C22 Python Unit-lll Study Material v2 - Section-2: Functions

Section-2: Design with Functions

Functions improve efficiency and reduce errors because of their,
1. Modularity - Break down a bigger problem into smaller functions (Top-Down Parsing)
2. Reusability - Python uses a DRY (Don’t Repeat Yourself) principle. It means, Write a function
once, and Call the function any time, anywhere.

Definition:

A function in Python is a block of statements that performs a specific task. Functions are useful
when we must repeat the same task multiple times without rewriting the code.

> First, ‘def’ keyword is used to define a function.
> Second, the function must be called to run it,
o We may pass arguments (values) to the function (optional).
> The function may return the result back to the calling area (optional).
> The function may return No value, Single value, or Multiple Values to the calling area (optional).

Syntax:

def function-name (args):
statements
return result

def - keyword to define a function

function-name - the name of the function

args - list of values passed into the function (Optional)
return - will send the value back to calling area (Optional)

Function name Arguments
An identifier by which the <---, ,- » Contains a list of values

function is called ‘\ ; passed to the function
|
'

def name(arguments):

statement _
Function body
3 : statement ‘
Function body must tatement .- This is executed each time
be indented oy the function is called

return value

| Return value

_____ » Ends function call & sends
data back to the program

Leadertain.com Ast. Prof. M Rahul, CIT 16

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Functions as Abstraction Mechanism:

Abstraction is used to hide the internal functionality of the function from the users. The users only
interact with the basic implementation of the function, but the inner working is hidden. User is familiar
with "what function does" but they don't know "how it does."

In Python, abstraction is used to hide irrelevant data in order to reduce the complexity. It also enhances
the application efficiency.

Ex: Users just call a totalSalary() function to get a total salary but do not need to know how to do
calculate it.

Categories of functions with examples

The functions in Python are categorized into_4 categories. Categories are decided based on Argument

Passing and Return value.

Category Pass Arguments Return Value
form Calling Area form Called Function
to Called Function to Calling Area
1. No Pass add()
No Return No ~ print(10+5)
2. No Pass add()
Yes Return No e return (10+5)
3. Yes Pass add(a, b)
No Return Yes No print(a+b)
4. Yes Pass add(a, b):
Yes Return Yeg Yes return (a+b)

1. No Pass, No Return
e No arguments are passed to function from calling area
e No return value sent from the function to calling area
Example:
Function category: No Arguments, No Return value

def add(): # Function Definition
a,b=10,5
print("sum = ",6a+b)

main program

add() # Function call

Output: sum = 15

Leadertain.com Ast. Prof. M Rahul, CIT 17

C22 Python Unit-lll Study Material v2 - Section-2: Functions

2. No Pass, Yes Return
e No arguments are passed to function from calling area
e The called function returns result back to calling area
Example:
Function category: No Arguments, With Return value
def add(): # Function Definition
a,b=10,5
return a+b # with return value

main program

sum = add() # Function call
print("Total = ", sum)
Output: Total = 15

3. Yes Pass, No Return
e Arguments are passed to function from calling area
e No return value sent from function to calling area
Example:
Function category: With Arguments, No Return value

def add(a,b): # Function Definition
print("Total = ", a+b) # No return value
main program

add (10,5) # Function call

Output: Total = 15

4. Yes Pass, Yes Return
e Arguments are passed to function from calling area
e Return value is sent from function to calling area
Example:
Function category: With Arguments, With Return value

def add(a,b): # Function Definition
return a+b # with return value

main program

sum = add(10,5) # Function call

print("Total = ", sum)

Output: Total = 15

Leadertain.com Ast. Prof. M Rahul, CIT 18

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Compare a Function, a Fruitful Function, and an Anonymous Function with an example for each.

The functions are, mainly, divided into 2 categories:
1. Built-in Functions or Standard Library Functions,
2. User-defined Functions.

The user-defined functions are further classified into
Functions (Non-fruitful functions or Void functions)
Fruitful functions

Anonymous or Lambda Functions,

also, Recursion Functions.

Functions or Non-fruitful Functions:
Definition:

A function that doesn't return any value is called a non-fruitful function or a void function.

Syntax:

def function-name (args):
statements

def - keyword to define a function
function-name - the name of the function
args - list of values passed into the function

Example: Non-Fruitful function
def add(a, b):
print(a+b)

Fruitful functions:
Definition:

A fruitful function in Python is a function that returns a value after performing some operation.

We use the ‘def’ keyword to define a function. A function takes input arguments (or parameters),
processes them, and returns a result. The return value can be of any data type, such as int, float,
double, string, or a custom class.

Note: The result is returned to the calling area as a “fruit”.

Syntax:

def function-name (parameters):
statements
return result

Leadertain.com Ast. Prof. M Rahul, CIT 19

C22 Python Unit-lll Study Material v2 - Section-2: Functions

def - keyword to define a function

function-name - the name of the function
parameters - list of values received in the function
return - will send the result back to calling area

Example: Fruitful function
def add(a,b):

return a+b
sum = add (50,30)
print (sum) # 80

Anonymous functions or Lambda functions:

Definition:

Anonymous function is a function that has NO NAME when it is defined. It is also called a lambda
function. The ‘lambda’ keyword is used to create the lambda functions. Lambda functions are
restricted to a single code or expression.

A lambda function can take any number of arguments but only have one expression.

Syntax:

lambda arguments : expression

Example:
Lambda Function

sum = lambda a,b: a+b
print(sum(10,5))
print (type (sum)) #i<class 'function'>

What is a lambda function? Describe its characteristics with an example.

A lambda function is a function that has NO NAME when it is defined. It is also called an anonymous
function. We use lambda functions when we need a nameless function for a short period of time.

The ‘lambda’ is a keyword in Python for defining the anonymous function.

A lambda function can take any number of arguments but only have one expression.

Lambda functions are stored in a variable and created at run time.
We can pass the lambda function as an argument to a higher-order function (a function that
takes in other functions as arguments).

e Lambda functions can be used inside another function.

Leadertain.com Ast. Prof. M Rahul, CIT 20

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Syntax:

lambda arguments : expression

Example-1: Assigning Lambda to a variable
sum = lambda a,b: a+b

print(sum(10,5))
Or

Example-2: Not Assigning Lambda to a variable
print((lambda a, b: a + b) (10,5))

=> The advantage of lambda functions is best used when they are used inside another function.

Example-3: *** Real use of Lambda function is Inside Another Function ***
def power (n):

return lambda x: x ** n

SET power value

square = power (2)

cube = power (3)

SEND base value

print (square (5))

print (cube (5))

Output:

25
125

The Characteristics of Lambda Functions:

The lambda function,

takes many arguments but has only one expression.

is restricted to return a single expression.

is used as an anonymous function inside other functions.

does not need a return statement, they always return a single expression.

PN~

Leadertain.com Ast. Prof. M Rahul, CIT 21

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Applications of Lambda Functions

also, Applications of Higher Order Functions

(Note: These examples can be written for both Lambda Functions and also for Higher Order Functions)

Lambda functions are used along with built-in functions like filter(), map(), reduce() etc.

= Lambda with filter()
filter() function selects qualified elements from an iterable sequence based on the result of a function.

Syntax:

filter(function, iterable)

function - a function
iterable - an iterable like sets, lists, tuples, etc.

Example:
num list = [1,2,3,4,5,6,7,8]
even list = list(filter(lambda x: (x%2 == 0) , num list))

print(even_list) # [2, 4, 6, 8]

[1,2,3,4,5,6,7,8] Sequence
num_list

filter ()

even_list

[2. 4,6, 8] Result

- Lambda with map():

map() method applies a given function to each element of an iterable sequence (list, tuple etc.) and
returns a sequence containing the results. We can pass more than one iterable sequence to the map()
function.

Syntax:
map(function, iterable, ...)

function - a function
iterable - an iterable like sets, lists, tuples, etc

Leadertain.com Ast. Prof. M Rahul, CIT 22

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Example:
num list = [1,2,3,4,5]
squares_list=list(map(lambda x:x**2, num list))

print(squares_list) # [1, 4, 9, 16, 25]
i, 2, 3, 4 3] Sequence
map(lambda x:x**2, num_list) map()
11, 4 9. 1& 25} Result

= Lambda with reduce():
reduce() method applies a given function to all element of an iterable sequence (list, tuple etc.) and

returns a single value. The reduce() method is similar to “for” loop in Python. The reduce() method is
optimized and faster than “for” loop.

Note: The reduce() function in python is defined in “functools” module. We need to import “functools”
before calling the reduce() function in our program.

Syntax:

from functools import reduce

reduce(function, iterable)

Example:
from functools import reduce

quantity = [10, 20, 30, 40]
result = reduce(lambda x, y: x + y, quantity)

print (result)
Output: 100

Explanation: This python program returns the sum of all values in the list as a single value. It uses the
lambda function as (((10+20)+30)+40).

Leadertain.com Ast. Prof. M Rahul, CIT 23

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Docstring in Functions

Docstrings are enclosed in triple quotes for multi-line descriptions.

We can attach documentation to a function definition by including a string literal after the function
header.

>>> def double(n):
""vaAuthor: Poojitha
Version: 1.0
This function doubles the given number
and prints the result on the screen.
syntax: double (number)

nmmnmn

print (n*2)

>>> double (7)
14
>>> help (double)
Help on function double in module _ main_:

double (n)
Author: Poojitha
Version: 1.0
This function doubles the given number

and prints the result on the screen.
syntax: double (number)

Leadertain.com Ast. Prof. M Rahul, CIT 24

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Namespace, Scope and Lifetime of variables in Python
=~ A Namespace is a collection of defined names along with information about the object that each
name refers to. Python has 4 types of namespaces.

l’B 4"\

Built-in Namespace

[By
(5 Global Namespace 3

(Module)
(E 2
Enclosing Namespace
(Non Local)

(Nested Function)

Local Namespace
(Function)

, w

N o

Variable Lookup
= The Scope is the region of the program where a variable is defined and can be accessed.

- The Lifetime is the period of time during which a variable is available in the memory and can be
accessed. The lifetime of a variable depends on its scope and how it was defined.

Note: A lifetime of a namespace depends upon the scope of objects, if the scope of an object ends, the
lifetime of that namespace also ends.

LEGB Rule: When we read a variable, the Python interpreter will retrieve the variable in by looking
up sequentially in the order of LEGB scope. That means, the first occurrence of this variable found in
any of the scopes sequentially from, Local -> Enclosed -> Global -> Builtin, will be returned

Namespace Scope Lifetime
(Accessible Area) (Accessible Period of Time)
Built-in Namespace Python’s built-in functions and Throughout the execution of the
variables (list, len, pow, round) can program. Usually determined by the
be accessed from anywhere in the Python Interpreter.
program without using import
statements.
>>> dir(__builtins_)

Leadertain.com Ast. Prof. M Rahul, CIT 25

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Global Namespace Variables defined outside of any
function have global scope.
Accessed from anywhere in the

program.

Available in memory during the
execution of the whole program.
They are only destroyed when the
program terminates.

Variables defined in the outer
function of a nested function have
an enclosing scope. These variables
can be accessed by the nested
function.

Enclosing Namespace

Available during the nested function
is being executed. Once the nested
function finishes, the variables are
destroyed and their memory is
freed.

Variables defined within a function
have local scope. These variables
can only be accessed within that
function.

Local Namespace

Available only during the execution
of a function where they are
defined.

Once the function finishes, the
variables are destroyed and their
memory is freed.

The scope and lifetime of variables in Python are used to avoid naming conflicts, better use of memory,

and write efficient code.

Example: Local scope variable

def rank():
x = 100
print (x)

rank ()

Output: 100

Local, x can be used only in rank() function

Example: Global scope variable

def rank():
print (x)
global y
y=200
x=100
rank ()
print (y)

Output: 100
200

global keyword makes the variable global
vy is global, can be used in all functions

x is global, can be used in all functions

Leadertain.com Ast. Prof. M Rahul, CIT

26

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Example: Built-in scope variable

from math import pi
def pival():

print ('Local scope: ', pi)
print('Global scope: ', round(pi))
pival()

Output:
Global scope: 3

Local scope: 3.141592653589793

Example: Enclosed scope variable (also called Non-Local scope)

Enclosed/Non-Local scope in child()
def parent():
a =10
def child():
print('child ', a) #10, a has Enclosed or Non-Local scope in child()
child()
parent ()
Output:
Child 10
Parent 10
Note: a in child() is neither Global nor Local. Hence, a is Enclosed in child()

Local scope in child()
def parent():

a =10
def child():
a = 20

print('Child ', a) #20, a has Local scope in child() as per LEGB rule
child()
print ('Parent ', a)

parent ()

Output:
Child 20
Parent 10

Leadertain.com Ast. Prof. M Rahul, CIT 27

C22 Python Unit-lll Study Material v2 - Section-2: Functions

What are the different types of arguments (or parameter passing) in Python functions?
Justify with suitable examples

The Function Arguments in Python are also called Formal arguments. We can call a function by using
the following 4 types of formal arguments.

1. Required arguments (Positional arguments)

2. Keyword arguments (Named arguments)

3. Default arguments

4. Variable-length arguments (or Arbitrary arguments)

1. Required Arguments or Positional Arguments:

Explanation:
Required or Positional arguments are values assigned to the arguments by their position when the

function is called. Ex: 1st value to 1st argument, 2nd value to 2nd argument, and so on.

- Values must be required for all arguments according to their position. We must pass
values in the same sequence defined in a function definition.

= By default, Python functions are called by using the positional arguments.

Application:
Required arguments

def student (name, marks):

print('Details:', name, marks)

Function call
student ('Sumanth', 15)

Output:
Details: Sumanth 15

2. Keyword Arguments:

Explanation:
The Keyword Argument is also called a Named Argument. We can change the sequence of

keyword arguments by using their name in function calls. When we call functions in this way, the
order (position) of the arguments can be changed.

Application:
Keyword arguments

def student (name, marks):

print ('Details:', name, marks)

Leadertain.com Ast. Prof. M Rahul, CIT 28

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Function Call: both Keyword arguments

student (name='Varma', marks=14)

Function Call: 1 positional and 1 keyword

student ('Venu', marks=12)

Function Call: both Keyword arguments in different order

student (marks=15, name='Varshitha')

Output:
Details: Varma 14

Details: Venu 12
Details: Varshitha 15

3. Default Arguments:

Explanation:
The function arguments can have default values. We can assign default values to the arguments

using the ‘=" (assignment) operator when defining a function. We can set a default value to any number
of arguments.

e The default value will be used if we do not pass a value to that argument.
e If we pass a value, then the passed value will override the default value.

Application:

def student(name, marks, college="CIT"):

print ('Details:', name, marks, college)

Passed only the required arguments
student ('Vasanthi', 095)

Output:
Details: Vasanthi 95 CIT

Leadertain.com Ast. Prof. M Rahul, CIT 29

C22 Python Unit-lll Study Material v2 - Section-2: Functions

4. Variable-length Arguments or Arbitrary Arguments:

Explanation:
We use variable-length arguments if we do not know the number of arguments to pass into a

function. We can pass multiple arguments into a function. Internally all these values are represented
in the form of a tuple.

Python has 2 types of Variable-length arguments as follows:

Type Variable-length Positional Arguments | Variable-length Keyword Arguments
Declaration | (*args) (**kwargs)
* followed by 1 argument name ** followed by 1 argument name
Syntax def f-name(*args): def f-name(**kwargs):
statements statements

Explanation | e Asterisk operator(*) is used Unpacking operator(**) is used

e We can pass multiple positional We can pass multiple keyword arguments
arguments to a function to a function

e The kwargs are accessed using key-value
pair (same as accessing a Dictionary).

Examples:

Application: Variable-length Positional Arguments (*args)

def add(*scores):
sum = 0
for i in scores:
sum += i

print ("Total= ", sum)

main program

Function called with variable arguments
add (60,50) # 110

add (60,50,70) # 180

sum

sum

Output:
Total= 110
Total= 180

Leadertain.com Ast. Prof. M Rahul, CIT 30

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Application: Variable-length Keyword Arguments (**kwargs)

def totalmarks(**sub marks):
total = 0
for i in sub marks:
get subject name
sub = i
get subject value
marks = sub marks[i]
total = total+marks
print(sub, "=", marks)
print ("Total (Variable KW Args)=",total)
pass multiple keyword arguments
totalmarks (math=60, chem=50, python=70)
totalmarks (chem=50, math=60, python=70)

Output:
math = 60
chem = 50
python = 70
Total= 180

Leadertain.com Ast. Prof. M Rahul, CIT 31

C22 Python Unit-lll Study Material v2 - Section-2: Functions

How to pass a list into a function? Explain with an example program.

We can pass any data type (list, dict, str, number, etc) as an argument into a function.

A list is a sequence or collection of many elements of the same or different data types.
When we pass a list into a function as an argument.
The passed list is still treated as a list inside the function.

Example:
def semester (subjects):

for s in subjects:

print (s)

Passing list into a function
subjects = ["Chem", "Math", "Python"] # List defined

semester (subjects) # Passed list into the function

Output:
Chem
Math
Python

What is recursion in Python? Write a program to find the factorial of a given number using
recursion.

Definition:

A function called by itself repetitively is called a recursive function. The function call is termed a
recursive call.

The recursive function will call itself multiple times until a condition is satisfied. The recursive functions
should be used very carefully because, when a function is called by itself it enters into the infinite loop.
And when a function enters into the infinite loop, the function execution never gets completed.

-~ We MUST define the condition to exit from the function call so that the recursive function gets
terminated.

Leadertain.com Ast. Prof. M Rahul, CIT 32

C22 Python Unit-11l Study Material v2 - Section-2: Functions

Flowchart of Recursive Function:
Start

End

The recursive function has two main parts in its body,

1. the base case (condition) and
2. the recursive case (recursive function call).

The flow of execution of Recursive Function:
e first, the program checks the base case condition.
e [fitis TRUE, the function returns and quits;
e otherwise, the recursive case is executed by calling the function recursively.

Syntax: Recursion in a Python

def recursive function(argument)
{ # base case condition
if base_case == True:
return result
recursive case
else:

return recursive function(argument) #recursive call

Leadertain.com Ast. Prof. M Rahul, CIT 33

C22 Python Unit-11l Study Material v2 - Section-2: Functions

Application: Python Program to Find Factorial of a given integer number
def fact(n):

if ==
return 1
else:
return n * fact(n - 1) # Recursive call
print ("Factorial is: ", fact(6)) # First Function call

Output: Factorial is: 720

returns 6*120=720

7 returns 5*24=120
) returns 4*6=24

4"') returns 3*2=6

returns 2*1=2

returns 1

Ex: The recursive function call execution to find factorial of 6.

Flow of recursion:
fact(6)

6 * fact(5)

6 * 5 * fact(4)
6*5*4*fact(3)
6*5*4*3*fact(2)
6*5*4*3*2*fact(1)
6*5

4
*5%4

*4*3*2*1=720

Leadertain.com Ast. Prof. M Rahul, CIT 34

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Application: Find Fibonacci Series of a given number of terms using Recursion Function
def fib(i):
if (i == 0):
return 0
if (i == 1):
return 1
return fib(i - 1) + £ib(i - 2)

n=int (input ("Enter terms for Fibonacci series: "))

for i in range (n):
print (fib (i) ,end=" ")

Output: Enter terms for Fibonacci series: 7
0112358

Advantages of Recursive Functions:
1. We can Reduce the length of the code,
2. We can Improve the Readability of code,
3. We can Solve complex problems.

Disadvantages of Recursive Functions:
1. Need more memory and time for execution,

2. Debugging is difficult.

Leadertain.com Ast. Prof. M Rahul, CIT 35

C22 Python Unit-lll Study Material v2 - Section-2: Functions

What are Higher Order Functions? Explain them with an example program.

Definition:

In Python, a higher-order function is a function that takes one or more functions as arguments or
returns a function as its result.

Hence, the functions that operate with another function are known as Higher-order Functions.

Note: The higher-order functions can manipulate other functions by treating them like any other
variable.

FUNCTION

Higher Order and/ or

and ./ ar FUNCTION

FUNCTION

N S

Characteristics of higher-order functions:

A function is an instance of the Object type.

We can store the function in a variable.

We can pass the function as a parameter to another function.

We can return the function from a function.

We can store them in data structures such as hash tables, and lists, etc.

Function as an object:
In Python, a function can be assigned to a variable. This assignment does not call the function, instead,
a reference to that function is created.

Example:
Function as an object variable

def caps(name) :
return name.upper ()
Assigning function to a variable
upper name = caps
print ("Function object upper name = ", upper_ name ('Dhanush'))

Output:
Function object upper_name = DHANUSH

Leadertain.com Ast. Prof. M Rahul, CIT 36

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Explanation:
In this example, the caps() function is assigned to a variable called upper_name. The upper_name is a
function object that points to the function caps().

Passing Function as an argument to other function:

Functions are like objects in Python. Therefore, the functions can be passed as arguments to other
functions. In the following example, we have created a function speak() that takes another function as
an argument.

Example:
Function passed as an argument to other functions

def caps(name):
return name.upper ()
def smalls (name) :
return name.lower ()
def convert(farg):
storing the function in a variable
result = farg("Function passed as an argument.")
print (result)
convert (caps)

convert (smalls)

Output:
FUNCTION PASSED AS AN ARGUMENT.
function passed as an argument.

Returning function:
Since the functions are objects, we can return a function from another function.

Example:
Functions that return another function
def add salary(s): # s=1000

def add bonus (b) : # b=100

return s + b

return add bonus
sal = add_salary(1000) # sal = add bonus
print ("Total Salary & Bonus is " ,sal(100))

Output:
Total Salary & Bonus is 1100

Leadertain.com Ast. Prof. M Rahul, CIT 37

C22 Python Unit-lll Study Material v2 - Section-2: Functions

Functions Return Multiple Values: A function in Python can also return Multiple values.
[Note: Multiple values cannot be returned from a function in C, C++, or Java.]

1. Return value as Tuple - A Tuple is a sequence of items separated by a comma with or without ().
Tuples are Ordered, Immutable, Indexed, Allows Duplicates.

def detailsTuple():
semester = "CIT Sem-2 2023"
600

#ireturn semester, students # Return a tuple without ()

students

return (semester, students) # Return a tuple with ()
Returns as Tuple (Method Call)
sem, std = detailsTuple() # Assigning returned tuple
print(sem, std)
Output: CIT Sem-2 2023 600

2. Return value as List - List is a sequence/collection of values of different data types enclosed in [].
Tuples are Ordered, Mutable, Indexed, Allows Duplicates.

def detailsList():
semester = "CIT Sem-2 2023"
students = 600
return [semester, students] # Returns a list
Returns as List (Method Call)
slist = detailsList ()
print(slist)
Output: ['CIT Sem-2 2023", 600]

3. Return value as Dict - A Dictionary is a sequence/collection of Key-Value pairs of different data
types enclosed in { }. Dict is Ordered, Mutable, Not-Indexed, No Duplicate Keys but Duplicate
Values are allowed.

def detailsDict():
d = dict()
d["semester"] = "CIT Sem-2 2023"
d["students"] = 600
return d # Returns the dictionary
Returns as Dictionary (Method Call)
sdict = detailsDict() # Assigning returned dictionary
print(sdict)
Output: {'semester': 'CIT Sem-2 2023', 'students’: 600}

Leadertain.com Ast. Prof. M Rahul, CIT 38

C22 Python Unit-lll Study Material v2 - Section-2: Functions

4. Return value as Object - We can create a class (similar to a struct in C) to hold multiple values
and return an object of the class.

Function returns multiple values using Class-Object
class FirstYear:
def init (self):
self.semester = "CIT Sem-2 2023"
self.students = 600

Method returns multiple values using Class-Object
def details():
return FirstYear() # Returns Class-Object

s = details()
print(s.semester)

print(s.students)

Output: CIT Sem-2 2023
600

5. Return value using yield - The yield keyword generates a sequence of values, one value at a
time. To return multiple values from a generator function, you can use the yield keyword to yield
each value in each turn and continues until the generator function completes execution or
encounters a return statement.

Function returns multiple values using yield
def get data():

yield 522007

yield 'CIT'

yield [60,80,100]

Method call

data = get _data()

print (next(data)) # Prints 522007
print (next(data)) # Prints 'CIT'
print (next(data)) # Prints [60,80,100]

Output: 522007
CIT
[60, 80, 100]

Leadertain.com Ast. Prof. M Rahul, CIT 39

