
C22 Python Unit-III Study Material v2

Section-1: List and Dictionaries: Lists, Defining a list, Dictionaries, Defining a dictionary, Built-in
methods for lists and dictionaries, Intro to list comprehension, Basics of nested lists
Section-2: Design with Function: Functions as Abstraction Mechanisms, Design with Recursive
Functions, Higher Order Function.
Section-3: Modules: Standard Modules, Packages.

Section-1: List and Dictionaries

Define and compare the properties of collection data types list, tuple, dictionary, and set.

● Python Collections are container data types. They are lists, tuples, sets, and dictionaries.
These are general-purpose built-in data types that are used to store more than one
value/element/item.

● The Collections (similar to arrays) are also called Python data structures or sequences as they
represent more than one value of any data type.

Each of these collection data types has different Properties or Characteristics based on their usage.
Following is a comparison of their properties:

Data Type Ordered? Mutable (changeable)? Indexed? Duplicates allowed?

list Ordered Mutable (changeable) Indexed Allows Duplicate members

tuple Ordered Immutable (unchangeable) Indexed Allows Duplicate members

dict Ordered
(>=Py3.7)

Mutable (changeable) Not Indexed
but uses Key

No Duplicates keys; but
can have duplicate values

set unordered Immutable (unchangeable)
However, add & remove of
members are possible

Not Indexed No Duplicates members

List Data Type
List Definition:
The list is a sequence of multiple data values of the same or different data types. It is a versatile data
type exclusive to Python.
➢ It is also called a collection data type or a data structure.
➢ The values in a list are also called items or elements.
The list is an ordered data sequence written in square brackets [] separated by commas , .

List Properties:
A. Ordered - The items in a list have a defined order. The order of the items will not change. If you add

new items to a list, the new items will be placed at the end of the list.
B. Mutable - The items in a list are changeable. We can update, add, or remove items in a list.
C. Indexed - The list items are indexed, 1st item has index [0], 2nd item has index [1] and so on.
D. Allows Duplicates - Since lists are indexed, lists can have items with the same value.

Leadertain.com Ast. Prof. M Rahul, CIT 1

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Syntax - 1: Create List

listname = [item-1, item-2, . . . item-n]

Syntax - 2: Create List using Constructor
👉We can use the list() constructor to create a list in Python.

listname = list ((item-1, item-2, . . . item-n)) #notice the 2 parentheses

List Literals and Basic Operators:
A list literal is written as a sequence of data values separated by commas enclosed in square brackets [
] .

list of integers

list of strings

empty list

We can use other lists as elements in a list, thereby creating a list of lists.
list of lists

The Python interpreter evaluates a list literal, and each of the elements are also
evaluated if required

list() and range() functions can build a list of integers

list() function can build a list from any iterable sequence such as a string.

Leadertain.com Ast. Prof. M Rahul, CIT 2

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

List Access - Accessing Elements in List:
Each element in a List has an index. We can access any item of a List by its index position.

Syntax: listname[index]

● Indexing: The list elements are indexed starting from 0; which means, the first item in the list is
at index 0.

● Negative Indexing: Python also supports negative indexing. Negative indexing starts with -1 at
the last element in a list. We can use negative indexing without knowing the length of the list to
access the last item.

Example: Creating List
marks = [50,60,70]

subjects = ["English","Maths","Programming"]

address = [245,"Amaravathi Rd","Guntur",522001]

Example: Accessing List
print(marks[1]) # 60

print(subjects[1]) # Maths

print(address[2]) # Guntur

Built-in List Methods
Python provides several built-in methods to manipulate a list. These include appending, inserting,
removing, finding, counting, sorting, and reversing the data elements in a given list.

The built-in methods to perform these actions on a list are shown below. Note: When we use these
functions, the original list items are changed because the lists are mutable.

Leadertain.com Ast. Prof. M Rahul, CIT 3

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Built-in List Methods

List
Methods

Description Syntax Ex:
m=[70,60,70,90]

Changed list >>> m

append() Adds a value at
the end of the list

list.append(value) m.append(70) >>> m
[70, 60, 70, 90, 80]

insert() Inserts a value at
the given index
and moves the
other values to its
right.

list.insert(index,value) m.insert(1,50) >>> m
[70, 50, 60, 70, 90, 80]

remove() Deletes a first
occurrence of the
given value; errors
if the value
doesn’t exist.

list.remove(value) m.remove(90) >>> m
[70, 50, 60, 70, 80]

reverse() Reverses the
values in a list

list.reverse() m.reverse() >>> m
[80, 70, 60, 50, 70]

index() Finds index of a
given value in the
list

list.index(value) m.index(70) 1

sort() Changes the order
of list values into
Ascending order

list.sort()
list.sort(reverse=True)
for Descending

m.sort() >>> m
[50, 60, 70, 70, 80]

count() Returns total
number of values
in a list

list.count(value) m.count(70) 2

pop() Deletes &
Returns a value
at the given index

list.pop(index) m.pop(4) >>> m
[50, 60, 70, 70]

extend() Add the elements
of a list (or any
iterable), to the
end of the current
list

tolist.extend(fromlist) grades=["A","B","C"]
m.extend(grades)

>>> m
[50, 60, 70, 70, 'A', 'B', 'C']

copy() Returns a copy of
list

newlist=list.copy() new_m = m.copy() >>> new_m
[50, 60, 70, 70, 'A', 'B', 'C']

clear() Removes all
elements (values)
from the list

list.clear() m.clear() >>> m
[]

(Memorize: AIR RISC PECC)

Leadertain.com Ast. Prof. M Rahul, CIT 4

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Demo on Interactive Shell:
>>> m = [70,60,70,90]
>>> m
[70, 60, 70, 90]
>>> m.append(80)
>>> m
[70, 60, 70, 90, 80]
>>> m.insert(1,50)
>>> m
[70, 50, 60, 70, 90, 80]
>>> m.remove(90)
>>> m
[70, 50, 60, 70, 80]
>>> m.reverse()
>>> m
[80, 70, 60, 50, 70]
>>> m.index(70)
1
>>> m.sort()
>>> m
[50, 60, 70, 70, 80]
>>> m.count(70)
2
>>> grades=["A","B","C"]
>>> m.extend(grades)
>>> m
[50, 60, 70, 70, 'A', 'B', 'C']
>>> new_m = m.copy()
>>> new_m
[50, 60, 70, 70, 'A', 'B', 'C']
>>> m.clear()
>>> m
[]

List Comprehension

Definition:
List comprehension is an easy and shorter syntax to create a new list from an existing list or a string.
List comprehension is faster than ‘for’ loop in processing list items.

Syntax:

[expression for element in iterable if condition]

List comprehension must be in square brackets []

Leadertain.com Ast. Prof. M Rahul, CIT 5

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Part-1: expression - result will be sorted in new list
Part-2: for - one or more for loops on iterable object
Part-3: if - one or more if conditions (optional)

Application: Program to create a list of even numbers upto 10 WITHOUT List Comprehension
even_nums = []
for x in range(11):

if x%2 == 0:
even_nums.append(x)

print(even_nums)

Output: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

The exact same result can be obtained by using the following list comprehension syntax.

Application: Program to create a list of even numbers upto 10 WITH List Comprehension
even_nums = [x for x in range(11) if x%2 == 0]

print(even_nums)

Output: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
Explanation:

1. for loop is executed
2. Element x would be returned when the condition if x%2 == 0 evaluates to True.
3. When the condition is True, expression x simply stores the value of x into a new list.

More examples - List Comprehension

Application: List Comprehension on String List
subjects1 = ['Math', 'Chem', 'Python', 'DataS']
subjects2 = [s for s in subjects1 if 'a' in s]
print(subjects2)

Output:
['Math','DataS’]

Application: List Comprehension on range for squares
squares = [x*x for x in range(11)]
print(squares)

Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Leadertain.com Ast. Prof. M Rahul, CIT 6

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Nested Lists

Definition: A nested list is a list of lists. In otherwords, a list containing another list (or a sublist) as its
element is called a nested list. A nested list can have any number of levels of nesting, i.e., a list can
contain another list, which can contain another list, and so on. Nested lists are useful to arrange data in
matrix format or a hierarchical structure.

Creating Nested List
A nested list is created by placing sublists separated by comma inside another list.

Syntax:

nested_list = [[element11, element12, element13], [element21, element22, element23], . . .]

Example: stud = [550, 'Veda', ['Math', 'CO', [‘Py-Theory’,’Py-Lab’]], 97.75, ‘A’]

Access Nested List elements by Index
You can access individual elements in a nested list using multiple indexes as illustrated below:

stud = [550, 'Veda', ['Math', 'CO', [‘Py-Theory’,’Py-Lab’]], 97.75, ‘A’]

print(stud[2])
Prints ['Math', 'CO', [‘Py-Theory’,’Py-Lab’]]

print(stud[2][2])
Prints [‘Py-Theory’,’Py-Lab’]

print(stud[2][2][0])
Prints Py-Theory

Leadertain.com Ast. Prof. M Rahul, CIT 7

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Negative List Indexing In a Nested List
We can also access a nested list by its negative indexing. Negative indexes count backward from the
end of the list. So, stud[-1] is the last item, stud[-2] is the second from last, and so on as illustrated
below:

stud = [550, 'Veda', ['Math', 'CO', [‘Py-Theory’,’Py-Lab’]], 97.75, ‘A’]
print(stud[-3])
Prints ['Math', 'CO', [‘Py-Theory’,’Py-Lab’]]

print(stud[-3][-1])
Prints [‘Py-Theory’,’Py-Lab’]

print(stud[-3][-1][-2])
Prints Py-Theory

Application: Changing items in nested list
matrix = [[10,20,30], [40,50]]

matrix[0][1] = 21 # changes element

print(matrix) # [[10, 21, 30], [40,50]]

third = [70,80,90]

matrix.append(third) # Appends more items at the end of matrix

print(matrix) # [[10, 21, 30], [40, 50], [70, 80, 90]]

matrix[1].insert(2,60) # inserts element 60 at specified index 2

print(matrix) # [[10, 21, 30], [40, 50, 60], [70, 80, 90]]

matrix.pop(2) # deletes element at 2

print(matrix) # [[10, 21, 30], [40, 50, 60]]

print(len(matrix)) # 2, finds length of matrix list

print(len(matrix[1])) # 3, finds length of matrix element at index 1

Leadertain.com Ast. Prof. M Rahul, CIT 8

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Iterate through a Nested List

marks=[[10,20,30],[40,50,60]]

for mlist in marks:

for num in mlist:

print(num, end=' ')

Prints 10 20 30 40 50 60

Application: Add two matrices (nested lists) using nested for loop
X = [[1,2,3],

[4,5,6],

[7,8,9]]

Y = [[10,20,30],

[40,50,60],

[70,80,90]]

result = [[0,0,0],

[0,0,0],

[0,0,0]]

for i in range(len(X)): # iterate through rows

for j in range(len(X[0])): # iterate through columns

result[i][j] = X[i][j] + Y[i][j]

for r in result: # prints result matrix

print(r)

Output:
[11, 22, 33]
[44, 55, 66]
[77, 88, 99]

Leadertain.com Ast. Prof. M Rahul, CIT 9

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Application: Adds 3D matrices (nested lists)
M1 = [[[2, 4, 8], [7, 7, 1], [4, 9, 0]], [[5, 0, 0], [3, 8, 6], [0, 5, 8]]]

M2 = [[[3, 8, 0], [1, 5, 2], [0, 3, 9]], [[9, 7, 7], [1, 2, 5], [1, 1, 3]]]

result = [[[0,0,0], [0,0,0], [0,0,0]], [[0,0,0], [0,0,0], [0,0,0]]]

for i in range(0, 2):

for j in range(0, 3):

for k in range(0, 3):

result[i][j][k] = M1[i][j][k] + M2[i][j][k]

for r in result:

print(r)

Output:
[[5, 12, 8], [8, 12, 3], [4, 12, 9]]
[[14, 7, 7], [4, 10, 11], [1, 6, 11]]

Application: Program to add two matrices using list comprehension
X = [[1,2,3],

[4,5,6],

[7,8,9]]

Y = [[10,20,30],

[40,50,60],

[70,80,90]]

result = [[X[i][j] + Y[i][j] for j in range(len(X[0]))] for i in

range(len(X))]

for r in result:

print(r)

Leadertain.com Ast. Prof. M Rahul, CIT 10

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Application: Convert nested lits (list of lists) to dictionary
capitals = [['India','Delhi'],

['USA','Washington'],

['Australia','Canberra']]

capitals_dict = {x[0]: x[1] for x in capitals}

print(capitals_dict)

Output: {'India': 'Delhi', 'USA': 'Washington', 'Australia': 'Canberra'}

states = [['India','Delhi',28],

['USA','Washington',50],

['Australia','Canberra',6]]

states_dict = {x[0]: x[1:] for x in states}

print(states_dict)

Output: {'India': ['Delhi', 28], 'USA': ['Washington', 50], 'Australia': ['Canberra', 6]}

Dictionary Data Type

Dictionary Definition:
A Dictionary organizes data by association, not by position. A Dictionary associates a set of keys with
values using key : value pairs of association. A value can be referenced by using the key name.

● Dictionary is a collection of Ordered, Mutable, Unindexed and does NOT allow duplicates.
● Dictionaries are written within curly braces { } in the form of key : value.
● Dictionary is useful to access a large amount of data efficiently.

Dictionary Properties:
A. Ordered - The dictionary items have a defined order and the order will not change.
B. Mutable or changeable - Dictionaries are changeable. We can change, add or remove items

after the dictionary has been created.
C. Not Indexed - The dictionary elements are NOT indexed; rather, the elements are referenced

by using the key name.
D. No Duplicates - Dictionaries cannot have two items with the same key. Duplicate key:value will

overwrite existing values.

Syntax - 1: Create Dictionary

dictname = { key-1:value-1, key-2:value-2, . . . key-n:value-n }

Leadertain.com Ast. Prof. M Rahul, CIT 11

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Syntax - 2: Create Dictionary using Constructor
👉We can use the dict() constructor to create a dictionary in Python.

dictname = dict ((key-1:value-1, key-2:value-2, . . . key-n:value-n))
#notice the 2 parentheses

Example: Create Dictionary
a = {1:"Abdul",2:"Kalam", "age":60}

cars = {

"brand": "Hyundai",

"model": "Creta",

"year": 2023

}

Accessing Dictionary:
Each element in a dictionary is a key:value pair. The key in each element can be used to access its
value from the dictionary.

Syntax: dictname[key]

Example: Accessing Dictionary
prints selected key's value

print(cars["brand"]) # Hyundai

print(cars["year"]) # 2023

print("Length of dict",len(cars)) # 3

print("Data type is",type(cars)) # <class 'dict'>
Accessing Dictionary KEYS or VALUES:

● keys() method is used to access all KEYS of a dictionary
● values() method is used to access all VALUES of a dictionary
● items() method reads both keys and values from a dictionary

Syntax:

dict.keys()

dict.values()

dict.items()

Leadertain.com Ast. Prof. M Rahul, CIT 12

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Example:

Ex: Generate a dictionary of squares up to number 5

Explain the built-in Dictionary Methods in Python

Python provides several built-in methods to manipulate a dictionary. These include accessing, adding,
removing, copying, and clearing data elements in a given dictionary.

The built-in methods to perform these actions on a dictionary are shown below. Note: The methods
pop(), popitem(), update(), and clear() do change dictionary items because the dictionaries are
mutable.

Leadertain.com Ast. Prof. M Rahul, CIT 13

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Dictionary Built-in Methods

dict Methods Description Syntax

keys() Returns a list with all keys in a dictionary dict.keys()

values() Returns a list with all values in a dictionary dict.values()

fromkeys() Returns a new dictionary with given keys
mapped to one value. If the value is not given
it defaults to “None”. Optional <value> if the
key doesn’t exist.

dict.fromkeys(keys, <value>)

items() Returns a list with all keys & values in a
dictionary

dict.items()

get() Returns the value of the specified key.
Optional <value> if the key doesn’t exist.

dict.get(key,<value>)

pop() Deletes a value at the given index dict.pop(key)

popitem() Deletes last key:value pair dict.popitem()

update() Changes/Adds the specified key:value pair dict.update(iterable)
dict.update(str-key=value)

copy() Returns a copy of the dictionary newdict = dict.copy()

clear() Removes all the elements from the dictionary dict.clear()

setdefault() Returns the value of a key (if the key is in
dictionary). If not, it inserts key with a value to
the dictionary.

dict.setdefault(key, value)

(Memorize: KV FIG PPUCCS)

Application: Built-in methods on dictionary

1. Syntax: dict.fromkeys(seq,val) method

countries = {'Ind', 'Eng','Aus'}

batters = [1,2]

dict.fromkeys(seq,val)

teams = dict.fromkeys(countries,batters)

print(teams) # {'Aus': [1, 2], 'Ind': [1, 2], 'Eng': [1, 2]}

batters.append(3)

print(teams) # {'Aus': [1, 2, 3], 'Ind': [1, 2, 3], 'Eng': [1, 2, 3]}

print(teams.get("Aus")) # [1, 2, 3]

Leadertain.com Ast. Prof. M Rahul, CIT 14

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

2. Main dictionary built-in methods

grades = {"A":90, "B":80, "C":70,"D":60,"E":50,"F":40}

print(grades.get("B")) # 80

grades.pop("D") # deletes the given key:value pair

print(grades) # {'A': 90, 'B': 80, 'C': 70, 'E': 50, 'F': 40}

grades.popitem() # deletes last key:value pair

print(grades) # {'A': 90, 'B': 80, 'C': 70, 'E': 50}

updating str_key:value

grades.update(D=60,F=40) # adds new str_key:value pairs

print(grades) # {'A': 90, 'B': 80, 'C': 70, 'E': 50, 'D': 60, 'F': 40}

grades.update(F=30) # changes value of given str_key

print(grades) # {'A': 90, 'B': 80, 'C': 70, 'E': 50, 'D': 60, 'F': 30}

updating num_key:value

sal={1:1000,2:2000}

s3={3:3500,4:4000}

sal.update(s3) # changes sal with s3

print(sal) # {1:1000,2:2000,3:3500,4:4000}

grades2 = grades.copy()

print(grades2) # {'A': 90, 'B': 80, 'C': 70, 'E': 50, 'D': 60, 'F': 30}

grades2.clear()

print(grades2) # { }

3. Syntax: dictname.setdefault() method

scores={'Python':90,'DS':70}

returns value

m=scores.setdefault('Python')

print(m) # 90

inserts key with None

scores.setdefault('Math') # adds 'Math': None

inserts key with value

scores.setdefault('CO', 80) # adds 'CO': 80

print(scores) # {'Python': 90, 'DS': 70, 'Math': None, 'CO': 80}

Leadertain.com Ast. Prof. M Rahul, CIT 15

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Section-2: Design with Functions

Functions improve efficiency and reduce errors because of their,
1. Modularity - Break down a bigger problem into smaller functions (Top-Down Parsing)
2. Reusability - Python uses a DRY (Don’t Repeat Yourself) principle. It means, Write a function

once, and Call the function any time, anywhere.

Definition:

A function in Python is a block of statements that performs a specific task. Functions are useful
when we must repeat the same task multiple times without rewriting the code.

➢ First, ‘def’ keyword is used to define a function.
➢ Second, the function must be called to run it,

○ We may pass arguments (values) to the function (optional).
➢ The function may return the result back to the calling area (optional).
➢ The function may return No value, Single value, or Multiple Values to the calling area (optional).

Syntax:

def function-name (args):
statements
return result

def - keyword to define a function
function-name - the name of the function
args - list of values passed into the function (Optional)
return - will send the value back to calling area (Optional)

Leadertain.com Ast. Prof. M Rahul, CIT 16

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Functions as Abstraction Mechanism:

Abstraction is used to hide the internal functionality of the function from the users. The users only
interact with the basic implementation of the function, but the inner working is hidden. User is familiar
with "what function does" but they don't know "how it does."
In Python, abstraction is used to hide irrelevant data in order to reduce the complexity. It also enhances
the application efficiency.

Ex: Users just call a totalSalary() function to get a total salary but do not need to know how to do
calculate it.

Categories of functions with examples

The functions in Python are categorized into 4 categories. Categories are decided based on Argument
Passing and Return value.

Category Pass Arguments
form Calling Area
to Called Function

Return Value
form Called Function

to Calling Area

Example

1. No Pass
No Return No No add()

print(10+5)

2. No Pass
Yes Return No Yes add()

return (10+5)

3. Yes Pass
No Return Yes No

add(a, b)
print(a+b)

4. Yes Pass
Yes Return Yes Yes

add(a, b):
return (a+b)

1. No Pass, No Return
● No arguments are passed to function from calling area

● No return value sent from the function to calling area
Example:
Function category: No Arguments, No Return value

def add(): # Function Definition

a,b=10,5

print("sum = ",a+b)

main program

add() # Function call

Output: sum = 15

Leadertain.com Ast. Prof. M Rahul, CIT 17

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

2. No Pass, Yes Return
● No arguments are passed to function from calling area

● The called function returns result back to calling area
Example:
Function category: No Arguments, With Return value

def add(): # Function Definition

a,b=10,5

return a+b # with return value

main program

sum = add() # Function call

print("Total = ",sum)

Output: Total = 15

3. Yes Pass, No Return
● Arguments are passed to function from calling area

● No return value sent from function to calling area
Example:
Function category: With Arguments, No Return value

def add(a,b): # Function Definition

print("Total = ",a+b) # No return value

main program

add(10,5) # Function call

Output: Total = 15

4. Yes Pass, Yes Return
● Arguments are passed to function from calling area

● Return value is sent from function to calling area
Example:
Function category: With Arguments, With Return value

def add(a,b): # Function Definition

return a+b # with return value

main program

sum = add(10,5) # Function call

print("Total = ",sum)

Output: Total = 15

Leadertain.com Ast. Prof. M Rahul, CIT 18

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Compare a Function, a Fruitful Function, and an Anonymous Function with an example for each.

The functions are, mainly, divided into 2 categories:
1. Built-in Functions or Standard Library Functions,
2. User-defined Functions.

The user-defined functions are further classified into
● Functions (Non-fruitful functions or Void functions)
● Fruitful functions
● Anonymous or Lambda Functions,
● also, Recursion Functions.

Functions or Non-fruitful Functions:
Definition:

A function that doesn't return any value is called a non-fruitful function or a void function.

Syntax:

def function-name (args):
statements

def - keyword to define a function
function-name - the name of the function
args - list of values passed into the function

Example: Non-Fruitful function
def add(a, b):

print(a+b)

Fruitful functions:
Definition:

A fruitful function in Python is a function that returns a value after performing some operation.

We use the ‘def’ keyword to define a function. A function takes input arguments (or parameters),
processes them, and returns a result. The return value can be of any data type, such as int, float,
double, string, or a custom class.
Note: The result is returned to the calling area as a “fruit”.

Syntax:

def function-name (parameters):
statements
return result

Leadertain.com Ast. Prof. M Rahul, CIT 19

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

def - keyword to define a function
function-name - the name of the function
parameters - list of values received in the function
return - will send the result back to calling area

Example: Fruitful function
def add(a,b):

return a+b

sum = add(50,30)

print(sum) # 80

Anonymous functions or Lambda functions:
Definition:
Anonymous function is a function that has NO NAME when it is defined. It is also called a lambda
function. The ‘lambda’ keyword is used to create the lambda functions. Lambda functions are
restricted to a single code or expression.

A lambda function can take any number of arguments but only have one expression.

Syntax:

lambda arguments : expression

Example:
Lambda Function

sum = lambda a,b: a+b

print(sum(10,5))

print(type(sum)) #<class 'function'>

What is a lambda function? Describe its characteristics with an example.

A lambda function is a function that has NO NAME when it is defined. It is also called an anonymous
function. We use lambda functions when we need a nameless function for a short period of time.

The ‘lambda’ is a keyword in Python for defining the anonymous function.

A lambda function can take any number of arguments but only have one expression.

● Lambda functions are stored in a variable and created at run time.
● We can pass the lambda function as an argument to a higher-order function (a function that

takes in other functions as arguments).
● Lambda functions can be used inside another function.

Leadertain.com Ast. Prof. M Rahul, CIT 20

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Syntax:

lambda arguments : expression

Example-1: Assigning Lambda to a variable
sum = lambda a,b: a+b

print(sum(10,5))

Or
Example-2: Not Assigning Lambda to a variable
print((lambda a, b: a + b)(10,5))

=> The advantage of lambda functions is best used when they are used inside another function.

Example-3: *** Real use of Lambda function is Inside Another Function ***
def power(n):

return lambda x: x ** n

SET power value

square = power(2)

cube = power(3)

SEND base value

print(square(5))

print(cube(5))

Output:
25
125

The Characteristics of Lambda Functions:

The lambda function,
1. takes many arguments but has only one expression.
2. is restricted to return a single expression.
3. is used as an anonymous function inside other functions.
4. does not need a return statement, they always return a single expression.

Leadertain.com Ast. Prof. M Rahul, CIT 21

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Applications of Lambda Functions
also, Applications of Higher Order Functions

(Note: These examples can be written for both Lambda Functions and also for Higher Order Functions)

Lambda functions are used along with built-in functions like filter(), map(), reduce() etc.

➔ Lambda with filter()
filter() function selects qualified elements from an iterable sequence based on the result of a function.

Syntax:

filter(function, iterable)

function - a function
iterable - an iterable like sets, lists, tuples, etc.

Example:

num_list = [1,2,3,4,5,6,7,8]

even_list = list(filter(lambda x: (x%2 == 0) , num_list))

print(even_list) # [2, 4, 6, 8]

➔ Lambda with map():
map() method applies a given function to each element of an iterable sequence (list, tuple etc.) and
returns a sequence containing the results. We can pass more than one iterable sequence to the map()
function.

Syntax:

map(function, iterable, ...)

function - a function
iterable - an iterable like sets, lists, tuples, etc

Leadertain.com Ast. Prof. M Rahul, CIT 22

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Example:

num_list = [1,2,3,4,5]

squares_list=list(map(lambda x:x**2, num_list))

print(squares_list) # [1, 4, 9, 16, 25]

➔ Lambda with reduce():
reduce() method applies a given function to all element of an iterable sequence (list, tuple etc.) and
returns a single value. The reduce() method is similar to “for” loop in Python. The reduce() method is
optimized and faster than “for” loop.

Note: The reduce() function in python is defined in “functools” module. We need to import “functools”
before calling the reduce() function in our program.

Syntax:

from functools import reduce

reduce(function, iterable)

Example:
from functools import reduce

quantity = [10, 20, 30, 40]

result = reduce(lambda x, y: x + y, quantity)

print(result)

Output: 100

Explanation: This python program returns the sum of all values in the list as a single value. It uses the
lambda function as (((10+20)+30)+40).

Leadertain.com Ast. Prof. M Rahul, CIT 23

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Docstring in Functions

Docstrings are enclosed in triple quotes for multi-line descriptions.

We can attach documentation to a function definition by including a string literal after the function
header.

Leadertain.com Ast. Prof. M Rahul, CIT 24

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Namespace, Scope and Lifetime of variables in Python
👉 A Namespace is a collection of defined names along with information about the object that each
name refers to. Python has 4 types of namespaces.

👉The Scope is the region of the program where a variable is defined and can be accessed.

👉The Lifetime is the period of time during which a variable is available in the memory and can be
accessed. The lifetime of a variable depends on its scope and how it was defined.

Note: A lifetime of a namespace depends upon the scope of objects, if the scope of an object ends, the
lifetime of that namespace also ends.

LEGB Rule: When we read a variable, the Python interpreter will retrieve the variable in by looking
up sequentially in the order of LEGB scope. That means, the first occurrence of this variable found in
any of the scopes sequentially from, Local -> Enclosed -> Global -> BuiltIn, will be returned

Namespace Scope
(Accessible Area)

Lifetime
(Accessible Period of Time)

Built-in Namespace Python’s built-in functions and
variables (list, len, pow, round) can
be accessed from anywhere in the
program without using import
statements.
>>> dir(__builtins__)

Throughout the execution of the
program. Usually determined by the
Python Interpreter.

Leadertain.com Ast. Prof. M Rahul, CIT 25

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Global Namespace Variables defined outside of any
function have global scope.
Accessed from anywhere in the
program.

Available in memory during the
execution of the whole program.
They are only destroyed when the
program terminates.

Enclosing Namespace Variables defined in the outer
function of a nested function have
an enclosing scope. These variables
can be accessed by the nested
function.

Available during the nested function
is being executed. Once the nested
function finishes, the variables are
destroyed and their memory is
freed.

Local Namespace Variables defined within a function
have local scope. These variables
can only be accessed within that
function.

Available only during the execution
of a function where they are
defined.
Once the function finishes, the
variables are destroyed and their
memory is freed.

The scope and lifetime of variables in Python are used to avoid naming conflicts, better use of memory,
and write efficient code.

Example: Local scope variable

def rank():

x = 100 # Local, x can be used only in rank() function

print(x)

rank()

Output: 100

Example: Global scope variable

def rank():

print(x)

global y # global keyword makes the variable global

y=200 # y is global, can be used in all functions

x=100 # x is global, can be used in all functions

rank()

print(y)

Output: 100
200

Leadertain.com Ast. Prof. M Rahul, CIT 26

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Example: Built-in scope variable

from math import pi

def pival():

print('Local scope: ', pi)

print('Global scope: ', round(pi))

pival()

Output:
Global scope: 3
Local scope: 3.141592653589793

Example: Enclosed scope variable (also called Non-Local scope)

Enclosed/Non-Local scope in child()

def parent():

a = 10

def child():

print('child ', a) #10, a has Enclosed or Non-Local scope in child()

child()

parent()

Output:
Child 10
Parent 10
Note: a in child() is neither Global nor Local. Hence, a is Enclosed in child()

Local scope in child()

def parent():

a = 10

def child():

a = 20

print('Child ', a) #20, a has Local scope in child() as per LEGB rule

child()

print('Parent ',a)

parent()

Output:
Child 20
Parent 10

Leadertain.com Ast. Prof. M Rahul, CIT 27

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

What are the different types of arguments (or parameter passing) in Python functions?
Justify with suitable examples

The Function Arguments in Python are also called Formal arguments. We can call a function by using
the following 4 types of formal arguments.

1. Required arguments (Positional arguments)
2. Keyword arguments (Named arguments)
3. Default arguments
4. Variable-length arguments (or Arbitrary arguments)

1. Required Arguments or Positional Arguments:

Explanation:
Required or Positional arguments are values assigned to the arguments by their position when the
function is called. Ex: 1st value to 1st argument, 2nd value to 2nd argument, and so on.

👉Values must be required for all arguments according to their position. We must pass
values in the same sequence defined in a function definition.

➔ By default, Python functions are called by using the positional arguments.

Application:
Required arguments

def student(name, marks):

print('Details:', name, marks)

Function call

student('Sumanth', 15)

Output:
Details: Sumanth 15

2. Keyword Arguments:

Explanation:
The Keyword Argument is also called a Named Argument. We can change the sequence of
keyword arguments by using their name in function calls. When we call functions in this way, the
order (position) of the arguments can be changed.

Application:
Keyword arguments

def student(name, marks):

print('Details:', name, marks)

Leadertain.com Ast. Prof. M Rahul, CIT 28

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Function Call: both Keyword arguments

student(name='Varma', marks=14)

Function Call: 1 positional and 1 keyword

student('Venu', marks=12)

Function Call: both Keyword arguments in different order

student(marks=15, name='Varshitha')

Output:
Details: Varma 14
Details: Venu 12
Details: Varshitha 15

3. Default Arguments:

Explanation:
The function arguments can have default values. We can assign default values to the arguments
using the ‘=’ (assignment) operator when defining a function. We can set a default value to any number
of arguments.

● The default value will be used if we do not pass a value to that argument.
● If we pass a value, then the passed value will override the default value.

Application:
def student(name, marks, college="CIT"):

print('Details:', name, marks, college)

Passed only the required arguments

student('Vasanthi', 95)

Output:
Details: Vasanthi 95 CIT

Leadertain.com Ast. Prof. M Rahul, CIT 29

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

4. Variable-length Arguments or Arbitrary Arguments:

Explanation:
We use variable-length arguments if we do not know the number of arguments to pass into a
function. We can pass multiple arguments into a function. Internally all these values are represented
in the form of a tuple.

Python has 2 types of Variable-length arguments as follows:

Type Variable-length Positional Arguments Variable-length Keyword Arguments

Declaration (*args)
* followed by 1 argument name

(**kwargs)
** followed by 1 argument name

Syntax def f-name(*args):
statements

def f-name(**kwargs):
statements

Explanation ● Asterisk operator(*) is used
● We can pass multiple positional

arguments to a function

● Unpacking operator(**) is used
● We can pass multiple keyword arguments

to a function
● The kwargs are accessed using key-value

pair (same as accessing a Dictionary).

Examples:

Application: Variable-length Positional Arguments (*args)

def add(*scores):

sum = 0

for i in scores:

sum += i

print("Total= ", sum)

main program

Function called with variable arguments

sum = add(60,50) # 110

sum = add(60,50,70) # 180

Output:
Total= 110

Total= 180

Leadertain.com Ast. Prof. M Rahul, CIT 30

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Application: Variable-length Keyword Arguments (**kwargs)

def totalmarks(**sub_marks):

total = 0

for i in sub_marks:

get subject name

sub = i

get subject value

marks = sub_marks[i]

total = total+marks

print(sub, "=", marks)

print("Total (Variable KW Args)=",total)

pass multiple keyword arguments

totalmarks(math=60, chem=50, python=70)

totalmarks(chem=50, math=60, python=70)

Output:
math = 60

chem = 50

python = 70

Total= 180

Leadertain.com Ast. Prof. M Rahul, CIT 31

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

How to pass a list into a function? Explain with an example program.

We can pass any data type (list, dict, str, number, etc) as an argument into a function.

A list is a sequence or collection of many elements of the same or different data types.
When we pass a list into a function as an argument.
The passed list is still treated as a list inside the function.

Example:
def semester(subjects):

for s in subjects:

print(s)

Passing list into a function

subjects = ["Chem", "Math", "Python"] # List defined

semester(subjects) # Passed list into the function

Output:
Chem
Math
Python

What is recursion in Python? Write a program to find the factorial of a given number using
recursion.

Definition:

A function called by itself repetitively is called a recursive function. The function call is termed a
recursive call.

The recursive function will call itself multiple times until a condition is satisfied. The recursive functions
should be used very carefully because, when a function is called by itself it enters into the infinite loop.
And when a function enters into the infinite loop, the function execution never gets completed.

👉We MUST define the condition to exit from the function call so that the recursive function gets
terminated.

Leadertain.com Ast. Prof. M Rahul, CIT 32

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Flowchart of Recursive Function:

The recursive function has two main parts in its body,

1. the base case (condition) and
2. the recursive case (recursive function call).

The flow of execution of Recursive Function:
● first, the program checks the base case condition.

● If it is TRUE, the function returns and quits;

● otherwise, the recursive case is executed by calling the function recursively.

Syntax: Recursion in a Python

def recursive_function(argument)

{ # base case condition

if base_case == True:

return result

recursive case

else:

return recursive_function(argument) #recursive call

}

Leadertain.com Ast. Prof. M Rahul, CIT 33

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Application: Python Program to Find Factorial of a given integer number
def fact(n):

if n == 0:

return 1

else:

return n * fact(n - 1) # Recursive call

print("Factorial is: ", fact(6)) # First Function call

Output: Factorial is: 720

Ex: The recursive function call execution to find factorial of 6.

Flow of recursion:
fact(6)
6 * fact(5)
6 * 5 * fact(4)
6 * 5 * 4 * fact(3)
6 * 5 * 4 * 3 * fact(2)
6 * 5 * 4 * 3 * 2 * fact(1)
6 * 5 * 4 * 3 * 2 * 1 = 720

Leadertain.com Ast. Prof. M Rahul, CIT 34

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Application: Find Fibonacci Series of a given number of terms using Recursion Function
def fib(i):

if (i == 0):

return 0

if (i == 1):

return 1

return fib(i - 1) + fib(i - 2)

n=int(input("Enter terms for Fibonacci series: "))

for i in range (n):

print(fib(i),end=" ")

Output: Enter terms for Fibonacci series: 7
0 1 1 2 3 5 8

Advantages of Recursive Functions:
1. We can Reduce the length of the code,
2. We can Improve the Readability of code,
3. We can Solve complex problems.

Disadvantages of Recursive Functions:
1. Need more memory and time for execution,
2. Debugging is difficult.

​

Leadertain.com Ast. Prof. M Rahul, CIT 35

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

​ What are Higher Order Functions? Explain them with an example program.

Definition:

In Python, a higher-order function is a function that takes one or more functions as arguments or
returns a function as its result.

Hence, the functions that operate with another function are known as Higher-order Functions.

Note: The higher-order functions can manipulate other functions by treating them like any other
variable.

Characteristics of higher-order functions:
● A function is an instance of the Object type.
● We can store the function in a variable.
● We can pass the function as a parameter to another function.
● We can return the function from a function.
● We can store them in data structures such as hash tables, and lists, etc.

Function as an object:
In Python, a function can be assigned to a variable. This assignment does not call the function, instead,
a reference to that function is created.

Example:
Function as an object variable

def caps(name):

return name.upper()

Assigning function to a variable

upper_name = caps

print("Function object upper_name = ", upper_name('Dhanush'))

Output:
Function object upper_name = DHANUSH

Leadertain.com Ast. Prof. M Rahul, CIT 36

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Explanation:
In this example, the caps() function is assigned to a variable called upper_name. The upper_name is a
function object that points to the function caps().

Passing Function as an argument to other function:
Functions are like objects in Python. Therefore, the functions can be passed as arguments to other
functions. In the following example, we have created a function speak() that takes another function as
an argument.

Example:
Function passed as an argument to other functions

def caps(name):

return name.upper()

def smalls(name):

return name.lower()

def convert(farg):

storing the function in a variable

result = farg("Function passed as an argument.")

print(result)

convert(caps)

convert(smalls)

Output:
FUNCTION PASSED AS AN ARGUMENT.
function passed as an argument.

Returning function:
Since the functions are objects, we can return a function from another function.
Example:
Functions that return another function

def add_salary(s): # s=1000

def add_bonus(b): # b=100

return s + b

return add_bonus

sal = add_salary(1000) # sal = add_bonus

print("Total Salary & Bonus is ",sal(100))

Output:
Total Salary & Bonus is 1100

Leadertain.com Ast. Prof. M Rahul, CIT 37

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Functions Return Multiple Values: A function in Python can also return Multiple values.
[Note: Multiple values cannot be returned from a function in C, C++, or Java.]

1. Return value as Tuple - A Tuple is a sequence of items separated by a comma with or without ().
Tuples are Ordered, Immutable, Indexed, Allows Duplicates.

def detailsTuple():

semester = "CIT Sem-2 2023"

students = 600

#return semester, students # Return a tuple without ()

return (semester, students) # Return a tuple with ()

Returns as Tuple (Method Call)

sem, std = detailsTuple() # Assigning returned tuple

print(sem, std)

Output: CIT Sem-2 2023 600

2. Return value as List - List is a sequence/collection of values of different data types enclosed in [].
Tuples are Ordered, Mutable, Indexed, Allows Duplicates.

def detailsList():

semester = "CIT Sem-2 2023"

students = 600

return [semester, students] # Returns a list

Returns as List (Method Call)

slist = detailsList()

print(slist)

Output: ['CIT Sem-2 2023', 600]

3. Return value as Dict - A Dictionary is a sequence/collection of Key-Value pairs of different data
types enclosed in { }. Dict is Ordered, Mutable, Not-Indexed, No Duplicate Keys but Duplicate
Values are allowed.

def detailsDict():

d = dict()

d["semester"] = "CIT Sem-2 2023"

d["students"] = 600

return d # Returns the dictionary

Returns as Dictionary (Method Call)

sdict = detailsDict() # Assigning returned dictionary

print(sdict)

Output: {'semester': 'CIT Sem-2 2023', 'students': 600}

Leadertain.com Ast. Prof. M Rahul, CIT 38

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

4. Return value as Object - We can create a class (similar to a struct in C) to hold multiple values
and return an object of the class.

Function returns multiple values using Class-Object

class FirstYear:

def __init__(self):

self.semester = "CIT Sem-2 2023"

self.students = 600

Method returns multiple values using Class-Object

def details():

return FirstYear() # Returns Class-Object

s = details()

print(s.semester)

print(s.students)

Output: CIT Sem-2 2023
600

5. Return value using yield - The yield keyword generates a sequence of values, one value at a
time. To return multiple values from a generator function, you can use the yield keyword to yield
each value in each turn and continues until the generator function completes execution or
encounters a return statement.

Function returns multiple values using yield

def get_data():

yield 522007

yield 'CIT'

yield [60,80,100]

Method call

data = get_data()

print(next(data)) # Prints 522007

print(next(data)) # Prints 'CIT'

print(next(data)) # Prints [60,80,100]

Output: 522007
CIT
[60, 80, 100]

Leadertain.com Ast. Prof. M Rahul, CIT 39

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Section-3: Module

What are Modules and Packages in Python?
Modules in Python:
👉A Python Module is a Python File (. py) that contains collection of Functions and Global variables.

A module is a simple Python file with several functions that can be used to provide different
functionalities in a program. The Python modules serve as a ready-made library available to
programmers and users.

In the following example, we created a module “arith.py”, imported that module into a program
“arith_calc.py”.

File name: arith.py
Arithetic module

def add(a,b):

print(a+b)

def sub(a,b):

print(a-b)

def mult(a,b):

print(a*b)

def div(a,b):

print(a/b)

File name: arith_calc.py
Importing our own Module arith.py

import arith

arith.add(10,5)

arith.sub(10,5)

arith.mult(10,5)

arith.div(10,5)

Leadertain.com Ast. Prof. M Rahul, CIT 40

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

Output:
15

5

50

2.0

Packages in Python:
👉A Python Package contains,

1. Collection of Sub-Packages or Modules (related modules are put in a same package) and
2. __init__.py file through which Python interpretes it as a package. This file stores contents of the

package. Note: The __init__.py Python file works as a Constructor for the Python Package.

👉When a module from an external package is required in a program, that package can be imported
and its modules can be used.
👉Python packages ensure modularity by dividing the packages into sub-packages, making the Python
project easier to maintain.

math package

import math

Square root

sqrt_val = math.sqrt(16)

print(sqrt_val) # Output: 4.0

Leadertain.com Ast. Prof. M Rahul, CIT 41

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

a. How to import specific attributes from a module into the current Namespace. Illustrate it with
an appropriate code.

1. Importing Module From a Package:
Packages help in reusability of code. We use “import” statement in Python program to use a module.
We can import only a module from a package using a dot operator (.).

Syntax:

import module1[, module2,... moduleN]

import package.sub-package.module

from package import module

Examples:

Import arith

import sports.ranks

from sports import ranks

2. Importing specific attribute from a Module:
To access a function called top_rank() of the “rank” module, you use the following code:
Writing.Book.edit.plagiarism_check()

import sports.ranks

sports.ranks.top_rank()

b. Briefly describe and illustrate any three Python packages with an example program.

The commonly used packages in Python are NumPy, Pandas, SciPy, Matplotlib, Selenium, math,
random or statistics, etc.

Let’s briefly describe and illustrate 3 packages:
1. Math - for mathematical operations,
2. Random - random number generation, and
3. Statistics - statistical analysis.

Leadertain.com Ast. Prof. M Rahul, CIT 42

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

1. Math:
The math package is a built-in package that provides various mathematical functions and constants. It
is a library of basic and advanced mathematical functions for arithmetic, trigonometry, logarithms,
exponentials, etc.

● It helps us write prgrams with ease and efficiency.
● We need to import the math package before using its functions.

Here's an example:
Module math

import math

Square root

sqrt_val = math.sqrt(16)

print(sqrt_val) # Output: 4.0

Trigonometric functions

sin_val = math.sin(math.pi / 2)

print(sin_val) # Output: 1.0

Logarithm

log_val = math.log(10, 2)

print(log_val) # Output: 3.3219280948873626

Constants

print(math.pi) # Output: 3.141592653589793

print(math.e) # Output: 2.718281828459045

print(math.inf) # Output: inf

print(math.nan) # Output: nan

2. Random Package:
The random package is a built-in package in Python that is used to produce pseudo-random numbers.
The numbers are not exactly random but are generated by computer algorithms.

● The Python Random Module can be used to generate a random integer, choose a random
element from a list, rearrange items randomly, etc.

● We need to import random at the beginning of our code to use the Python Random Module.

Here's an example:
Module random

import random

Random integer between a range

rand_int = random.randint(1, 10)

Leadertain.com Ast. Prof. M Rahul, CIT 43

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

print(rand_int) # Output: 4

Random float between 0 and 1

rand_float = random.random()

print(rand_float) # Output: 0.6627291929320501

Random selection from a list

my_list = [1, 2, 3, 4, 5]

rand_choice = random.choice(my_list)

print(rand_choice) # Output: 3

3. Statistics Package:
The statistics package provides statistical functions to analyze and calculate mathematical statistics of
numeric data. The statistics module was new in Python 3.4.

Here's an example:

Module statistics

import statistics

Mean

data = [1, 2, 3, 4, 5]

mean_val = statistics.mean(data)

print(mean_val) # Output: 3

Median

median_val = statistics.median(data)

print(median_val) # Output: 3

Standard deviation

std_dev = statistics.stdev(data)

print(std_dev) # Output: 1.5811388300841898

Variance

variance = statistics.variance(data)

print(variance) # Output: 2.5

Leadertain.com Ast. Prof. M Rahul, CIT 44

CIT S
tud

en
ts

Only

C22 Python Unit-III Study Material v2

What is PIP? Explain how to install packages using PIP with at least 2 examples.

➢ Python packages are published to the PyPI (Python Package Index). PyPI hosts an extensive
collection of packages, including development frameworks, tools, and libraries.

➢ PIP (Preferred Installer Program) is the package manager that maintains packages from PyPI
on our PC. Use pip3 if you installed Python from the Python website or the Microsoft Store.

Requirement:
Before installing Python packages, make sure Python is installed on your machine.

➔ To install a package using pip3:
open a Terminal on Command Prompt on Windows
Syntax:

pip3 install {package_name}
{package_name} refers to a package you want to install.

➔ To install the numpy package, you would type:
pip3 install numpy

➔ To install the scipy package, you would type:
pip3 install scipy

➔ To list all the installed packages:
pip3 freeze
Or
pip3 list
Package Version
------------------------ -----------
numpy 1.24.1
scipy 1.10.1

Note: If the package has dependencies (i.e., it requires other packages for it to function), pip3 will
automatically install them as well.

➔ To use a package in Python program:
Once the installation is complete, you can import the package into your Python code.

Ex: If you installed the numpy package, you could import it and use it as follows.
import numpy as np
arr = np.array(["I", "love", "Python", "package", "management"])

Leadertain.com Ast. Prof. M Rahul, CIT 45

CIT S
tud

en
ts

Only

https://pypi.org/

C22 Python Unit-III Study Material v2

➔ To update a package to the latest version:
pip3 install --upgrade {package_name}

Ex:
To update the numpy package to the latest version, use the following command:
pip3 install --upgrade numpy

➔ To uninstall a package:
pip3 uninstall {package_name}

Ex:
pip3 uninstall numpy

Leadertain.com Ast. Prof. M Rahul, CIT 46

CIT S
tud

en
ts

Only

