
Unit-II Python Study Material

Section-1: Decision Structures, Boolean Logic, and Control Statements: if, if-else,
if-elif-else statements, Nested Decision Structures, Comparing Strings, Logical Operators,
Boolean Variables. P1-20
Section-2: Repetition Structures: Introduction, while loop, for loop, Calculating a Running
Total, Input Validation Loops, Nested Loops.
Section-3: Strings: Accessing characters and Substring in Strings, Data Encryption, Strings
and Number Systems.

Decision Structures

A decision structure is a set of program statements that makes a decision and changes the
flow of the program based on that decision. These are also called Selection or Control Flow
Statements. The decisions are made based on True or False of a Boolean Logic test.

The control flow statements are classified as follows:
A. Selection or Decision or Conditional Statements

a. if, if-else, elif
B. Loop or Repetition or Iterative Statements

a. for, while
C. Jump Statements

a. break, continue, pass

A. Selection or Decision or Conditional Statements
In decision statements, the conditional expressions are evaluated with an outcome of either
True or False.

a. The selection statements are 3 types:

Type Single Selection Two-Way Selection Multi-Way Selection

Command if statement if - else statement Nested if - else statements
elif Ladder statements

Single Selection in Python (“if” statement)
● “if” is a simple selection statement in Python. It is used to modify the flow of execution

of a program.

● “if” consists of a condition (boolean expression), colon :, and a block of statements
with the same indentation,

○ When the condition is True, the ‘if’ block of statements will be executed,
○ Otherwise, the first statement outside the ‘if’ block will be executed.

● All the statements inside the ‘if’ block must have the same indentation of spaces

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 1

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Syntax:

if condition:

True block of statements

statement 1

statement 2

...

statement n

Statements outside if block

Application:
#if statement example

m, n = 77, 87

if(m < n):

result = "m is smaller than n"

print(result)

Output:

m is smaller than n

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 2

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Two-Way Selection in Python (“if-else” statement)
● An if statement can also be followed by an optional else statement. if-else is a two-way

decision statement which means, we have only two alternative choices.

● if statement will have a Boolean_Expression; else statement has NO

Boolean_Expression.

● if-else consists of a condition (Boolean_Expression), a block of statements for ‘if’, and
another block of statements for ‘else’.

○ When the Boolean_Expression is True, the ‘if’ block of statements will be
executed

○ When the Boolean_Expression is False, the ‘else’ block of statements will be
executed

● Indentation:
○ All the statements inside the ‘if’ block must have the same indentation with

spaces

○ All the statements inside the ‘else’ block must have the same indentation with
spaces

○ However, a different indentation can be used for ‘if’ block and ‘else’ block.

Syntax:

if condition:

True block of statements

statement 1

statement 2

...

statement n

else:

False block of statements

statement 1

statement 2

...

statement n

Statements outside if-else block

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 3

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application-1:

'''

if-else construct using Membership operator 'in' and 'set' of names

Strings are case sensitive in Python;

Upper case strings are different from Lower case strings

'''

cse = {"Saida", "Ajay", "Sai", "Veda"}

sname = input("Enter a name to search : ")

if sname in cse:

print("Yes, {} is in CSE branch!".format(sname))

else:

print("No, {} is Not in CSE branch!".format(sname))

Output:
Enter a name to search : Veda
Yes, Veda is in CSE branch!

Enter a name to search : veda
No, veda is Not in CSE branch!

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 4

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application-2:
'''

Aim: Program to Check whether the given number is Even or Odd.

'''

num = int(input("Enter an integer : "));

true if num is perfectly divisible by 2

if(num % 2 == 0):

print("{} is even.".format(num))

else:

print("{} is odd.".format(num))

Notice that if block has 4 space indentation and else block has 2 space indentation

Output:
Enter an integer : 7
7 is odd.
Enter an integer : 4
4 is even.

Application-3:
'''

lab-7: Write a program that asks the user for two numbers and prints

Close if the numbers are within .001 of each other and not close

otherwise.

'''

a = float(input("Enter first number : "))

b = float(input("Enter second number : "))

c = abs(a - b)

if c > 0.0009 and c <= 0.001 :

print("Close")

else :

print("Not Close")

Output:
Enter first number : 4.001
Enter second number : 4.002
Close

Multi-Way Selection - Nested “if-else”

When a series of decisions is required, the multi-way selection statements are used.
There are 2 types of multi-way selection statements

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 5

CIT S
tud

en
ts

Only

Unit-II Python Study Material

1. Nested “ if-else ” statements
2. “ elif ” Ladder statements

1. Nested if-else statements
Nesting means using one “if-else” construct within another “if-else” construct. Use nested
“if-else” when you need to decide more within the parent “if” condition or parent “else”
condition. The nested “if-else” is used when multiple paths of decisions are required.

Syntax:

if(Condition/Expression): # Outer if block

if(Condition/Expression): # Inner if block

Statements

else: # Inner else block

Statements

else: # Outer else block

if(Condition/Expression): # Inner if block

Statements

else: # Inner else block

Statements

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 6

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application-1:
#Checks whether input marks are pass or fail

JustPass=40, pass>40, fail<40

marks = int(input("Enter marks 0-100 : "))

if marks >= 40:

if marks==40:

print("Just Passed with ", marks)

else:

print("Passed with ", marks);

else:

print("Failed with ", marks)

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 7

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Output:
Enter marks 0-100 : 75
Passed with 75

Enter marks 0-100 : 40
Just Passed with 40

Enter marks 0-100 : 30
Failed with 30

Application-2: Write a program to find whether the given year is a Leap Year?
'''

Aim: Find whether the given year is a Leap Year.

Note: A Century year ends with 00 or divisible by 100

Conditions:

Non-Centuary years that are exactly divisible by 4 are leap years.

A century year divisible by 4, 100, and 400 is a leap year.

A century year divisible by 4, 100, but not divisible by 400 is not a

leap year.

For example,

1900 is not a leap year (Century year, Divisible by 4 & 100; but not

by 400)

1999 is not a leap year (Non-Centuary, Not divisible by 4)

2000 is the leap year (Century year, Divisible by 4, 100, and 400)

2004 is the leap year (Non-Centuary, Divisible by 4)

2024 is the leap year (Non-Centuary, Divisible by 4)

'''

year=int(input('Enter a year:'))

if year%4==0:

if year%100==0: # Centuary year

if year%400==0: # Century year divisible by 400

print(f'{year} is a leap year')

else: # Century year Not divisible by 400

print(f'{year} is not leap year')

else: # Non-Centuary year, Divisible by 4

print(f'{year} is a leap year')

else: # not divisible by 4

print(f'{year} is not a leap year')

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 8

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Output:

Enter a year:2022

2022 is not a leap year

Enter a year:2024

2024 is a leap year

Enter a year:3000
3000 is not leap year

2. “elif” Ladder statements

In Python, “elif” keyword is a short form of “else if”. The “elif” is useful when you need to
decide a series of decisions after each of the previous “if” conditions.

● The series of conditions are evaluated from top to bottom.

● When one condition becomes true, the statements of that condition will be executed and
the control comes out of the whole “if” block.

● When all the conditions are false, then the last default “else” statement is executed and
the control comes out of the whole “if” block.

Syntax:

if boolean_expression1:
statement(s)

elif boolean_expression2:
statement(s)

elif boolean_expression3:
statement(s)

else:
statement(s)

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 9

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application-1:
elif conditional statements

x = 20

y = 70

if x > y:

print("x is greater than y")

elif y > x:

print ("y is greater than x")

else:

print("x and y are equal")

Output:
y is greater than x

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 10

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application-2: Grades
Write a Program to Prompt for Marks between 0 and 100. If the Marks Is Out of Range, Print an

Error. If the Marks are between 0 and 100, Print a Grade Using the Following Table.

Score >=90 >=80 >=70 >=50 >=40 <40

Grade A+ A B C D F

elif conditional statements

marks=int(input("Enter marks 0-100 : "))

if(marks,0 or marks>100):

print("Marks out of range.")

elif(marks>=90):

print("Grade A+")

elif(marks>=80):

print("Grade A")

elif(marks>=70):

print("Grade B")

elif(marks>=50):

print("Grade C")

elif(marks>=40):

print("Grade D")

else:

print("Grade F")

Output:
Enter marks 0-100 : 70
Grade B

Application-3:
'''

Lab-16. Write a program that asks the user to enter a length in feet.

The program should then give the user the option to convert from feet

into inches, yards, miles, millimeters, centimeters, meters, or

kilometers. Say if the user enters a 1, then the program converts to

inches, if they enter a 2, then the program converts to yards, etc.

While this can be done with if statements, it is much shorter with

lists and it is also easier to add new conversions if you use lists.

'''

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 11

CIT S
tud

en
ts

Only

Unit-II Python Study Material

feet=int(input("Input distance in feet: "))

print("Choose your option: ")

print("1. inches")

print("2. yards")

print("3. miles")

print("4. millimeters")

print("5. centimeters")

print("6. meters")

print("7. kilometers")

option=int(input("Enter the option : "))

if option==1:

dist=round(feet*12,2)

units="inches"

print("The distance in {} is {} inches.".format(units,dist))

elif option==2:

dist=feet/3

units="yards"

print("The distance in %s is %.2f yards."%(units,dist))

elif option==3:

#dist=round(feet*0.000189394,3)

dist=feet/5280

units="miles"

print("The distance in %s is %.2f miles."%(units,dist))

elif option==4:

dist=feet*304.8

units="millimeters"

print("The distance in %s is %.2f millimeters."%(units,dist))

elif option==5:

dist=feet*30.8

units="centimeters"

print("The distance in %s is %.2f centimeters."%(units,dist))

elif option==6:

#dist=round(feet*0.3048,3)

dist=feet*0.3048

units="meters"

print(f"The distance in %s is %.2f meters."%(units,dist))

elif option==7:

dist=feet/3280.8

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 12

CIT S
tud

en
ts

Only

Unit-II Python Study Material

units="kilometers"

print("The distance in %s is %.2f kilometers."%(units,dist))

else:

print("Invalid choice!!!")

Output:
Input distance in feet: 456
Choose your option:
1. inches
2. yards
3. miles
4. millimeters
5. centimeters
6. meters
7. kilometers
Enter the option : 7
The distance in kilometers is 0.14 kilometers.

Comparing Strings

In Python, string comparison is the process of comparing two strings to determine whether they
are equal or not.

Strings in Python are stored as objects with an ID (memory address).
Python reuses the same memory for two equal strings to save memory, and run faster & easier.

Reference-only
Objects in Python consist of 3 properties:

1. Identity - address of the memory where the string is stored
2. Type - data type of the string ‘str’
3. Value - content stored in the object

Commonly used string comparison methods in Python are,
A. using Built-in Operators
B. using Built-in Functions

A. Using Built-in Operators for String Comparison:
● Equality/Inequality Operators (==, !=) compare similarity
● Identity Operators (is, is not) compare address (use id() function to find the address of

an object)
● Comparision/Relational Operators (<, <=, >, >=) compare alphabetical order

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 13

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Equality/Inequality Operators (==, !=):
The “==” and “!=” operators checks if two strings are equal or not. The strings are
case-sensitive. So, upper-case strings are different from lower-case strings.

Syntax: string1 == string2 (returns True if 2 strings are Equal)
Syntax: string1 != string2 (returns True if 2 strings are Not Equal)

Identity Operators (is, is not):
The “is” and ‘is not’ operators compare the address of two strings and find they are of the
same object or different object.
Python considers equal strings as the same object and stores them in the same memory
location. So, the ‘is’ and ‘is not’ operators compare their address locations.

Syntax: string1 is string2
Syntax: string1 is not string2

ASCII 83 111 102 116 119 97 114 101

String1 S o f t w a r e

String2 S O F T W A R E

ASCII 83 79 70 84 87 65 82 69
ASCII Values - A-Z : 97-122, a-z : 65-90, 0-9 : 48-57

Application:
Equality/In-Equality operators: ==, !=

Identity Operators: is, is not # compare memory address

s1 = "Software"

s2 = "Software"

s3 = "SOFTWARE"

print(s1 == s2) # True

print(s1 == s3) # False

print(s1 != s3) # True

print(s1 is s2) # True

print(s1 is s3) # False

print(s1 is not s3) # True

Notice the address of s1 and s2 are same

print("Address of s1 : ", id(s1))

print("Address of s2 : ", id(s2))

print("Address of s3 : ", id(s3))

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 14

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Output:
True
False
True

True
False
True

Address of s1 : 2295811751536
Address of s2 : 2295811751536
Address of s3 : 2295811751344

Comparision Operators (<, <=, >, >=) :
The comparison operators check two strings lexicographically, that is based on their
alphabetical order. The alphabetical order is determined by comparing the ASCII values of the
characters in the strings.

Syntax: string1 > string2
Syntax: string1 < string2

ASCII 67 83 69

String1 C S E

String2 A I

ASCII 65 73

Application:
dept1 = "CSE"

dept2 = "AI"

if dept1 < dept2:

print(f"{dept1} comes before {dept2}")

else:

print(f"{dept2} comes before {dept1}")

Output:
AI comes before CSE

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 15

CIT S
tud

en
ts

Only

Unit-II Python Study Material

B. Using Built-in Functions for String Comparison:

starstwith() and endswith() functions return True or False depending on whether the given
substring is found at the beginning, end, or anywhere in the string.
find() function will return the position number (index) of the searched substring in the main
string. It returns -1 if the searched string is not found.
count() function will return a number of times the given string has occurred in the main string.

Function Definition & Syntax Example
s1=”Hi CIT Engineers”

startswith() Returns True if a string1 starts with a prefix
(substring / tuple - True if any one tuple member
matches)
string.startswith(prefix, start, end)

s1.startswith(“Hi”)

t1=(“Hi”, “Hello”)
s1.startwith(t1)

endswith() Returns True if a string2 ends with a suffix
(substring / tuple - True if any one tuple member
matches)
string.endswith(suffix,start, end)

s1.endswith(“eers”)

t2=(“fine”, “Engineers”)
s1.endswith(t2)

find() Returns position# (index#) of substring in string1;
Returns -1 if not found.
string.find("substring", start, end)

(optional) start=0, end=last-index

s1.find(“CIT”)

Output: 3

count() Returns no.of times given value occurs in a string
string.count("substring", start, end)

(optional) start=0, end=last-index

s1.count(“i”)
(Default & optional,
start=0, end=last)

Application:
#String built-in functions startswith(), endswith(), find(), count()

s1 = "Hi CIT Engineers"

if s1.startswith("Hi"):

print("The string starts with 'Hi'")

tpl=(“Hi”,”Hello”)

result = s1.startswith(tpl):

print(“Start word in tuple?”,result) # True

if s1.endswith("eers"):

print("The string ends with 'Engineers'")

if s1.find("CIT") != -1:

print("The string contains 'CIT'")

n = s1.count("i")

print("Number of i letters in the string: ",n)

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 16

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Output:
The string starts with 'Hi'
Start word in tuple? True
The string ends with 'Engineers'
The string contains 'CIT'
Number of i letters in the string: 2

Logical Operators (and, or, not)

The logical operators are the keywords that combine multiple conditions into a single
condition. The following table provides information about logical operators.

Operator Meaning Example

and Returns True if all conditions are True otherwise returns False 10 < 5 and 12 > 10 is False

or Returns False if all conditions are False otherwise returns True 10 < 5 or 12 > 10 is True

not Returns True if condition is False and returns False if the
condition is True

not(10 < 5 and 12 > 10) is
True

● Logical and - Returns True only if ALL conditions are True, if any one of those
conditions is False then whole condition becomes False.

● Logical or - Returns True if ANY condition is True, if all conditions are False then the
whole condition becomes False.

Application-1: Basic Logical Operators

#Logical Opertaors

a = True

b = False

print(a and b) #output: False

print(a or b) #output: True

print(not a) #output: False

a=10

b=5

la = (a<b) and (b<c) # Combined two conditions

lo = (a<b) or (b<c) # Combined two conditions

ln = not(a<b)

print("Logical AND = ",la) #False

print("Logical OR = ",lo) #True

print("Logical NOT = ",ln) #True

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 17

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application-2: if-else using Logical Operators

Find smallest of three numbers using elif statement

a=10

b=5

c=12

if((a<b) and (a<c)):

print("a is smallest")

elif ((b<a) and (b<c)):

print("b is smallest")

else:

print("c is smallest")

Output:
b is smallest

Boolean Variables

A boolean variable can have only two values: True or False
The variables with the boolean values True or False are called Boolean type variables.
These boolean values are case sensitive; hence, the T and F of True and False must be capital
letters.

Syntax:

Variable = Boolean value
Variable = Boolean expression

We can define a boolean variable by simply assigning a True or False value or even an
expression that gets evaluated to one of these values.

Application:
Boolean variables & assignment

a = False # assigned boolean value False

b = True # assigned boolean value True

print(type(a))

print(type(b))

c = (5>2) # assigned boolean expression

print("c value : ", c)

print("c data type : ", type(c))

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 18

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Output:
<class 'bool'>
<class 'bool'>
c value : True
c data type : <class 'bool'>

bool() built-in function:
bool() method evaluates any value or a variable or any expression and returns a Boolean
value either True or False.

bool() method
● returns True for one argument of any value or expression; and
● returns False for 0, None, False, empty values "", (), {}, []

Syntax:

bool() # False

bool(value) # True

bool(variable) # True

bool(expression) # True

Application:
bool() function will always return True for any value

except 0, None, False, empty values such as "", (), {}, [].

print("Returns True for any value")

print(bool("CSE AI ML"))

print(bool('''Guntur'''))

print(bool(75))

print(bool([10, 20, 40]))

print(bool(-11))

print(bool(3.14))

print(bool(25>(50/3)))

print("Returns False for 0, None, False, empty values \"\", (), {}, []")

print(bool())

print(bool(0))

print(bool(None))

print(bool(False))

print(bool([]))

print(bool(""))

print(bool({}))

print(bool(()))

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 19

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Output:
Returns True for any value
True
True
True
True
True
True
True
Returns False for 0, None, False, empty values "", (), {}, []
False
False
False
False
False
False
False
False

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 20

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Section-2: Repetition Structures: Introduction, while loop, for loop, Calculating a Running
Total, Input Validation Loops, Nested Loops.

Repetition or Iterative or Looping Structures/Statements

Introduction
In Python, repetition structures are used to execute a block of code repeatedly. These
structures allow you to execute the same code repeatedly for a finite number of times or until a
condition is satisfied.

Each repetition of a block of code is known as a loop or an iteration. So, the repetition structures
are also called looping or iterative structures.

There are two types of repetition structures in Python..
1. Indefinite or Condition Controlled Loop - A loop that repeats an action until the

program finds that it needs to stop based on a condition. (while loop)
2. Finite or Sequence Controlled Loop - A loop that repeats a block of code a predefined

number of times or over a sequence of elements. (for loop)

Python provides two repetition or looping or iterative statements,
1. ‘while’ loop
2. ‘for’ loop
3. Nested loops

1. The ‘while’ loop:

Definition:

A “while” loop executes a block of statements repeatedly until the given condition is True.

The “while” loop is used when we DO NOT KNOW the number of iterations.

Entry controlled or a Pre-Test loop because the ‘while’ loop first checks the “condition” to
decide if it needs to execute the block of statements.

Event-controlled loop because the termination of the ‘while’ loop depends on an event instead
of executing a fixed number of times.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 21

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Syntax of ‘while” loop:

Initialization (optional)

while (condition):

Loop Body statements

Incr or Decr (optional)

else: (optional)

Block of statements

Initialization (optional)

while (condition):

if (condition):

continue (optional)

if (condition):

break (optional)

Loop Body statements

Incr or Decr (optional)

else: (optional)

Block of statements

Different ways to write ‘while’ loop condition:

while(true)
statements

while(i<5)
statements

while(i<=n)
statements

Flow Chart of ‘while’ loop

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 22

CIT S
tud

en
ts

Only

Unit-II Python Study Material

WHILE loop:
● Here, the condition is a boolean expression that is evaluated before each iteration of

the loop. If the condition is True, the code inside the loop is executed. This will
continue until the condition becomes False.

Application: Write a program to print 1-5 using a ‘while’ loop.
program to print 1-5 using a ‘while’ loop.

i = 1

while loop for i = 1 to 5

while i <= 5:

print(i)

i += 1

Output:
1
2
3
4
5
Explanation: The while loop continued as long as i is less than or equal to 5. The i += 1
statement increments the value of i by 1 on each iteration of the loop.

WHILE loop with ELSE:
● When the ‘while’ condition becomes False, the loop checks for the optional ‘else’

block.
○ If ‘else’ block is available, it executes the ‘else’ block and then exits the loop.
○ If ‘else’ block is not available, then simply exits the loop.

Application: Write a program to print 1-5 using a ‘while’ loop with ‘else’
program to print 1-5 using a ‘while’ loop and 'else' block

i=1

while loop for i = 1 to 5

while i <= 5:

print(i)

i += 1

else:

print("Reached end of the loop")

Output:
1
2
3

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 23

CIT S
tud

en
ts

Only

Unit-II Python Study Material

4
5
Reached end of the loop
Explanation: The while loop continued until from 1 to 5. Once the loop is complete, the 'else'
block is executed. Then, exited the loop.
The i += 1 statement increments the value of i by 1 on each iteration of the loop.

Application:
Aim: Generate Fibonacci series up to a given number of terms

n = int(input("Enter how many Fibinacci terms : "))

i = 0

Term1 and Term2

term1, term2 = 0, 1

Is the nth term positive?

if n <= 0:

print("Enter a positive integer>0.")

If n is only 1 term

elif n == 1:

print("Fibonacci series of",n,"terms is:")

print(term1)

Find and generate Fibonacci series up to n term

else:

print("Fibonacci series of",n,"terms: ")

while i < n:

print(term1, end=" ")

next = term1 + term2

term1 = term2

term2 = next

i+=1

Output:
Enter how many Fibinacci terms: 5
Fibonacci series of 5 terms:
0 1 1 2 3

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 24

CIT S
tud

en
ts

Only

Unit-II Python Study Material

2. The ‘for’ loop:

Definition:

● A for loop is used to iterate over a sequence of elements such as string, range(), list,
set, tuple or dictionary.

● The code inside the loop is executed repeatedly once for each element in the
sequence.

● The “for” loop is used when we KNOW number of iterations.

Syntax: for

for var in sequence:
Loop body statements

else: (optional)
Block of statements

for var in sequence:

if (condition):

continue (optional)

if (condition):

break (optional)

Loop body statements

else: (optional)

Block of statements

var - an iterator variable
sequence - a sequence of elements; a sequence can be a string, range(), list, set, tuple or
dictionary
Loop body statements - a block of for loop statements
else - is an optional block in ‘for’. When the for loop completes, it enters ‘else’ block of
statements.

● var is an iterator variable that takes one element at a time from the sequence on each
iteration.

● After taking the element in var, the loop statements execute.
● for loop continues until the last value of the sequence is reached.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 25

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Flow chart - for loop

Uses of for loop:

for loop through values or a string: iterates through each value or each character of a
string sequence

for loop using values sequences

print("Iterate data sequence")

for i in (10,20,30,40,50): # for block is exected for each value

print(i, end=' ')

else:

print("\nEnd of the loop")

Output:
Iterate data sequence
10 20 30 40 50
End of the loop

for loop using string sequence

print("Iterate string sequence")

for i in "CIT Python": # for block is exected for each character

print(i, end=' ')

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 26

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Output:
Iterate string sequence
C I T P y t h o n

for loop through a list: iterates through each element of a list/set/tuple/dict sequences

for loop using list sequence

print("Iterate a list")

for block is exected for each element of the list

branches=["CIT","CSE", "AI", "AIML","ECE"]

for i in branches:

print(i, end=' ')

Output:
Iterate a list
CIT CSE AI AIML ECE

for loop using range() function: iterates through a range of values in sequence

for loop using sequence of range()function

Method-1: range(end value)
Default start value is 0
Parameter - is the end value, (Goes up to end - 1, not including end value)
Default Increment by 1

print("Iterate in range(stop)")

for i in range(5): # 0-4, the 5 not included

print(i)

Output:
Iterate in range(stop)
0
1
2
3
4

Method-2: range(start, end value)
Parameter-1 is start value,
Parameter-2 is end value, (Goes up to end - 1, not including end value)
Default - Increment by 1

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 27

CIT S
tud

en
ts

Only

Unit-II Python Study Material

print("Iterate in range(start, stop)") #

for i in range(1,5): # 1-4, the 5 not included

print(i)

Output:
Iterate in range(start, stop)
1
2
3
4

Method-3: range(start, end, incr/decr value) -

Parameter-1 is start value,
Parameter-2 is end value, (Goes up to end - 1, not including end value)
Parameter-3 is Increment or decrement value.

print("Iterate in range(start, stop, inc/dec)")

for i in range(1,5,2): # 1,3 the 5 not included

print(i)

Output:
Iterate in range(start, stop, inc/dec)
1
3

Application-1: Program to count number of even integers in the given list using for loop.
for loop: Program to count the number of even integers in a list.

List of integer numbers

numbers = [10, 5, 7, 4, 20, 37, 9]

variable to track the even count

ecount = 0

repete over the list

for n in numbers:

if n % 2 == 0:

ecount += 1

print("Count of even numbers is", ecount)

Output:
Count of even numbers is 3

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 28

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application-2: Write a program to Find GCD of 2 numbers
Storing user input into num1 and num2

num1 = int(input("Enter integer number1 : "))

num2 = int(input("Enter integer number2 : "))

identify smallest of 2 numbers and assign to limit

if(num1<num2):

limit = num1

else:

limit = num2

for i in range(1,limit+1):

Checks if the current value of i is

factor of both the integers num1 & num2

if(num1%i==0 and num2%i==0):

gcd = i

print(f"GCD of input numbers {num1} and {num2} is: {gcd}")

Output:
Enter integer number1 : 50
Enter integer number2 : 100
GCD of input numbers 50 and 100 is: 50

Application-3: Write a program to print ASCII value & character set in Python
print("ASCII ==> Character\n");

for i in range(0,127):

print(f"{i} ==> {chr(i)}")

Output:
…

120 ==> x
121 ==> y
122 ==> z
123 ==> {
124 ==> |
125 ==> }
126 ==> ~

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 29

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Calculating Running Total

Definition:
A running total is the sum of numbers that accumulates over a sequence of numbers.
To calculate a running total in Python, you can use a loop to iterate through a range or list of
numbers and keep track of the running total using a variable.

For example, if you have a list of numbers [1, 2, 3, 4], the running total would be [1, 3, 6, 10],
where each element is the sum of all the elements that came before it.

Purpose:
A running total provides subtotals for any further calculations or for preparing a report.

Application:
'''

Program to find running total within a given range (using for loop)
'''

runningTotal = 0;

num = int(input("Enter +ve integer 1-100 : "))

if(num<0 or num>100):

print("Out of range")

exit(0)

for loop terminates when num is less than count

for i in range(num+1):

runningTotal += i

print(f"{i} {runningTotal} ")

Output:
Enter +ve integer 1-100 : 5
0 0
1 1
2 3
3 6
4 10
5 15

Explanation:
The program takes an input number between 1 and 100 from the user. If the given number is
outside the range of 1-100, then the programs exits. If the given number is with in the range of
1-100 then the running total is calculated in ‘for’ loop and prints the result for each iteration.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 30

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Input Validation Loop

Definition:
An input validation loop prompts the user to enter input data, checks the input for validity, and
repeats the prompt until valid input is entered. The loop continues until the user enters valid
input and then the program can proceed with the remaining steps.

Purpose:
Input validation loops in Python ensure that the user enters valid input data. This is important
because invalid data can cause errors or unexpected behavior in the program.

Application:
'''

Aim: Check the input number is valid. If invalid, then repeat the

prompt to reenter another number

'''

while True:

user_input = input("Enter a number between 1 and 10 : ")

num = int(user_input)

if num < 1 or num > 10:

print("Invalid number.")

else:

print("Valid number.")

break

Output:
Enter a number between 1 and 10 : 27

Invalid number.

Enter a number between 1 and 10 : 7

Valid number.

Explanation:
In this example, the loop continues until the user enters a valid number between 1 and 10. The
input is first converted to an integer using the int() function. If the input is an invalid integer, the
loop continues. If the input is a valid and within the range, the loop is exited and the program
can proceed with the remaining steps.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 31

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Nested Loops in Python

Definition:
Nested loop in Python is a loop that is placed inside another loop. The nested loops are used to
iterate over multiple groups of data or to perform a task repeatedly for each element of multiple
lists or collections of data.

We have for and while loops in Python. We can nest these loops in any combination in Python.
Two such combinations are as follows:

● for loop nested with another for loop,
● for loop nested with a while loop

Purpose:
Nested loops are typically used for working with patterns, multidimensional data structures, such
as printing two-dimensional arrays, iterating a list that contains a nested list.

General Syntax: Nested Loop in Python

OuterLoop Expression:

InnerLoop Expression:
Statements inside InnerLoop

Statements inside Outer_Loop

Syntax: Nested for Loops

for outer_var in outer_sequence:

for inner_var in inner_sequence:
Statements in inner for loop

Statements in outer for loop

Note: Each iteration of the outer for loop triggers a complete iteration of the inner for loop.

Syntax: Nested for - while Loops

for outer_var in outer_sequence:

while (condition):
Statements in inner while loop

Statements in outer for loop

Note: Each iteration of the outer for loop triggers a complete iteration of the inner while loop.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 32

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application-1:
Lab-5: Use a for loop to print a triangle using *s.

Allow the user to specify how high the triangle should be.

rows = int(input('Enter rows: '))

for i in range(1,rows+1):

for j in range(0,i):

print('*', end=' ')

print('')

Output:
Enter rows: 5
*
* *
* * *
* * * *
* * * * *

Application-2:
#Program to print multiplication tables using nested “for” loop

Outer loop - tables 5 and 6

for i in range(5, 7):

Inner loop from 1 to 10

for j in range(1, 11):

print(i, "*", j, "=", i*j)

print()

Output:

5 * 1 = 5
5 * 2 = 10
5 * 3 = 15
5 * 4 = 20
5 * 5 = 25
5 * 6 = 30
5 * 7 = 35
5 * 8 = 40
5 * 9 = 45
5 * 10 = 50

6 * 1 = 6
6 * 2 = 12
6 * 3 = 18
6 * 4 = 24
6 * 5 = 30
6 * 6 = 36
6 * 7 = 42
6 * 8 = 48
6 * 9 = 54
6 * 10 = 60

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 33

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application-3:
#Program to print a number pattern using nested “while” loop

i=1

while i<=5:

j=1

while j<=i:

print(j,end=" ")

j=j+1

print("")

i=i+1

Output:
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5

Application-4:
#Find Prime numbers in an Interval using nested “for - while” loop
lownum = int(input("Enter low number of interval : "))

highnum = int(input("Enter high number of interval : "))

print("Prime numbers between", lownum, "and", highnum, "are:")

for num in range(lownum, highnum + 1):

Primes are always > 1

if num > 1:

i = 2

while (i<num):

if (num % i) == 0:

break

i += 1

else:

print(num, end=’ ‘)

Output:
Enter low number of interval : 1
Enter high number of interval : 20
Prime numbers between 1 and 20 are:
2 3 5 7 11 13 17 19

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 34

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Jump Statements in Python

The Jump Statements are loop Control Statements in Python. The loop Control Statements are
used to change the normal flow of a loop based on a condition.

The 3 jump or loop control statements in Python are,
1. break statement

2. continue statement

3. pass statement

1. “break” statement

Definition:

● The break statement in Python is used to terminate the loop and brings the control out of
the loop. The break statement is used in both the while and the for loops.

● The break statement is especially useful to quit from a nested loop (loop within a loop). It
terminates the inner loop and control shifts to the statement in the outer loop.

Note: The “break” statement almost always needs an “if” condition to work properly.

Syntax:

break

Using break in while loop: Using break in for loop:

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 35

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application:

BREAK in WHILE loop :
If the ‘while’ loop encounters an optional
‘break’, the loop simply exits even though the
‘while’ condition is True.

BREAK in FOR loop :
If the ‘for’ loop encounters an optional ‘break’,
the loop simply exits even though the ‘for’
sequence is not completed.

Application: Write a program to print 1-5
using a ‘while’ loop with ‘break’ to stop at 4.

i=1

while loop with i = 1 to 3

while i <= 5:

print(i)

i += 1

if(i==4):

break

Output:
1
2
3
Explanation: The while loop continued until it
encountered 4 and then exited while loop. The i
+= 1 statement increments the value of i by 1
on each iteration of the loop.

Application: Write a program to print 1-5
using a ‘for’ loop with ‘break’ to stop at 4.

for loop with i = 1 to 3

for i in range (1,6):

if(i==4):

break

print(i)

Output:
1
2
3
Explanation: The ‘for’ loop continued until it
encountered 4 and then exited ‘for’ loop.

2. “continue” statement

Definition:

The “continue” statement forces the control to skip the current iteration and go to the next
iteration of the loop.

A. In “while” statement, the “continue” statement will directly jump the execution control
to “condition”,

B. In “for” statement, the “continue” statement will jump the execution control to the
next element in the given sequence.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 36

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Syntax:

continue

Using continue in while loop: Using continue in for loop:

Application:

CONTINUE in WHILE loop:
If the ‘while’ loop encounters an optional
‘continue’, the loop simply skips the current
iteration and jumps to the ‘condition’ for next
iteration.

CONTINUE in FOR loop :
If the loop encounters an optional ‘continue’,
the loop simply skips the current iteration and
jumps to next iteration in the sequence.

Application: Program to print even numbers
between 1 and 5 using while loop & continue
(skip) on odds

n = 1

while n < 5:

n += 1

if (n % 2) != 0:

continue

print(n)

Output:
2
4

Explanation: The while loop continued until 2.
When it encountered 3, the value incremented
to 4 and executed ‘continue’ to skip the
iteration.

Application: Program to print even numbers
between 1 and 5 using 'for' loop & continue
(skip) on odds

for n in range(1,6):

if (n % 2) != 0:

continue

print(n)

Output:
2
4

Explanation: The ‘for’ loop continued until 2.
When it encountered 3, it executed ‘continue’ to
skip 3 and continued with 4 in the sequence.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 37

CIT S
tud

en
ts

Only

Unit-II Python Study Material

3. “pass” statement

Nothing happens when the “pass” statement is executed. Hence, it is a null operation and is
considered a placeholder for future code.

● Empty code is not allowed in loops, function definitions, class definitions, or if
statements and causes errors in Python.

● So, “pass” statement is used to write empty loops, control statements, functions,
or classes to avoid errors.

Syntax:

pass

Application:

PASS in IF and WHILE loop
n=1

while (n<5):

if (n==3):

pass

n += 1

PASS in FOR loop
college = "Chalapathi"

for i in college:

pass

PASS in Function
def func():

pass

func()

PASS in Class
class name:

pass

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 38

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Quick Reference

Comparison of Loops

‘for’ loop ‘while’ loop

Pre-Test or Entry controlled loop - Checks
for LAST ELEMENT at TOP

Pre-Test or Entry controlled loop -
CONDITION is specified at TOP

Sequence controlled loop (Known number of
elements)

Event (or Condition) controlled loop

Use it when you know how many times to
iterate

Use it when you don’t know how many times
to iterate

Repeats for all elements in a sequence,
except the last one.

Repeats until a condition is met

Syntax:

for var in sequence:
loop statements

else: (optional)
block of statements

Syntax:
Initialization (optional)

while (Condition):

Loop Block of statements

Incr/Decr (optional)

else: (optional)

Block of statements

Example: for

1-4, the 5 not included

for i in range(1,5):

print(i)

Example: while

i = 1

while loop for i = 1 to 5

while i <= 5:

print(i)

i += 1

Output:

1
2
3
4

Output:

1
2
3
4
5

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 39

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Comparison of “break” and “continue” statements

break continue

Used to terminate the loop Used to SKIP current iteration and go to
NEXT iteration

Control passed to outside the loop Control passed to the beginning of the loop
for next iteration

EXIT from control loop Loop takes NEXT iteration

“break” is used in LOOPS (for, while) “continue” is used in LOOPS (for, while)

Syntax:
for var in sequence:

#body of loop

if(condition)

break

Syntax:
for var in sequence:

#body of loop

if(condition)

continue

Example:

for i in range(5):

if(i==3):

break

print(i)

Example:

for i in range(5):

if(i==3):

continue

print(i)

Output:
0
1
2

Output:
0
1
2
4
5

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 40

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Comparison of “break”, exit(), sys.exit(), quit()

break exit () or sys.exit() quit ()

break is a keyword in Python;
therefore it can't be used as a
variable name.

exit() is a standard library
function in Python.
exit can be used as a variable
name.

sys module can also be used:
import sys
sys.exit()

quit() is a standard library
function in Python.
quit can be used as a
variable name.

break causes an immediate
termination from a loop (for,
while) and jumps to the
remaining program.

exit() terminates whole
program execution.

quit() terminates whole
program execution.

break transfers the control to
outside the loop (for, while).

exit() returns the control to
the operating system or
another program that uses
this one as a sub-process.

Example of break
// some code here before
while loop
while(true)

...
if(condition)
break;

some code after while loop

Example of exit()
// some code here before
while loop
while(true)

...
if(condition)
exit()

some code after while loop

Example of quit()
// some code here before
while loop
while(true)

...
if(condition)
quit()

some code after while loop

In the above code, break
terminates the while loop and
some code after the while
loop will be executed after
breaking the loop.

In the above code, when
if(condition) returns True,
exit() will be executed and the
program will get terminated.

In the above code, when
if(condition) returns True,
quit() will be executed and
the program will get
terminated.

Conclusion:
break is a statement that
terminates loops and jumps
to the next program
statements.

Conclusion:
exit() is a library function that
causes the immediate
termination of the entire
program.

Conclusion:
quit() is a library function that
causes the immediate
termination of the entire
program.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 41

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application: Scenario based solution using while-else loop
''' Scenario: A team of players play a game. There is a qualified

score per the game. Each players can score and add up to total scored.

Aim: Find whether the team scored more or less of the qualified score.

Use while loop. '''

moreScores = 'yes'

totalScores = 0

player = 1

Qualified Score per game

totalToQualify = int(input('What is the qualified score per game? '))

while moreScores == 'yes':

Get score per player

scoresPerPlayer = int(input(f'Enter score for player {player}: '))

totalScores += scoresPerPlayer

player += 1

Ask if user wants to input another score

moreScores = input('Do you want to enter score for another player? yes or

no : ')

else:

print("*** End of the game ***")

#Calculate scores less/more than qualified score per game

if totalScores >= totalToQualify:

print('Your team scored', abs(totalToQualify - totalScores), f'points

more than qualified score {totalToQualify} per game.')

elif totalScores <= totalToQualify:

print(f'Your team scored', totalToQualify - totalScores, f'points less

than qualified score {totalToQualify} per game.')

Output:
What is the qualified score per game? 100
Enter score for player 1: 50
Do you want to enter score for another player? yes or no : yes
Enter score for player 2: 40
Do you want to enter score for another player? yes or no : yes
Enter score for player 3: 20
Do you want to enter score for another player? yes or no : no
*** End of the game ***
Your team scored 10 points more than qualified score 100 per game.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 42

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Section-3: Strings: Accessing characters and Substring in Strings, Data Encryption, Strings
and Number Systems.

Accessing Characters and Substrings in Strings

Introduction:
A string in Python is an array of Unicode characters enclosed in quotes. Also, Python does not
have a character data type; a single character is simply a string with a length of 1.
String indexing in Python is zero-based: the first character in the string has index 0 , the next
has index 1, and so on.

Accessing Individual Characters:
In Python, we can access individual characters in a string using indexing. The characters in a
string in Python can be accessed using both normal indexing and negative indexing.

➢ Normal Indexing - Each character in the string is assigned a numerical index starting from
0 to n-1, where n is the length of the string. So characters in a string of size n, can be
accessed from 0 to n-1.

➢ Negative Indexing - A string will also have negative indexing. A negative index number
starting from -1 is assigned from the last character in a string. So, -1 for last character, -2
for 2nd from the last, -3 for 3rd from the last and so on.

index 0 1 2 3 4 5 6 7

string S o f t w a r e

-ve Index -8 -7 -6 -5 -4 -3 -2 -1

Individual characters in a string can be accessed by the string name followed by an index
number in square brackets [].

Syntax:

string_name [index]
Example:
Accessing characters in strings

st = "Software Pros!"

print(st[0]) # Output: S

print(st[5]) # Output: a

print(st[0:4]) # Output: Soft

print(st[-1]) # Output: !

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 43

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Explanation:
In the above example, the first line creates a string variable st. The next three lines demonstrate
how to access individual characters in the string using indexing.

● 1st print statement outputs the character at index 0, which is 'S'.
● 2nd print statement outputs the character at index 5, which is 'a'.
● 3rd print statement outputs the characters between 0 and 3, ‘Soft’. (not including index 4).
● 4th print statement uses a negative index value to access the last character in the string,

which is '!'.

Accessing Substrings:

In Python, you can access substrings from a string by using slicing. Slicing allows us to
extract a portion of the original string by using the starting and ending index values.

String slicing is the process of obtaining a range of characters or a substring of a string by
using its indices. Following are the 2 methods to slice a string.

1. Array slicing (: operator)
2. slice() function

1. Array slicing (: operator)
Definition:
Array slicing is used to obtain a portion of a string array or a list. It uses the slicing operator :
and square brackets to slice a string.

Syntax:

object [start : stop : step]

start - start index of the slice (included),
stop - end index of the slice (excluded), and
step - step size is the number of elements to skip between each element in the slice

Application on Array Slicing Application Find Palindrome

s = "COLLEGE"
print(s[1:6]) # OLLEG 6 excluded
print(s[1:6:2]) # OLG 6 excluded
print(s[:3]) # COL 3 excluded
print(s[5:]) # GE 5 to last
Negative index
print(s[-4:-1]) # LEG -1 excluded
print(s[1:-4]) # OL -4 excluded
print(s[5:1:-2]) #GL, in Reverse order
Reverse
print(s[::-1]) # EGELLOC String Reverse

st1 = input("Enter a string : ")

st2 = st1[:: - 1]

if(st1 == st2):

print("This string is a

Palindrome")

else:

print("This string is not a

Palindrome")

Ex: level, madam, mom

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 44

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Table shows how the string sequence is sliced using : operator

Index 0 1 2 3 4 5 6

s C O L L E G E

s[1:6] C O L L E G E

s[1:6:2] C O L L E G E

s[:3]
s[0:end]

C O L L E G E

s[5:]
s[beg :]

C O L L E G E

+ve index 0 1 2 3 4 5 6

-ve Index -7 -6 -5 -4 -3 -2 -1

s[-4:-1] C O L L E G E

s[1:-4] C O L L E G E

s[5:1:-2] C O L L E G E

Reverse a string

s[::-1] E G E L L O C

2. slice() Function

Definition:
1. The slice() returns a slice object (a portion size)
2. The slice object is used as an index to slice a sequence such as string, list, tuple, or

range.

Syntax:

slice (start , stop , step)

start - start index of the slice (included),
stop - end index of the slice (excluded), and
step - step size is the number of elements to skip between each element in the slice

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 45

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application: slice():
slice() function
s = "Our CIT College!"
sub = slice(0, 3) # Creates a slice object representing [0:3]
result = s[sub] # Slices the string s using the slice object sub
print(result) # Output: "Our"

Output: Our

String format methods

String formatting is the process of inserting a custom string or variable in predefined text.
Python allows string formatting using one of the following 5 methods.

1. % (String Format Operator)
2. format() method
3. f-strings
4. Built-in methods
5. String Template Class (external module: from string import Template)

1. % (String Format Operator):
The % Operator is called a String Format Operator or an Interpolation Operator. It is used for
simple positional formatting in strings. It allows you to insert values into a string, replacing
placeholders with actual values. The placeholders are represented by percent signs followed by
a format specifier that defines the type of the value being inserted.

Syntax:

<”format specifiers”> % <data/vars>

● format specifiers - carries any string with %formatSpecifiers as placeholders (%d, %f, %s)
● ‘ % ’ is the String Format Operator that substitutes data/variable value into format specifier
● data/vars - values to replace format specifiers

<”format specifiers”> may have format specifiers with Padding for data values as specified
below:
%<fieldwidth>.<precision>f %6.2f
%<fieldwidth>d %3d
%<fieldwidth>s %10s
<fieldwidth> is the total number of digits given for the value
<precision> is the number of decimal digits out of the given total digits
The unfilled digit positions will be added as padding spaces on the left.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 46

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Example:
name = "Raj"
age = 25
marks = 75.55
without padding
print("Name:%s, Age:%d, Marks:%f" % (name, age, marks))
Output: Name:Raj, Age:25, Marks:75.550000

with padding
print("Name:%10s, Age:%3d, Marks:%6.2f" % (name, age, marks))
Output: Name: Raj, Age: 25, Marks: 75.55

Table: List of format specifiers in Python

Format Specifier Conversion

%c character

%s string conversion via str() prior to formatting

%i signed decimal integer

%d signed decimal integer

%u unsigned decimal integer

%o octal integer

%x hexadecimal integer (lowercase letters)

%X hexadecimal integer (UPPERcase letters)

%e exponential notation (with lowercase 'e')

%E exponential notation (with UPPERcase 'E')

%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 47

CIT S
tud

en
ts

Only

Unit-II Python Study Material

2. format() method
The format() method formats the given values and insert them at placeholders in a string. The
placeholders are represented by curly braces { }.

Syntax1: using format() with sequence of vars/values

.format(var0,var1...)

print(“{},{} ”.format(var0,var1))

● format() method must be preceded by . operator
● var1, var2,...var-n are variables or values we pass into format() method
● placeholder { } is a value specifier.

○ Each pair of {}s represents a value from the variable passed into format()
○ The sequence of variables in the format() method must match the sequence of { }

in quotes
Example:

name = "Venkat"

age = 20

print("My name is {} and I am {} years old.".format(name,age))

Output:
My name is Venkat and I am 20 years old.

Syntax2: using format() with index number of vars/values

.format(var0,var1...)

print(“{var index0},{var index0},{var index1}”.format(var0,var1))

● format() method must be preceded by . operator
● var1, var2,...var-n are variables or values we pass into format() method
● Each variable is indexed starting from 0 and increments by 1
● {var index#} represents the value of the variable specified in that position in the

format(var0, var1, var2, ...) function.
● The index/position of variables in format() function starts with 0 and increments by 1

Example:

name = "Venkat"

age = 20

grade = 'A'

print("{0} has grade {2}. {0} is {1} years old.".format(name,age,grade))

Output:
Varsha has grade A. Venkat is 20 years old.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 48

CIT S
tud

en
ts

Only

Unit-II Python Study Material

3. 3. f string format
a. f or F means formatted strings that are more readable and faster. (>= 3.6).
b. To create an f-string, prefix the string with letter “f”.
c. These f strings contain replacement fields in curly braces { }
d. The f or F in front of strings tells Python to look at the values, expressions, or objects

inside { } and substitute them with the values of the given variables or expressions.
e. Formatted strings are evaluated at run time (while other string literals always have a

constant value).

Example1: Basic fstrings

name1 = “Divya”

name2 = “Nitin”

cash1=5000

cash2=7000

total_cash = cash1 + cash2

#print in format method-2: Better one

print(f"Cash from {name1} = {cash1}")

print(f"Cash from {name2} = {cash2}")

print(f"Total amount = {total_cash}")

Output:
Cash from Nitin = 100
Cash from Naveen = 200
Total amount = 300

Example2: f string for precision, datetime and number conversion

import decimal

import datetime

precision: nested fields, output: 12.35

width = 12

precision = 4

value = decimal.Decimal("12.3456789")

print(f"result:{value:{width}.{precision}}")

print(f"result:{value:{2}.{5}}")

date format specifier, output: March 27, 2017

today = datetime.datetime(year=2023, month=3, day=17)

print(f"{today:%B %d, %Y}")

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 49

CIT S
tud

en
ts

Only

Unit-II Python Study Material

hex integer format specifier, output: 0x400

number = 1024

print(f"{number:#0x}")

These are commonly used string format approaches in Python. We can customize the string
format using different arguments and formatting options.

4. Built-in methods to format strings

In Python, the class ‘str’ provides several built-in methods to format or convert strings. The
following table shows these methods and how they format the strings when they are used with a
string object.

Table: Built-in methods to format strings

Method Description s=”software Engineers”

s.capitalize() converts the first character to uppercase. Software Engineers

s.upper() Converts all the characters in a string to
uppercase.

SOFTWARE ENGINEERS

s.lower() Converts all the characters in a string to
lowercase.

software engineers

s.isupper() Returns True if all the characters are
uppercase. Otherwise, False

False

s.islower() Returns True if all the characters are
lowercase. Or else False.

False

s.find(substring,
[start, end])

Returns the index of a specified character in
the string or the start position of the given
substring.

s.find(“Eng”)
9

s.count(substring,[st
art,end])

Counts the occurrence of a character or
substring in a string.

s.count(“r”)
2

s.expandtabs([tabsi
ze])

Replaces tabs defined by \t with spaces.
Default tabsize = 8

s.endswith(substrin
g,[start, end])

Returns True if a string ends with the specified
substring. False otherwise.

s.endswith(“neers”)
True

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 50

CIT S
tud

en
ts

Only

Unit-II Python Study Material

s.startswith(substrin
g, [start, end])

Returns True if a string starts with the
specified substring. False otherwise.

s.startswith(“Soft”)
True

s.isalnum() Return True if all characters in a string are
alphanumeric. False otherwise.

False

s.isalpha() Return True if all characters in a string are
alphabetic. False otherwise.

True

s.isdigit() Return True if all characters in a string are
digits. False otherwise.

False

s.split([separator],[
maxsplit])

Splits a string separated by a
separator(defaults is whitespace) and an
optional maxsplit to determine the split limit.
Returns a list.

[“Software”,”Engineers”]

sep.join(sequence) Takes all items in an iterable sequence (list,
tuple, string), separates them by a given
separator, and Joins them into a single string.

sep=”_”
seq=”CIT”
sep.join(seq) => C_I_T

s.replace(old,
new,[maxreplace])

Replace old substring contained in the string s
with a new substring.

s.(“Engineers”,”Programmer”)
Software Programmers

s.swapcase() Returns a new string with swapped case. i.e.,
uppercase becomes lowercase and vice
versa.

sOFTWARE pROGRAMMERS

s.strip([characters]) Removes whitespaces or optional characters
at the beginning and at the end of the string.

s.lstrip([characters]) Removes leading whitespace or optional
characters from a string.

s.rstrip([characters]) Removes trailing spaces at the end of the
string.

Application: Using Built-in format methods
built-in methods to format strings in class 'str'

s = "Software Pros"

print("capitalize:",s.capitalize())

print("upper:",s.upper())

print("lower:",s.lower())

print("isupper:",s.isupper())

print("islower:",s.islower())

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 51

CIT S
tud

en
ts

Only

Unit-II Python Study Material

print("index# find:",s.find("Pros"))

print("count:",s.count("r"))

print("isnum:",s.isalnum())

print("isalpha:",s.isalpha())

print("isdigit:",s.isdigit())

print("split:",s.split())

print("join:", "-".join(s))

print("replace:",s.replace("Pros","Engineers"))

print("swapcase:",s.swapcase())

Output:
capitalize: Software pros
upper: SOFTWARE PROS
lower: software pros
isupper: False
islower: False
index# find: 9
count: 2
isnum: False
isalpha: False
isdigit: False
split: ['Software', 'Pros']
join: S-o-f-t-w-a-r-e- -P-r-o-s
replace: Software Engineers
swapcase: sOFTWARE pROS

Operators for String Operations

Python provides the following operators for string operations:
● String concatenation operator “ + ”
● String repetition operator “ * ”
● String Slicing operator “ : ” to obtain substrings (See String slicing, p44)
● Indexing to traverse through strings (See Accessing Individual Character, p43)
● Membership operators (in, not in) to search for strings (See Operators in Unit-I)
● Relational operators (>, >=, <, <=) to compare strings (See Comparing Strings, p13)

Here, we will discuss + and * operators.
The + operator is used to concatenate 2 or more strings into one string.
The * operator is used to repeat a string up to a given number of times.

Operator Purpose Operation Description

+ Concatenation s1 + s2 Concatenates two strings, s1 and s2.

* Repetition s * n Makes n copies of string s.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 52

CIT S
tud

en
ts

Only

Unit-II Python Study Material

(+) Concatenation Operator:
Definition:
The + operator is used to join or concatenate two strings.
This concatenation operator in Python concatenates only objects of the same type.
Usage:

concatenate_string = string1 + string2 # concatenate the two strings

(*) Repetition Operator:
Definition:
The * operator is used to repeat a given string n number of times (similar to multiplication).
Usage:

repeat_string = string1 * n # repeats string1 n times

Application:
Concatenate & Repetition of strings
s1 = "Computer "
s2 = "Science"
s3 = s1 + s2
print(s3)

s4 = s1*3
print(s4)

Output:
Computer Science
Computer Computer Computer

String padding functions in Python

Definition:
In Python, String padding functions add extra characters such as spaces or zeros, at the start or
end of a string to get a required length. Python does provide several built-in string padding
functions for this purpose.

The commonly used string padding functions are,
1. ljust(),
2. rjust(), and
3. center().

Purpose:
These methods are very useful for formatting text in the form of tables or displaying information
in a fixed-width format.

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 53

CIT S
tud

en
ts

Only

Unit-II Python Study Material

1. ljust()

Syntax:

svar.ljust(width[, fillchar])

ljust() function returns left-justified string of given width. The string is padded with fillchar
(default is space) to make up the length.

Example:
s = 'Guntur'
padded_s = s.ljust(10, '*')
print(padded_s) # Guntur****

2. rjust()

Syntax:

svar.rjust(width[, fillchar])

rjust() function returns right-justified string of given width. The string is padded with fillchar
(default is space) to make up the length.

Example:
s = 'Guntur'
padded_s = s.rjust(10, '*')
print(padded_s) # ****Guntur

3. center()

Syntax:

svar.center(width[, fillchar])

center() function returns centered string in the given width. The string is padded with fillchar
(default is space) to make up the length.

Example:
s = 'Guntur'
padded_s = s.center(10, '*')
print(padded_s) # **Guntur**

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 54

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Data Encryption

Definition:
The process of converting information that cannot be understood by the unauthorized user is
called data encryption. The reverse process is called decryption. Data encryption is used to
protect the information transmitted over the network. The encrypted data prevents data
corruption, sniffing, stealing, or security attacks.

The network protocols such as FTPS and HTTPS do provide security to the information
transmitted over the network.

Security attacks:
Any action or a breach that compromises the security of information owned by an individual or
an organization is called a security attack. Security attacks are classified into two: Passive and
Active
➢ Passive Attacks - Unauthorized persons secretly reading or listening to private messages

or message patterns while transmitting between a sender and a receiver.
➢ Active Attacks - Modification of the original data stream or the creation of a false data

stream. Also includes,

○ Masquerade - one entity pretends to be a different entity

○ Replay- Passively capture and Unauthorized retransmission
○ DOS (Denial Of Service) - Disruption of an entire network

Process of Data Encryption:
● The information that is to be transmitted is called ‘Plain Text’.
● The sender encrypts the message by translating it into a secret code called ‘Cipher Text’.
● The receiver decrypts the cipher text into the original message or plain text.
● Both parties use secret keys (public key & private key) to encrypt and decrypt messages.
● Caesar cipher is a simple encryption method that has been in use for thousands of years.

Caesar cipher Encryption:

● Letter in a given plain text is changed to a letter that appears a certain number of positions
farther down the alphabet set.

● For the characters near the end, the method goes back to the beginning of the alphabet set
to locate the replacement characters.

● For example, if the distance value of a Caesar cipher is right-shift by 2 characters, the string
“day” would be encrypted as “fca”

a b c d e f g h i j k l m n o p q r s t u v w x y z

c d e f g h i j k l m n o p q r s t u v w x y z a b

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 55

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application: Caesar cipher encryption

Caesar Cypher Encryption - Method1

msg = input('Enter your message: ')

dist= int(input('Enter cipher distance: '))

cmsg=""

for ch in msg:

ordnum=ord(ch)

ciphernum=ordnum+dist

if ciphernum>ord('z'):

ciphernum=ord('a')+dist-(ord('z')-ordnum+1)

cmsg=cmsg+chr(ciphernum)

print(cmsg)

Caesar Cypher Encryption - Method2
msg = input('Enter your message: ')
dist= int(input('Enter cipher distance: '))
cmsg=""
for ch in msg:

Add space for space
if ch==" ":

cmsg+=" "
uppercase encryption
elif (ch.isupper()):

cmsg+=chr((ord(ch)+dist-65)%26+65)
lowercase encryption
else:

cmsg+=chr((ord(ch)+dist-97)%26+ 97)
print(cmsg)

Output:
Enter your message: day
Enter cipher distance: 2
fca

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 56

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application: Caesar cipher decryption

Caesar Cypher Decryption

code=input('Enter your text: ')

dist=int(input('Enter distance: '))

msg=""

for ch in code:

ordnum=ord(ch)

ciphernum=ordnum-dist

if ciphernum<ord('a'):

ciphernum=ord('z')-(dist-(ord('a')-ordnum+1))

msg=msg+chr(ciphernum)

print(msg)

Output:
Enter your text: fca
Enter distance: 2
day

Number Systems

Number systems are the technique to represent numbers in the computer system architecture,
every value that we save or read has a defined number system.
Computer architecture supports the following number systems.

1. Binary number system
2. Octal number system
3. Decimal number system
4. Hexadecimal (hex) number system

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 57

CIT S
tud

en
ts

Only

Unit-II Python Study Material

1) Binary Number System (Base: 2, Digits: 0, 1)
A Binary number system has only two digits 0 and 1. All binary numbers are represented in 0s
and 1s.

2) Octal number system (Base: 8, Digits: 0-7)
Octal number system has only 8 digits from 0 to 7. All octal numbers are represented in
0,1,2,3,4,5,6 and 7.

3) Decimal number system (Base: 10, Digits: 0-9)
Decimal number system has only 10 digits from 0 to 9. All decimal numbers are represented in
0,1,2,3,4,5,6, 7,8, and 9.

4) Hexadecimal number system (Base: 16, Digits: 0-9, A-F)
A Hexadecimal number system has 16 alphanumeric values from 0 to 9 and A to F. All
hexadecimal numbers are represented in 0,1,2,3,4,5,6, 7,8,9,A,B,C,D,E, and F. Here A is 10, B
is 11, C is 12, D is 13, E is 14 and F is 15.

Table: Number Systems & Representation in Python

Number system Base Digits used Example Python assignment

Binary 2 0,1 (11110000)2 var = 0b11110000

Octal 8 0,1,2,3,4,5,6,7 (360)8 var = 0o360

Decimal 10 0,1,2,3,4,5,6,7,8,9 (240)10 var = 240

Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,
A,B,C,D,E,F

(F0)16 var = 0xF0

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 58

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Decimal to Binary Conversion:
● Manual conversion - Decimal number is divided by 2 until we get 1 or 0 as the final

remainder.
28 10 = 11100 2

Base target Decimal Remainder

2 28 0

2 14 0

2 7 1

2 3 1

2 1

Decimal to Octal Conversion:
● Manual conversion - Decimal number is divided by 8 until we get 0 to 7 as the final

remainder.
28 10 = 34 8

Base target Decimal Remainder

8 28 4

8 3

Decimal to Hexadecimal Conversion:
● Manual conversion - Decimal number is divided by 16 until we get 0 to 15 as the final

remainder.
28 10 = 1C 16

Base target Decimal Remainder

16 28 12 = C

16 1

Automatic conversion: Decimal to Binary, Octal, Hexadecimal
From decimal to binary, octal or hexadecimal, use bin(), oct(), hex() functions respectively.
From binary, octal or hexadecimal to decimal, use int(other num, base) function..

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 59

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Application:
Aim: Program to convert Decimal to Binary, Octal and Hexadecimal
Decimal to Binary, Octal, Hexadecimal
n = 28
bn = bin(n)
ot = oct(n)
hx = hex(n)
print("Decimal to Binary ", n, "=", bn)
print("Decimal to Octal ", n, "=", ot)
print("Decimal to Hexadecimal ", n, "=", hx)

#Binary to Decimal
print("Binary to Decimal = ",int(bn,2))
#Octal to Decimal
print("Octal to Decimal = ",int(ot,8))
#Hexadecimal to Decimal
print("Hexa to Decimal = ",int(hx,16))

Output:
Decimal to Binary 28 = 0b11100
Decimal to Octal 28 = 0o34
Decimal to Hexadecimal 28 = 0x1c
Binary to Decimal = 28
Octal to Decimal = 28
Hexa to Decimal = 28

Binary to Decimal Conversion

Binary Number = 11100 2

1 1 1 0 0

1x24 1x23 1x22 0x21 0x20

16 8 4 0 0

= 16 + 8 + 4 + 0 + 0
Decimal number = 28 10

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 60

CIT S
tud

en
ts

Only

Unit-II Python Study Material

Octal to Decimal Conversion

Octal Number is : 34 8

3 4

3x81 4x80

24 4

= 24 + 4
Decimal number = 28 10

Hexadecimal to Decimal Conversion

Hexadecimal Number is : 1c 16

1 c = 12

1x161 12x160

16 12

= 16 + 124 + 4
Decimal number = 28 10

Leadertain.com For clarifications, contact Ast. Prof. Mr. M Rahul 61

CIT S
tud

en
ts

Only

