice 2

parantheses

print(subjects)

tuple with single item and a comma

subjects = ("Python",) # a tuple

print("Single element",type(subjects))

NOT tuple with single item WITHOUT comma

subjects = ("Python") # just a string

print("Single element",type(subjects))

Output:
('Software', 'Physics', 'Arts')
(101, 102, 103)
(True, False, False)
('CIT', 2023, True, 99.77, '2nd Sem')
Length of tuple 3
Data type is <class 'tuple'>
('English', 'Chemistry', 'Maths', 'Python')
Single element <class 'tuple'>
Single element <class 'str'>

5. Python Dictionary
Dictionary is used to store data values in key : value pairs and can be referenced by using the
key name.
Dictionary is a collection of Ordered, Mutable, Unindexed and does NOT allow duplicates.

● Dictionaries are written within curly braces { } in the form of key : value.
● Dictionary is useful to access a large amount of data efficiently.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 39

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Dictionary Properties:
A. Ordered - The dictionary items have a defined order and the order will not change.
B. Mutable or changeable - Dictionaries are changeable. We can change, add or remove

items after the dictionary has been created.
C. Not Indexed - The dictionary elements are NOT indexed; rather, the elements are

referenced by using the key name.
D. No Duplicates - Dictionaries cannot have two items with the same key. Duplicate key:value

will overwrite existing values.

Method-1:

Syntax: dictname = { key-1:value-1, key-2:value-2, . . . key-n:value-n }

Method-2:
👉 dict() as a Constructor
We can use the dict() constructor to create a dictionary in Python.

Syntax: dictname = dict ((key-1:value-1, key-2:value-2, . . . key-n:value-n))
#notice the 2 parantheses

len() - len(dictionary) will result in the number of items in the dictionary.
type() - finds data type of the object which is dict

Example-1: Basic Dictionary
#dictionary variable

a = {1:"Abdul",2:"Kalam", "age":60}

#print value having key=1

print(a[1])

#print value having key=2

print(a[2])

#print value having key="age"

print(a["age"])

Output:
Abdul
Kalam
60

Example-2: Advanced Dictionary
#dictionary variable

cars = {

"brand": "Hyundai",

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 40

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

"model": "Creta",

"year": 2023

}

prints all dictionary

print(cars)

prints selected key's value

print(cars["brand"])

cars = {

"brand": "Hyundai",

"model": "Creta",

"year": 2023,

"year": 2015

}

prints selected key's value

print(cars["year"])

len() to find number of elements in a dict

print("Length of dict",len(cars))

Find the data type of dictionary varaible

print("Data type is",type(cars))

Output:
{'brand': 'Hyundai', 'model': 'Creta', 'year': 2023}
Hyundai
2015
Length of dict 3
Data type is <class 'dict'>

6. Python Set Data type - Sets are used to store multiple items of different data types in a single
variable.
Set is a collection of data that is unordered, unchangeable, unindexed, and duplicate values are
not allowed.
The data items in sets are enclosed in curly braces { } and separated by commas ‘,’.

Set Properties:
A. Unordered - Set items do not have a defined order. They can appear in a different order each

time we access them. They cannot be referred by index or key.
B. Unimmutable or Unchangeable - Set items cannot be changed after the set has been

created. However, we can remove existing items and add new items.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 41

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

C. Unindexed - Set items are not indexed. So, we can’t access set items by an index.
D. No Duplicates allowed - Sets cannot have two items with the same value.

Note: The values True and 1 are the same in sets, and are treated as duplicates.

Method-1:

Syntax: setvariable = { value-1, value-2, . . . value-n }

Method-2:
👉 set() as a Constructor
We can use the set() constructor to create a set in Python.

Syntax: setvariable = set ((value-1, value-2, . . . value-n)) #notice the 2 parantheses

Example-1: set basics
set of integers

marks = {50,60,50,40}

print(marks)

set of string

subjects = {"English","English","Maths","English","Programming","Maths"}

print(subjects)

set of both integers and strings

address = {245,"Amaravathi Rd","Guntur",522001}

print(address)

Output:
{40, 50, 60}
{'English', 'Programming', 'Maths'}
{522001, 'Amaravathi Rd', 245, 'Guntur'}

Example-2: set advanced
set items are unordered. The items will appear in a random order.

Rerun the program to see the change in results

dept_names = {"Software", "Physics", "Arts"}

dept_codes = {101, 102, 103}

status = {True, False, False}

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 42

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

print(dept_names)

print(dept_codes)

print(status)

set elements can be different data types

mult_set = {"CIT", 2023, True, 99.77, "2nd Sem"}

print(mult_set)

len() to find number of elements in a set

print("Length of set",len(dept_names))

Find the data type of set varaible

print("Data type is",type(dept_names))

set() as constructor

subjects = set(("English","Chemistry","Maths","Python")) # notice 2

parantheses

print(subjects)

Output:
{'Physics', 'Software', 'Arts'}
{101, 102, 103}
{False, True}
{True, 99.77, 2023, 'CIT', '2nd Sem'}
Length of set 3
Data type is <class 'set'>
{'Maths', 'English', 'Python', 'Chemistry'}

Data Type Ordered? Mutable (changeable)? Indexed? Duplicates allowed?

list Ordered Mutable (changeable) Indexed Allows Duplicate members

tuple Ordered Immutable (unchangeable) Indexed Allows Duplicate members

dict Ordered
(>=Py3.7)

Mutable (changeable) Not Indexed
but uses Key

No Duplicates keys; but
can have duplicate values

set unordered Immutable (unchangeable)
However, add & remove of
members are possible

Not Indexed No Duplicates members

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 43

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

7. None Data Type
● None data type is an object of NoneType class
● None is used to define a null value or no value at all.
● None can only be equal to None.
● None can be assigned to any variable, but new NoneType objects cannot be created.

Syntax:

var = None
1. None is not the same as False.
2. None is the same as 0.
3. None is not considered an empty string.
4. Returns False if we compare None with anything, except while comparing it to None itself.
5. A variable can be returned to its initial, empty state by being assigned the value of None.
6. None keyword provides support for both is and == operators.

8. Python Boolean Data Type
Boolean is a data type that has one of two possible values, True or False. They are mostly used in
creating the control flow of a program using conditional statements.

Syntax:
var1 = True
var2 = False

Example: Boolean
boolean (bool) data type in Python.

x = True

y = False

Prints boolean result

print("x is ", x)

print("y is ", y)

print()

Data type of True and False

print("Data type of 'True':", type(x))

print("Data type of 'False':", type(x))

Output:
x is True
y is False
Data type of 'True': <class 'bool'>
Data type of 'False': <class 'bool'>

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 44

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

9. Python Binary Data Type
Following are the 3 binary data types in Python.
➢ bytes
➢ bytearray
➢ memoryview

bytes bytearray memoryview

Definition

bytes and bytearray are used to manipulate binary data
in python.
They are often used to send data over networks in
byte streams for compatibility and reliability without
depending on network to decode data.

memoryview is a buffer
protocol that accesses objects
of bytes and bytearrays.

Syntax
Data type

var_b = b”string”
A string preceded by b

var_barr = b”string”
A string preceded by b

var_mv = memoryview(byte
object var)

Syntax
Function

bytes(source, encoding,
errors)
Returns byte object.

encoding - utf8, ascii
error - ignore, replace strict

bytearray(source,
encoding, errors)
Returns byte array of
objects.
encoding - utf8, ascii
error - ignore, replace
strict

Properties

● bytes() function returns
objects that are
immutable or cannot be
changed.

● Returns small integers in
the range 0 <= x < 256
and print as ASCII
characters when
displayed.

● bytearray() function
returns objects that
are mutable or can be
changed.

● Returns small integers
in the range 0 <= x <
256 and print as ASCII
characters when
displayed.

memoryview can access the
memory of other binary objects
(bytes, bytearray) without
copying the actual data.

Example
Data type

b1=b‘First bytes’
b2=b“Second bytes”
b3=b‘’’Third bytes’’’

barr1=b‘First bytes’
barr2=b“Second bytes”
barr3=b‘’’Third bytes’’’

mv1=memoryview(b1)

mv2=memoryview(barr2)

Example
Function

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 45

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Note: A byte is a memory space that consists of 8 bits of binary digits (0 or 1). Python uses the
UTF-8 Unicode character set. Each character (alphabet, number, or symbol) in a string occupies 1
byte of memory space.

More Data Type Conversion Functions

➔ chr() function converts a given integer (0–255) to its ASCII equivalent character string.
◆ Ex: ch1=chr(65), here ch1 contains ASCII character capital A
◆ Ex: ch2=chr(97), here ch2 contains ASCII character small a

➔ ord() function converts a given character to its ASCII equivalent integer (0–255)
◆ Ex: a1=ord('Z’), where a1 will be assigned the ASCII value 90.

➔ complex() function is used to print a complex number with the value real + imag*j or convert
a string or number to a complex number. Ex:
◆ c1=complex(3,4)
◆ print(c1) outputs: (3+4j)

➔ hex() function converts an integer number (of any size) to a lowercase hexadecimal string
prefixed with “0x”.
◆ Ex: i_to_h=hex(255), i_to_h contains ‘0xff’ and
◆ Ex: i_to_h=hex(16), i_to_h contains ‘0x10’

➔ oct() function converts an integer number (of any size) to an octal string prefixed with “0o”
using.
◆ Ex: v1=oct(8), where v1 contains ‘0o10’ and
◆ Ex: v2=oct(16), where v2 contains ‘0o20’

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 46

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Escape Sequences in Python

To insert characters that are illegal in a string, use an escape character.
An escape character is a backslash \ followed by the character you want to insert.

Escape
Sequence

Description Example

\n New line print("Hello \nCIT")
Output: Hello

CIT

\t Horizontal Tab print("Hello \tCIT")
Output: Hello CIT

\v Vertical Tab print("Hello \vCIT")
Output: Hello

CIT

\b Backspace print("Hello \bCIT")
Output: HelloCIT

\r Carriage Return print("Hello \rCIT")
Output: Hello

CIT

\f Form Feed To start on next page

\’ Single Quote print("I\’m at CIT")
Output: I’m at CIT

\” Double Quote print("College is \”CIT\” ")
Output: College is “CIT”

\\ Backslash print("Name: \\ name \\")
Output: Name: \ name \

\ooo A backslash followed by three integers will
result in a octal value

txt = "\110\145\154\154\157"
print(txt)
Output: Hello

\xhh A backslash followed by an 'x' and a hex
number represents a hex value

txt = "\x48\x65\x6c\x6c\x6f"
print(txt)
Output: Hello

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 47

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Using Functions and Modules in Python
Definition of a Function:

● A function is a block of code used to perform a specific task.

● A complex problem can be divided into smaller functions.
● We can define many functions, but a function runs only when it is called.
● We can pass data into functions as arguments, also known as parameters.
● Functions are reusable; write the code once, and use it many times.

Python has 3 types of functions: Built-in functions (Standard library), Built-in Module functions,
and User-defined functions

1. Built-in functions (Standard library) are the built-in Python functions that can be used
directly in our program.
● pow() - returns the power of a number
● abs() - returns a positive number
● round() - returns a rounded precision number
● >>> dir(__builtins__) - displays all built-in functions in Python

➔ We should supply a value as an argument to a function. Ex: round(9.27,1) the first
arguments is required and the second argument is optional.

First, the expressions are evaluated and the result is used as input to function. And then the
function executes. Here in abs() function, first (2-7)+1 is evaluated to -4 and then abs(-4) results to
4.

2.1 Built-in Module functions - Python has built-in modules that provide several functions. These
modules need to be imported using ‘import’ into our program to use the functions in those
modules. Few such modules are,

● Math Module
● cMath Module
● Random Module
● Requests Module
● Statistics Module

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 48

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Syntax:
Import moduleName
var = moduleName.func-1(values)
➔ Note: When we use ‘import’ a module, we must use the . member ship operator to use its

function.
● >>> dir(math) - displays all built-in functions in math module

Example:

Note: To use a functions from a module - write the name of a module, followed by a dot .
membership operator and the name of the function. Example: math.sqrt(81)

import math

st = math.sqrt(81)

s = math.sin(0)

c = math.cos(0)

print(st)

print(s)

print(c)

Output:

9.0

0.0

1.0

2.2 Built-in Module functions using ‘from’ clause - the functions within the modules can
directly be imported before their use using ‘from’ and ‘import’ keyword.

Syntax:
from moduleName import func-1,func-2, … func-n
var-1 = func-1(values)
var-2 = func-2(values)

Example:

➔ Note: When we use ‘from’ and ‘import’, we can directly call function name WITHOUT
using the . membership operator.

from math import sqrt, sin, cos

st = sqrt(81)

s = sin(0)

c = cos(0)

print(st)

print(s)

print(c)

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 49

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Output:

9.0

0.0

1.0

● dir(module name) function lists all the functions of a module

3. User-defined functions - We can also create our own functions based on our requirements.

Syntax: Python Function Declaration

def function_name(arguments):
function body

return

Here,
● def - keyword used to declare a function
● function_name - any name given to the function
● arguments (optional) - any value passed to function
● return (optional) - returns value from a function

Example:
User defined function

declaration & definition

def welcome():

print("Welcome to Python at CIT")

function call

welcome()

Output:
Welcome to Python at CIT

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 50

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

Reference

1. Table-1 is the list of builtin functions in Python for your quick reference.
a. You can also obtain this list at Python Interactive Shell using IDLE
b. Syntax: dir(class name) lists all builtin standard library functions in Python
c. >>> dir(__builtins__)

Table-1: Python Built-In Functions
S.No Function Description

1 abs() Returns the absolute value of a number

2 all() Returns True if all items in an iterable object are true

3 any() Returns True if any item in an iterable object is true

4
ascii() Returns a readable version of an object. Replaces none-ascii characters with

escape character

5 bin() Returns the binary version of a number

6 bool() Returns the boolean value of the specified object

7 bytearray() Returns an array of bytes

8 bytes() Returns a bytes object

9 callable() Returns True if the specified object is callable, otherwise False

10 chr() Returns a character from the specified Unicode code.

11 classmethod() Converts a method into a class method

12 compile() Returns the specified source as an object, ready to be executed

13 complex() Returns a complex number

14 delattr() Deletes the specified attribute (property or method) from the specified object

15 dict() Returns a dictionary (Array)

16 dir() Returns a list of the specified object's properties and methods

17
divmod() Returns the quotient and the remainder when argument1 is divided by

argument2

18 enumerate() Takes a collection (e.g. a tuple) and returns it as an enumerate object

19 eval() Evaluates and executes an expression

20 exec() Executes the specified code (or object)

21 filter() Use a filter function to exclude items in an iterable object

22 float() Returns a floating point number

23 format() Formats a specified value

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 51

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

24 frozenset() Returns a frozenset object

25 getattr() Returns the value of the specified attribute (property or method)

26 globals() Returns the current global symbol table as a dictionary

27
hasattr() Returns True if the specified object has the specified attribute

(property/method)

28 hash() Returns the hash value of a specified object

29 help() Executes the built-in help system

30 hex() Converts a number into a hexadecimal value

31 id() Returns the id of an object

32 input() Allowing user input

33 int() Returns an integer number

34 isinstance() Returns True if a specified object is an instance of a specified object

35 issubclass() Returns True if a specified class is a subclass of a specified object

36 iter() Returns an iterator object

37 len() Returns the length of an object

38 list() Returns a list

39 locals() Returns an updated dictionary of the current local symbol table

40 map() Returns the specified iterator with the specified function applied to each item

41 max() Returns the largest item in an iterable

42 memoryview() Returns a memory view object

43 min() Returns the smallest item in an iterable

44 next() Returns the next item in an iterable

45 object() Returns a new object

46 oct() Converts a number into an octal

47 open() Opens a file and returns a file object

48 ord() Convert an integer representing the Unicode of the specified character

49 pow() Returns the value of x to the power of y

50 print() Prints to the standard output device

51 property() Gets, sets, deletes a property

52
range() Returns a sequence of numbers, starting from 0 and increments by 1 (by

default)

53 repr() Returns a readable version of an object

54 reversed() Returns a reversed iterator

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 52

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

55 round() Rounds a numbers

56 set() Returns a new set object

57 setattr() Sets an attribute (property/method) of an object

58 slice() Returns a slice object

59 sorted() Returns a sorted list

60 staticmethod() Converts a method into a static method

61 str() Returns a string object

62 sum() Sums the items of an iterator

63 super() Returns an object that represents the parent class

64 tuple() Returns a tuple

65 type() Returns the type of an object

66 vars() Returns the __dict__ property of an object

67 zip() Returns an iterator, from two or more iterators

2. Table-2 is the list of external functions in ‘math’ module for your quick reference.
a. You can also obtain this list at Python Interactive Shell using IDLE
b. Syntax: dir(module name) lists all functions in the module
c. >>> dir(math)

Table-2: math Module Functions in Python

S.No Function Description

1 Method Description

2 math.acos() Returns the arc cosine of a number

3 math.acosh() Returns the inverse hyperbolic cosine of a number

4 math.asin() Returns the arc sine of a number

5 math.asinh() Returns the inverse hyperbolic sine of a number

6 math.atan() Returns the arc tangent of a number in radians

7 math.atan2() Returns the arc tangent of y/x in radians

8 math.atanh() Returns the inverse hyperbolic tangent of a number

9 math.ceil() Rounds a number up to the nearest integer

10
math.comb() Returns the number of ways to choose k items from n items without

repetition and order

11
math.copysign() Returns a float consisting of the value of the first parameter and the sign

of the second parameter

12 math.cos() Returns the cosine of a number

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 53

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

13 math.cosh() Returns the hyperbolic cosine of a number

14 math.degrees() Converts an angle from radians to degrees

15
math.dist() Returns the Euclidean distance between two points (p and q), where p

and q are the coordinates of that point

16 math.erf() Returns the error function of a number

17 math.erfc() Returns the complementary error function of a number

18 math.exp() Returns E raised to the power of x

19 math.expm1() Returns Ex - 1

20 math.fabs() Returns the absolute value of a number

21 math.factorial() Returns the factorial of a number

22 math.floor() Rounds a number down to the nearest integer

23 math.fmod() Returns the remainder of x/y

24 math.frexp() Returns the mantissa and the exponent, of a specified number

25 math.fsum() Returns the sum of all items in any iterable (tuples, arrays, lists, etc.)

26 math.gamma() Returns the gamma function at x

27 math.gcd() Returns the greatest common divisor of two integers

28 math.hypot() Returns the Euclidean norm

29 math.isclose() Checks whether two values are close to each other, or not

30 math.isfinite() Checks whether a number is finite or not

31 math.isinf() Checks whether a number is infinite or not

32 math.isnan() Checks whether a value is NaN (not a number) or not

33 math.isqrt() Rounds a square root number downwards to the nearest integer

34
math.ldexp() Returns the inverse of math.frexp() which is x * (2**i) of the given

numbers x and i

35 math.lgamma() Returns the log gamma value of x

36
math.log() Returns the natural logarithm of a number, or the logarithm of number to

base

37 math.log10() Returns the base-10 logarithm of x

38 math.log1p() Returns the natural logarithm of 1+x

39 math.log2() Returns the base-2 logarithm of x

40
math.perm() Returns the number of ways to choose k items from n items with order

and without repetition

41 math.pow() Returns the value of x to the power of y

42 math.prod() Returns the product of all the elements in an iterable

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 54

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

43 math.radians() Converts a degree value into radians

44
math.remainder() Returns the closest value that can make numerator completely divisible

by the denominator

45 math.sin() Returns the sine of a number

46 math.sinh() Returns the hyperbolic sine of a number

47 math.sqrt() Returns the square root of a number

48 math.tan() Returns the tangent of a number

49 math.tanh() Returns the hyperbolic tangent of a number

50 math.trunc() Returns the truncated integer parts of a number

51 Constant Description

52 math.e Returns Euler's number (2.7182...)

53 math.inf Returns a floating-point positive infinity

54 math.nan Returns a floating-point NaN (Not a Number) value

55 math.pi Returns PI (3.1415...)

56 math.tau Returns tau (6.2831...)

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 55

CIT
 Stu

dents O
nly

PY Unit-I Study Material v1

ASCII Table

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 56

CIT
 Stu

dents O
nly

