
C22 Python Unit-IV Study Material v4

Object Oriented Programming: Concept of class, object, and instances, constructor, class attributes,
and destructor; Real-time use of class in live projects, Inheritance, overlapping and overloading
operators, Adding and retrieving dynamic attributes of classes, Programming using OOPs support
Design with Classes: Objects and Classes, Data Modeling Examples, Structuring Classes with
Inheritance and Polymorphism.

Brief History of OOP
The term “Object Oriented Programming” was first coined by Alan Kay around 1966. Simula was the
first programming language that has the features of OOP.

OOP began to grow in the 1990s with the popularity of C++. After that, the OOPs methodology has
been adopted by several programming languages such as Python and Java.

Now OOP applications are used in almost every field such as Web apps, Mobile apps, Machine
Learning, Artificial Intelligence, Data Science, Expert systems, Client-server systems, Object-oriented
databases, and so on.

What is the overview of OOPs and explain the advantages and disadvantages of OOPs?

What is OOPs in Python?
OOPs stands for Object-Oriented Programming System. This programming paradigm/methodology
focuses on organizing code into objects. The objects are self-contained instances of classes. OOPS
allows us to design our code similar to real-world entities making our code easier to understand,
maintain, and reuse.

Object Oriented Programming in Python solves a problem by treating every entity as an Object.

What is a Class and an Object?

➢ Class: A class is a blueprint for creating objects. It defines the data (attributes) and behaviors
(methods) of the objects of the class. In other words, a class is a template or a set of
instructions for creating objects.

➢ Object: An object is an instance of a class. Each object is a combination of data and
methods that operate on that data.

We can create many objects for a given class.

Leadertain.com Ast. Prof. M Rahul, CIT 1

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

What are the 4 main principles (or pillars) of OOPs?
The main principles of OOPs in Python are Abstraction, Encapsulation, Inheritance, and
Polymorphism.

1. Abstraction: Abstraction is the ability to hide the unnecessary or sensitive part of our code
implementation from the user. The abstraction would still provide a simple and easy-to-use
interface. Data abstraction in Python can be achieved by creating abstract classes.

2. Encapsulation: Encapsulation refers to the practice of wrapping data (attributes) and methods
within a class to protect the data from external interference. This adds restrictions to directly access
the variables and methods. To prevent accidental modifications, an object’s data variable can only
be changed by the object’s method. Such variables are called private variables. Note: The private
variables or methods must be preceded by __ (double underscore).

3. Inheritance: Inheritance enables the creation of a new class (derived or child class) from an
existing class (base or parent class). A derived class inherits the data and methods from the base
class and can have new data and methods, or may modify the parent’s data and methods.

Benefits of Inheritance:
● Better representation of real-world relationships
● Code reusability without rewriting the same code
● Add more features to a class without modifying it
● Create specialized child classes based on more general parent classes.

4 Types of Inheritance
1. Single Inheritance - derived class inherits properties from a single parent class
2. Multilevel Inheritance - derived class inherits properties from its immediate parent class which

in turn inherits properties from its parent class
3. Hierarchical Inheritance - more than one derived classes inherit properties from a parent class
4. Multiple Inheritance - one derived class inherits properties from more than one parent class.

4. Polymorphism: Polymorphism means having many forms. In Python, it means the ability to use an
object of a derived class wherever an object of the base class is expected. Polymorphism is
achieved through method overriding and method overloading. Ex: using the same function
name with different definitions are used for different data types and different numbers of arguments.

These principles of OOPs provide a powerful and flexible way to design and organize code. That helps
to manage and develop complex software systems easily. Python supports OOPs methodology to
create classes, define objects, and utilize inheritance and polymorphism in our application programs.

Leadertain.com Ast. Prof. M Rahul, CIT 2

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Advantages of OOP

1. Reusability: OOP allows developers to create code that can be reused in different parts of an
application. This makes development faster and more efficient because developers do not have
to write new code from scratch each time they need to create a new feature.

2. Modularity: OOP allows developers to break down complex systems into smaller, more
manageable modules. This makes it easier to develop, test, and maintain code because
changes made to one module do not affect other parts of the system.

3. Encapsulation: OOP allows developers to hide the implementation details of objects, making it
easier to change the behavior of an object without affecting other parts of the system. It limits
access to sensitive data and improves security.

4. Inheritance: OOP allows developers to create new classes by inheriting characteristics from
existing classes. This reduces the amount of code that needs to be written and makes it easier
to maintain the codebase.

Disadvantages of OOP

1. Steep Learning Curve: OOP is a complex paradigm, and it can take time for developers to
become proficient in it. The concepts of inheritance, polymorphism, and encapsulation can be
difficult to understand for beginners.

2. More resources: OOP often requires more memory and processing power than other
paradigms.

3. Complexity: OOP can lead to complex code, especially when dealing with large systems that
have many interdependent objects. This complexity can make it more difficult to debug and
maintain code.

Leadertain.com Ast. Prof. M Rahul, CIT 3

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Explain creating classes and instance objects with examples.

Class: A class is a blueprint for creating objects. It defines the data attributes (variables) and
dynamic behaviors (methods) of the objects of the class. In other words, a class is a template or a
set of instructions for creating objects with characteristics and functionalities.
Note: The data variables and methods inside a class are called members of the class.

Syntax: class

class ClassName:
class definition - data attributes
class definition - methods

class - is a keyword to define a new class object
ClassName - is the user-defined name of the class followed by colon (:)
class definition - area to define data attributes and method behaviors; The statements inside a class
are any of these following

1. Variable definitions
2. Method definitions

a. Sequential instructions
b. Decision control statements
c. Loop statements

Create a class named phone:

class phone:

Data or Attributes

price = 1000

qty = 1

Object: An object is an instance of a class. Each object is a combination of data and methods that
operate on that data.

● Creating an object of a class is known as class instantiation.
● Once a class is defined, we can create an object of that class.
● The object can then access class variables and class methods using a dot operator

Leadertain.com Ast. Prof. M Rahul, CIT 4

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Syntax: To Create an Object

objectVar = className()
objectVar - is a user-defined object-name for an instance object
className - the name of the class object

Syntax: To Access Class-Member through an Object

objectVar . Class-Member

objectVar - is a user-defined variable/object-name
Class-Member - variable or method

Create an object:

Samsung = phone()

Many Instance Objects can be Instantiated with a Class Example

Example: Create a Class, Create an Object, Invoke Class-Members

class phone:

Data or Attributes

price = 10000

qty = 1

#Main program

Redmi = phone() #Create object “Redmi”

print(Redmi.price)#Invoke class-member “price” through object “Redmi”

Output:
10000

Leadertain.com Ast. Prof. M Rahul, CIT 5

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

OOP Terminology

Class methods using the argument “ self ”:
★ self refers to the object itself (self is a pointer to the instance of a class)

★ A method in a class should have its first parameter as “self” and then declare rest of the parameters

★ We must pass self to a member function even if it doesn’t take any parameter or argument

★ We don’t need to pass a value for this parameter. Python will pass when we call a method.

★ The “self” in Python is similar to the “this” pointer in C++

Application: Class method using argument self

class phone:

Data or Attributes

price = 10000

qty = 1

Methods or Behaviours

def details(self):

print("Price: ",self.price)

print("Quantity: ",self.qty)

Leadertain.com Ast. Prof. M Rahul, CIT 6

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

#Main program

Realme = phone() #Create object “Realme”

Realme.details() #Invoke the method details()

Samsung = phone()

Samsung.price=25000

Samsung.qty = 5

Samsung.details()

Output:
Price: 10000

Quantity: 1

Price: 25000

Quantity: 5

What is the constructor and destructor in a class? Demonstrate them with an example
A constructor is a special type of method (function) that is called when we instantiate an object of a

class. The constructors are normally used to initialize (assign values) the instance variables.

Creating a constructor:
● The name of the constructor method is always the _ _init_ _()
● The first argument of the __init__() method must always be the current object instance that is being

constructed.

● While creating an object, a constructor can accept arguments if needed.

● When we create a class without a constructor, Python automatically creates a default constructor

that doesn't do anything.

● Every class must have a constructor, even if it simply relies on the default constructor.

Syntax:

def __init__(self):
body of constructor

Leadertain.com Ast. Prof. M Rahul, CIT 7

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Creating a destructor:
● A destructor is usually called when an object gets destroyed.

● Destructors are not much needed in Python unlike C/C++ because Python has Garbage Collector

that handles memory management automatically.

● The name of the destructor method is always the _ _del_ _()
● The __del__() method is automatically called when all references to an object have been deleted i.e

when an object is garbage collected.

Note: A reference to an object is also deleted when that object goes out of reference or when the

program ends.

Syntax:

def __del__(self):
body of destructor

Application: Illustrate Constructor and Destructor methods in a Class

class phone:

qty = 1

Initializing (Calling constructor automatically)

def __init__(self,b,p):

print("Constructor Initialized")

self.brand = b

self.price = p

Deleting (Calling destructor)

def __del__(self):

print("Destructor destroyed the object")

def details(self):

print("Phone brand:",self.brand)

print("Phone price:",self.price)

print("Purchase quantity:",self.qty)

Create/instantiate object ph

ph = phone("Redmi", 15000)

ph.qty = 5

ph.details()

Leadertain.com Ast. Prof. M Rahul, CIT 8

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

calling destructor method

del ph

Output:
Constructor Initialized

Phone brand: Redmi

Phone price: 15000

Purchase quantity: 5

Destructor destroyed the object

What is Inheritance? Describe types of Inheritance with examples.

Inheritance:
Inheritance enables the creation of a new class (derived or child or sub class) from an existing class
(base or parent or super class). With inheritance, the derived class gains access to all the data
members and methods defined in the base class. A derived class may also offer its own method
implementation of the base class's methods.

A new class copies all the existing class data attributes and methods without rewriting the syntax in the
new class. These new classes are called derived (child) classes, and existing classes are called base
(parent) classes.

Syntax:

define a parent/super class

class BaseClass:

data attributes & methods definitions

inheritance

class DerivedClass(BaseClass):

data attributes & methods of BaseClass

data attributes & methods of DerivedClass

BaseClass - an existing class that will serve as a parent or super class
DerivedClass - a new class that will inherit from BaseClass

Leadertain.com Ast. Prof. M Rahul, CIT 9

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Application: Inheritance

class Person: # Base class

def __init__(self, name, college): # Constructor

self.name = name

self.college = college

def introduce(self):

print(f"My name is {self.name} and I am at {self.college}")

Student class inherits from Person class

class Student(Person): # Derived class

def __init__(self, name, college, semester): # Constructor

super().__init__(name, college) # Call parent class constructor

self.semester = semester

def introduce(self):

super().introduce() # Call parent class introduce method

print(f"I am a student in semester {self.semester}.")

Create an instance from base class

person = Person("Venkatesh", "CIT")

person.introduce()

Create an instance from derived class

student = Student("Divya", "CIT", 2)

student.introduce()

Output:
My name is Venkatesh and I am at CIT college.

My name is Divya and I am at CIT college.
I am a student in semester 2.

Leadertain.com Ast. Prof. M Rahul, CIT 10

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Types of Inheritance in Python
1. Single Inheritance - This is the simplest form of inheritance in Python. This is also known as

Simple Inheritance. In this inheritance, the child class inherits properties from a single-parent class.

Application: Single Inheritance

parent class

class Human:

def hinfo(self):

print("I am a Human (parent class)")

child class Male inherits from parent class Human

class Male(Human):

def minfo(self):

print("I am a male (child class)")

main program

m = Male() # Instance object of child class

m.hinfo() # method in parent class

m.minfo() # method in child class

Output:
I am a Human (parent class)
I am a male (child class)

Leadertain.com Ast. Prof. M Rahul, CIT 11

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

2. Multilevel Inheritance - The child class inherits properties from its immediate parent class and the
parent class in turn inherits properties from its parent (grandparent) class. The class at each level is
in relation to a class at the next level.

Application: Multilevel Inheritance

grand parent class

class Human:

def hinfo(self):

print("I am a human (grand parent class)")

parent class

class Person(Human):

def pinfo(self):

print("I am a person (parent class)")

child class Male inherits from parent calss Human

class Male(Person):

def minfo(self):

print("I am a male (child class)")

main program

m = Male() # Instance object of child class

m.hinfo() # method in grand parent class

Leadertain.com Ast. Prof. M Rahul, CIT 12

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

m.pinfo() # method in parent class

m.minfo() # method in child class

Output:
I am an animal (grandparent class)
I am a human (parent class)
I am a male (child class)

3. Hierarchical Inheritance - More than one child classes inherit properties from a single parent
class. It is quite the opposite of Multiple Inheritance. One parent class has a relation with many child
classes.

Application: Hierarchical Inheritance

parent class

class Person():

def pinfo(self):

print("I am a person (parent class)")

child class Male inherits from parent calss Human

class Male(Person):

def minfo(self):

print("I am a male (child class-1)")

child class Male inherits from parent calss Human

class Female(Person):

def finfo(self):

print("I am a female (child class-2)")

Leadertain.com Ast. Prof. M Rahul, CIT 13

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

main program

m = Male() # Instance object of child class Male

m.pinfo() # method in parent class Person

m.minfo() # method in child class Male

print()

f = Female() # Instance object of child class Female

f.pinfo() # method in parent class Person

f.finfo() # method in child class Female

Output:
I am a person (parent class)
I am a male (child class-1)

I am a person (parent class)
I am a female (child class-2)

4. Multiple Inheritance - One child class inherits properties from more than one parent class. It is
quite the opposite of Hierarchical Inheritance. One child class has a relation with many parent
classes.

Leadertain.com Ast. Prof. M Rahul, CIT 14

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Syntax: Multiple Inheritance

define a parent class1

class BaseClass1:

data attributes & methods definitions

define a parent class2

class BaseClass2:

data attributes & methods definitions

Multiple inheritance

class DerivedClass(BaseClass1, BaseClass2, . . .):

data attributes & methods of BaseClass1 & 2

data attributes & methods of DerivedClass

Application: Multiple Inheritance

parent class

class Father:

def Finfo(self):

print("From Father (parent class)")

parent class

class Mother:

def Minfo(self):

print("From Mother (parent class)")

child class Male inherits from parent calss Human

class Son(Father, Mother):

def Sinfo(self):

print("From Son (child class)")

main program

s = Son() # Instance object of child class Son

Leadertain.com Ast. Prof. M Rahul, CIT 15

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

s.Finfo() # method in parent class Father

s.Minfo() # method in child class Mother

s.Sinfo() # method in child class Mother

Output:
From Father (parent class)

From Mother (parent class)

From Son (child class)

5. Hybrid Inheritance - This is the combination of 2 or more types of inheritance. The hybrid
inheritance allows to have many relations among several parent and child classes at different
levels.

Application: Hybrid Inheritance (Star structure)

grand parent class

class A:

def Ainfo(self):

print("From A (grand parent class)")

parent class-1 Hierarchical

class B(A):

def Binfo(self):

Leadertain.com Ast. Prof. M Rahul, CIT 16

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

print("From B (parent class-1)")

parent class-2 Hierarchical

class C(A):

def Cinfo(self):

print("From C (parent class-1)")

child Multiple parents

class D(B,C):

def Dinfo(self):

print("From D (child multiple parents)")

d1 = D()

d1.Ainfo()

d1.Binfo()

d1.Cinfo()

d1.Dinfo()

Output:
From A (grand parent class)
From B (parent class-1)
From C (parent class-1)
From D (child multiple parents)

Benefits of Inheritance:
● Better representation of real-world relationships,
● Code reusability without rewriting the same code,
● Add more features to a class without modifying it,
● Create specialized child classes based on more general parent classes.

Leadertain.com Ast. Prof. M Rahul, CIT 17

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Demonstrate the usage of super(), issubclass() and isinstance() methods in Python.
➢ super() method:
The super() method is used to refer to the parent class in a subclass. It allows you to invoke methods
and access data attributes defined in the superclass from the subclass.

Syntax:

super().method() # call the Name of the method in parent class

Application: super() Inheritance

class Person:

def __init__(self, name):

self.name = name

def introduce(self):

print(f"My name is {self.name}")

class Student(Person):

def __init__(self, name, semester):

super().__init__(name) # Call parent method

self.semester = semester

def introduce(self):

super().introduce() # Call parent method

print(f"I am a student in semester {self.semester}.")

Create an instance from derived class

student = Student("Divya", 2)

student.introduce()

Output:
My name is Divya
I am a student in semester 2.

Explanation:
In the above example, the super().__init__(name) call in the Student class invokes the constructor of
the Person class, allowing the name attribute to be set.
Similarly, super().introduce() invokes the introduce() method of the Person class before printing "I am
a student in semester xx.".

Leadertain.com Ast. Prof. M Rahul, CIT 18

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

➢ issubclass() function:

The issubclass() function is used to check if a class is a subclass of another class.
It returns True if the first class is a subclass of the second class; otherwise, it returns False.

Syntax:

issubclass(first class, second class) #

➢ isinstance() function:

The isinstance() function is used to check if an object is an instance of a particular class.
It returns True if the object is an instance of the class or any of its subclasses;
otherwise, it returns False.

Syntax:

isinstance(object_name, class_name) #

Application: issubclass(), isinstance()

class Person:

pass

class Student(Person):

pass

class Teacher:

pass

s1 = Student()

t1 = Teacher()

print(issubclass(Student, Person)) # True

print(issubclass(Teacher, Person)) # False

print(isinstance(s1, Person)) # True

print(isinstance(t1, Person)) # False

Leadertain.com Ast. Prof. M Rahul, CIT 19

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Explanation:

issubclass(Student, Person) returns True because Student is a subclass of Person.
However, issubclass(Teacher, Person) returns False because Teacher is not a subclass of
Person.

isinstance(s1, Person) returns True because s1 is an instance of the Student class, which is a
subclass of Person.
However, isinstance(t1, Person) returns False because t1 is not an instance of the Person class or
any of its subclasses.

Leadertain.com Ast. Prof. M Rahul, CIT 20

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

What is Encapsulation? What are access modifiers? Explain them with examples.
(How to Create and Invoke Public, Protected, and Private members of a class?)

Encapsulation: Encapsulation is the practice of wrapping data members and methods within a single
unit of class to protect the data from external interference. This adds restrictions to directly access the
members. A class is an example of encapsulation as it binds all the data members and methods into a
single unit.

Access modifiers:
Encapsulation can be achieved by declaring the data members and methods of a class using access
modifiers. The access modifiers limit access to the variables and methods of a class.

In Python, we don’t have direct access modifiers like public, private, and protected.
However, Python provides the following 3 types of access modifiers.

Type Access Modifiers Definition

Public access normal members Accessible anywhere from outside the class

Protected access Members preceded by
_ (single underscore)

Accessible within the class and its sub-classes.
● The methods of the same or sub-classes can only

change/invoke protected members.

Private access Members preceded by
__ (double underscore)

Accessible within the class.
● The methods of the same class can only

change/invoke private members.

Leadertain.com Ast. Prof. M Rahul, CIT 21

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

➢ Public access:
In Python, class variables are by default public; it means, they can be accessed and modified from both
within and outside the class.

Application: public access

class Student:

constructor

def __init__(self, name, branch, marks):

public data members

self.name = name

self.branch = branch

self.marks = marks

public method

def details(self):

print("Invoking data using Method")

print("Name: ", self.name)

print("Branch:", self.branch)

print("Marks:", self.marks)

creating object of the class

std = Student('Dinesh', 'CSE', 70)

Leadertain.com Ast. Prof. M Rahul, CIT 22

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

calling public method of the class

std.details()

direct access to public data members

print("Invoking data directly")

print(std.name, std.branch, std.marks)

Output:
Invoking data using Method
Name: Dinesh
Branch: CSE
Marks: 70
Invoking data directly
Dinesh CSE 70

➢ Protected access:
Protected members are accessible within the class and also available to its sub-classes.
To define a protected member, prefix the member name with a single underscore _.

During inheritance, the Protected data members are useful if we want to provide access only to the
current class and sub-classes but not outside the class.

Application: protected access _ (double underscore members)

class College:

def __init__(self):

self._branch="CSE" # protected data member

class Student(College):

def __init__(self, name):

self.name = name # public data member

College.__init__(self)

def show(self):

print("Name: ", self.name)

print("Branch:", self._branch)

creating object of the class

std1 = Student('Dinesh')

Leadertain.com Ast. Prof. M Rahul, CIT 23

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Direct access to protected data member

print("Direct access to protected member")

print("Branch:", std1._branch)

Using public method to access protected member

print("Using Method to access protected member")

std1.show()

Output:
Direct access to protected member
Branch: CSE
Using Method to access protected member
Name: Dinesh
Branch: CSE

➢ Private access:

In Python, we can create private members to secure them. Private members are accessible only within
the class, and we can’t access them directly from the class objects. This provides a way to encapsulate
data and restrict direct access to the data from external code.

To define a private member, Prefix the member name with double underscores (__).
Note: This internally changes the variable's name to include the class name (Mangling), making it
private and harder to access from outside the class.

Accessing Private Members:
We cannot directly access the private members. The following 2 methods are used to access the
private members.

1. Using public methods to access private members
2. Using Name MANGLING to access private members - We can directly access private and

protected variables from outside of a class through name mangling. The name mangling is
created on an identifier by adding one leading underscore and two trailing underscores, like this
_classname__dataMember, where classname is the current class, and dataMember is the
private variable name.
Syntax:

object . _classname__dataMember
Ex: print(std . _Student__marks)

Leadertain.com Ast. Prof. M Rahul, CIT 24

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Application: private access __ (double underscore members)

class Student:

constructor

def __init__(self, name, branch, marks):

data members

self.name = name # public data member

self._branch = branch # protected data member

self.__marks = marks # private data member

public method

def details(self):

print("Name: ", self.name)

print("Branch:", self._branch)

print("Marks:", self.__marks)

creating object of the class

std = Student('Dinesh', 'CSE', 70)

NO Direct access to private data members

""" AttributeError: 'Student' object has no attribute '__marks' """

#print("Marks:", std.__marks)

Accessing Private members

1. Using public method to invoke private & protected members

print("Invoking data using Method")

std.details()

2. Using Name MANGLING to invoke private members

print("Invoking data using Name Mangling")

print("Marks:", std._Student__marks)

Output:
Invoking data using Method
Name: Dinesh
Branch: CSE
Marks: 70
Invoking data using Name Mangling
Marks: 70

Leadertain.com Ast. Prof. M Rahul, CIT 25

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Demonstrate Data modeling using classes with an example.
A data model means arranging various related data elements in a format that is more clean and
readable or processed further. Multiple classes can be used in Python to structure the data elements
with data attributes ad methods. The following application demonstrates how to model and process
Employee and Manager data.

Application: Data modeling using classes

class Employee:

def __init__(self, emp_id, name, dept,sal,bonus):

self.emp_id = emp_id

self.name = name

self.dept = dept

self.sal = sal

self.bonus = bonus

def get_salary(self):

return (self.sal+self.bonus)

def display_info(self):

print(f"Employee ID: {self.emp_id}")

print(f"Name: {self.name}")

print(f"Department: {self.dept}")

print(f"Total Salary: {self.get_salary()}")

class Manager(Employee):

def __init__(self, emp_id, name, dept,sal, bonus, team_size):

super().__init__(emp_id, name, dept,sal,bonus)

self.team_size = team_size

def display_info(self):

super().display_info()

print(f"Team Size: {self.team_size}")

Create instances of Employee and Manager

employee1 = Employee("E001", "Chandrika", "HR",10000,500)

employee2 = Employee("E002", "Chaitanya", "IT",15000,500)

manager1 = Manager("M001", "Sree Veda", "Finance",17000,500, 10)

manager2 = Manager("M002", "Jyothi", "Support",9000,500, 5)

Display information of employees and managers

Leadertain.com Ast. Prof. M Rahul, CIT 26

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

employee1.display_info()

print("-----------------------")

employee2.display_info()

print("-----------------------")

manager1.display_info()

print("-----------------------")

manager2.display_info()

Output:

Employee ID: E001
Name: Chandrika
Department: HR
Total Salary: 10500

Employee ID: E002
Name: Chaitanya
Department: IT
Total Salary: 15500

Employee ID: M001
Name: Sree Veda
Department: Finance
Total Salary: 17500
Team Size: 10

Employee ID: M002
Name: Jyothi
Department: Support
Total Salary: 9500
Team Size: 5

Explanation:
Two classes are defined in this data modeling program. Employee and Manager.
● The Employee class contains data attributes emp_id, name, dept, sal, and bonus. It also has

methods like display_info() to display employee information and get_salary() to calculate the
salary.

● The Manager class is a subclass of Employee and inherits its attributes and methods. It adds an
additional data attribute team_size specific to managers and overrides the display_info() method
to include the team size information along with the inherited employee information.

● Later, we created instances of Employee and Manager classes and displayed their information
using the display_info() method.

Leadertain.com Ast. Prof. M Rahul, CIT 27

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

What is Polymorphism? Explain Method Overriding and Method Overloading with examples.
Polymorphism:
Polymorphism basically means having many forms. In Python, it means the ability to use an object of a
derived class wherever an object of the base class is expected.

Polymorphism is of two types
1. Compile-time Polymorphism (Overloading) and
2. Run-time Polymorphism (Overriding).
[Note: Python does not support method overloading or compile-time polymorphism. If there are multiple
methods with the same name in a class, the last method defined will override the earlier one in a class.]

Polymorphism in Python is achieved through the following techniques.
A. Method Overriding - using the same function name with different definitions in inherited classes
B. Method Overloading - a method used for different numbers of arguments. (Not supported directly

in Python; but can be achieved with default & variable-length keyword arguments)
C. Operator Overloading - allows the same operator to have different meanings according to the data

type of the given values

A. Method Overriding
Method Overriding is redefining a parent class method in the derived class. Overriding requires
inheritance for implementation. In Python, Polymorphism lets us define methods in the child class
that have the same name as the methods in the parent class. In inheritance, the child class inherits the
methods from the parent class. However, it is possible to modify a method in a child class that it has
inherited from the parent class. This is particularly useful in cases where the method inherited from the
parent class doesn’t quite fit the child class. In such cases, we re-implement the method in the child
class. This process of re-implementing a method in the child class is known as Method Overriding.

The overriding method in the subclass provides a different or specialized implementation. This allows
the subclass to provide its own behavior while still maintaining the same method signature in the
superclass.

Application-1: Method Overriding in Polymorphism

class Shape:

def draw(self):

print("Drawing a shape.")

class Circle(Shape):

def draw(self):

print("Drawing a circle.")

Leadertain.com Ast. Prof. M Rahul, CIT 28

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

s = Shape()

c = Circle()

s.draw() # Drawing a shape.

c.draw() # Drawing a circle.

c.draw() calls draw() method in Circle class. The draw() method in the

Circle class is overriding the draw() method in the Shape class

Explanation:
The Shape class has draw() method.
The Circle class inherits from Shape and overrides the draw() method to provide its own
implementation.
When we call the draw() method on a Shape object, it normally executes the method defined in the
Shape class.
However, when we call the draw() method on a Circle object, it executes the method defined in the
Circle class, overriding the implementation in the Shape class.

Application-2: Method Overriding in Polymorphism

class Animals:

def Intro(self):

print("\nWe have many types of animals")

def Eat(self):

print("Some animals eat Non-Veg & some eat only Veg")

#print("Some animals are Carnivorous & some are Herbivorous")

class Tigers(Animals):

def Eat(self):

print("Tigers eat meat.")

class Cows(Animals):

def Eat(self):

print("Cows do not eat meat.")

obj_tiger = Tigers()

obj_cow = Cows()

obj_tiger.Intro()

obj_tiger.Eat()

obj_cow.Intro()

obj_cow.Eat()

Leadertain.com Ast. Prof. M Rahul, CIT 29

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Output:
We have many types of animals
Tigers eat meat.

We have many types of animals
Cows do not eat meat.

Explanation:
● Eat() method is defined in all classes Animals, Tigers, Cows
● When called from Tigers object, Eat() method in Tigers class overrides Eat() method in Animals

class.
● When called from Cows object, Eat() method in Cows class overrides Eat() method in Animals

class.

B. Method Overloading

Method overloading refers to defining multiple methods with the same name but with different
numbers of parameters.

In Python, method overloading is not supported directly, as strict data type declarations for method
arguments are not required in Python. However, we can achieve similar behavior using default
arguments or variable-length argument lists.

Application: Indirect - Method Overloading in Polymorphism (Emulation)

class Calculator:

def add(self, a, b, c=0):

return a + b + c

calc = Calculator()

print(calc.add(3, 5)) # Output: 8

print(calc.add(3, 5, 7)) # Output: 15

Leadertain.com Ast. Prof. M Rahul, CIT 30

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

C. Operator Overloading
Does Python Support Operator overloading? Justify with an example program.
Yes, Python does support Operator Overloading. Operator overloading is Redefining or changing the
default behavior of built-in operators depending on the operands (values) that we use. This means we
can use the same operator for multiple purposes.

Application-1: Operator Overload in Polymorphism (int, str, list objects)
The + operator will do arithmetic addition on two numbers or concatenate 2 strings or merge 2 lists.

Operator Overload using built-in int, str, list objects

print(50 + 25) # Add 2 numbers

print('Software ' + 'Engineer') # Concatenates 2 strings

Merges two lists

print([501, 502, 503] + ['Rani', 'Suj', 'Madhu'])

Output:
75
Software Engineer
[501, 502, 503, 'Rani', 'Suj', 'Madhu']

Example-2: Operator overload using two custom objects (user-defined objects)
We cannot directly add 2 custom objects; it will throw a TypeError.
However, we can overload + operator to work with custom objects with the MAGIC method __add__().

● When we use the + operator, the magic method __add__() is automatically invoked.
● Internally + operator is implemented by using __add__() method.
● We have to override this method in our class if you want to add two custom objects.

(Note: See the Reference section at the end for all available MAGIC methods in Python.)

Leadertain.com Ast. Prof. M Rahul, CIT 31

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Application-2: Operator Overloading in Polymorphism using Two Custom Objects

Operator Overload using custom objects

"""

Two objects cannot be added directly,

but we can overload + operator using __add__() magic method

"""

class Section:

def __init__(self, s):

self.students = s

def __add__(self, other):

return self.students + other.students

Create two objects

A = Section(60)

B = Section(61)

Add two objects

print("Total students: ", A + B)

OR Actual addition of objects is done as follows

print("Total students: ", Section.__add__(A, B))

print("Total students: ", A.__add__(B))

Output:
Total students: 121
Total students: 121
Total students: 121

Leadertain.com Ast. Prof. M Rahul, CIT 32

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

What is Abstraction in Python? Explain Types and Properties of Abstraction with an Example.
Abstraction is one of the 4 core principles of OOP languages. It is the process of handling complexity
by hiding unnecessary information from the user. This means users know “what the method is” (
name of the method and how to use the method) but do not know “how that method functions”.
Hence, Abstraction helps to hide the complexity of coding from the users.

Types and Properties of Abstraction:
1. Abstract Classes - Abstract classes are used to create a blueprint for other classes.

a. A class with one or more abstract methods is called an abstract class.
b. An abstract class can have both abstract methods and concrete(normal) methods.
c. We cannot create/instantiate an object using an Abstract class (because methods have

NO definition)
d. We can inherit child classes from an abstract class

2. Abstract Methods
a. Abstract methods do not have a definition or implementation in the Abstract class.
b. Abstract methods are REDEFINED with definitions in the derived class.
c. Thus the method in the child class overrides the abstract method in the parent class.

➢ Abstract class: A class that contains one or more abstract methods.
➢ Abstract method: A method that has a declaration but has NO implementation in Abstract class.

Requirements:
● Python provides the “abc” module to use the abstraction in the Python program.
● We must import the “abc” module:

from abc import ABC, abstractmethod

● Abstract class is inherited from “ABC” class (Abstract Base Class) from “abc” module.

Leadertain.com Ast. Prof. M Rahul, CIT 33

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

● We use the @abstractmethod decorator to define an abstract method or if we don't provide the
definition of the method, it automatically becomes the abstract method.

Syntax:

from abc import ABC, abstractmethod # Abstract Base Classs

class abstract_class_name(ABC):

@abstractmethod

def abstract_method_name(self, other parameters):

pass

Application: Abstraction of OOPs in Python

from abc import ABC, abstractmethod

Abstract base class for shapes

class Shape(ABC):

@abstractmethod

def area(self):

pass

@abstractmethod

def perimeter(self):

pass

Concrete subclass representing a rectangle

class Rectangle(Shape):

def __init__(self, length, width):

self.length = length

self.width = width

def area(self):

return self.length * self.width

def perimeter(self):

return 2 * (self.length + self.width)

Concrete subclass representing a circle

class Circle(Shape):

def __init__(self, radius):

self.radius = radius

Leadertain.com Ast. Prof. M Rahul, CIT 34

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

def area(self):

return 3.1415 * self.radius * self.radius

def perimeter(self):

return 2 * 3.1415 * self.radius

Create instances of the classes and demonstrate abstraction

r = Rectangle(5, 3)

c = Circle(4)

print("Rectangle:")

print("Area:", r.area())

print("Perimeter:", r.perimeter())

print()

print("Circle:")

print("Area:", c.area())

print("Perimeter:", c.perimeter())

Output:
Rectangle:
Area: 15
Perimeter: 16

Circle:
Area: 50.264
Perimeter: 25.132

Explanation:
The methods area() and perimeter() in Shape class are Abstract methods
These methods are redefined in each of the subclasses Rectangle and Circle
Hence, actual definitions of area() and perimeter() are hidden from users.

Leadertain.com Ast. Prof. M Rahul, CIT 35

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

What are built-in class attributes in Python? Explain adding and retrieving dynamic class attributes.

In Python, class attributes are variables that are associated with a class rather than with instances
(objects) of the class. They are shared among all instances of the class and can be accessed using the
class name or any instance of the class.

Built-in class attributes:
Built-in class attributes are predefined attributes that exist for every class in Python. Here are some
commonly used built-in class attributes:

1. __name__: name of the class as a string.

2. __module__: module in which the class is defined.

3. __dict__: a dictionary that contains the class's namespace.

4. __doc__: the docstring (documentation string) for the class.

Dynamic Class Attribute/variable:
In Python, you can dynamically add class variables at runtime, even if they are not initially defined in
the class definition. Simply assign a value to a variable using the class name.

Syntax:

class_name.variable = value

Dynamic Instance Attribute/variable:
In Python, you can dynamically add instance variables at runtime, even if they are not initially defined in
the class definition. Simply assign a value to a variable using the object name.

Syntax:

object_name.variable = value

Application: Dynamic Class Attributes or Instance Attributes

Adding Dynamic Attributes to a Class

class Movies:

name = "Superman"

Leadertain.com Ast. Prof. M Rahul, CIT 36

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Movies.year = 2023 # Dynamic Class Attribute added at runtime

m1=Movies()

m1.sales = 2500000 # Dynamic Instance Attribute added at runtime

print("Name: ", m1.name)

print("Year: ", m1.year)

print("Sales: ", m1.sales)

del(m1.sales) # deletes the dynamic attribute

Output:
Name: Superman

Year: 2023

Sales: 2500000

Leadertain.com Ast. Prof. M Rahul, CIT 37

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Demonstrate the design of a case study with classes.

We can use classes in Python to design solutions to a given problem. The following case study
demonstrates the design of a solution using classes.

Case Study-1: Design with One Class

Aim: Design a Python program using a class to calculate total cost of purchase of a given product
with discounts based on number of items ordered. The details are given below.
(Note: Lab program #28)

Write a class called Product.
● The class should have fields called name, amount, and price, holding the product’s name,

the number of items of that product in stock, and the regular price of the product.
● There should be a method get_price that receives the number of items to be bought

and returns the cost of buying that many items, where
○ the regular price is charged for orders of less than 10 items,
○ a 10% discount is applied for orders of between 10 and 99 items, and
○ a 20% discount is applied for orders of 100 or more items.

Explanation: Design Product Case Study
1. Product

a. name (Name of the product)
b. amount (Number in stock)
c. price (MRP of product)

2. Method get_price()
a. Receive argument:

i. n (Number products to purchase)
b. Process:

i. If n<10, Regular Price
ii. If 10 <= n <= 99, 10% discount on price
iii. If n >= 100, 20% discount on price

c. Output:
i. cost (Total cost of buying n number of items)

Leadertain.com Ast. Prof. M Rahul, CIT 38

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Case Study-1: Design Product Operations using the class

class product:

def __init__(this,name,items,price):

this.name=name

this.items=items

this.price=price

def get_price(this,n):

if n<10:

cost=n*this.price

print("Regular price:",cost)

print("Discount:",cost)

elif n>=10 and n<100:

cost=n*this.price

discount=round((cost*10)/100)

costAfterDiscount = cost-discount

print("Regular price:",cost)

print("Discount:",costAfterDiscount)

else:

cost=n*this.price

discount=round((cost*20)/100)

costAfterDiscount = cost-discount

print("Regular price:",cost)

print("Discount:",costAfterDiscount)

pname = input("Enter product name: ")

n = int(input("Number of items to be bought: "))

pprice = int(input("Enter the price of single product: "))

p=product(pname,n,pprice)

p.get_price(n)

Output:
Enter product name: Car
Number of items to be bought: 15
Enter the price of single product: 15000
Regular price: 225000
Discount: 202500

Leadertain.com Ast. Prof. M Rahul, CIT 39

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Case Study-2: Design with Multiple Classes (using Multiple Inheritance)

Aim: Design a Python application using multiple inheritance to show the details of student, marks, and
average of a given subject.

Explanation: Design Student Case Study

We use three classes: Student, Subject, and MarkSheet.

1. The Student class represents a student. It contains,
a. Attributes

■ name
■ age
■ roll_number

b. Methods
■ display_student_info() to display the student's information.

2. The Subject class represents a subject. It contains,
a. Attributes

■ subject_name
■ max_marks.

b. Methods
■ display_subject_info() to display the subject's information.

3. The MarkSheet class inherits from both the Student and Subject classes using multiple
inheritance. It represents the mark sheet of a student for a particular subject. It contains

a. Attributes
■ obtained_marks

b. Methods
■ display_marksheet() to display the mark sheet information.
■ calculate_percentage() to calculate the percentage obtained by the student in

the subject.

In the application section, we create an instance of the MarkSheet class called student1 with the
provided information. We then display the mark sheet using the display_marksheet() method and
calculate the percentage using the calculate_percentage() method. We repeated the same process for
an instance student2. Hence, we can apply this design of classes for any number of student
instances.

Leadertain.com Ast. Prof. M Rahul, CIT 40

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Case Study-2: Design Student Operations using Classes

class Student:

def __init__(self, name, age, roll_number):

self.name = name

self.age = age

self.roll_number = roll_number

def display_student_info(self):

print(f"Name: {self.name}")

print(f"Age: {self.age}")

print(f"Roll Number: {self.roll_number}")

class Subject:

def __init__(self, subject_name, max_marks):

self.subject_name = subject_name

self.max_marks = max_marks

def display_subject_info(self):

print(f"Subject Name: {self.subject_name}")

print(f"Maximum Marks: {self.max_marks}")

class MarkSheet(Student, Subject):

def __init__(self, name, age, roll_number, subject_name, max_marks,

obtained_marks):

Student.__init__(self, name, age, roll_number)

Subject.__init__(self, subject_name, max_marks)

self.obtained_marks = obtained_marks

def display_marksheet(self):

print("________________________")

self.display_student_info()

self.display_subject_info()

print(f"Obtained Marks: {self.obtained_marks}")

Leadertain.com Ast. Prof. M Rahul, CIT 41

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

def calculate_percentage(self):

percentage = (self.obtained_marks / self.max_marks) * 100

return percentage

Apply for student1 object

student1 = MarkSheet("Pras Lakshmi", 19, "22HT1A587", "Python", 100, 75)

student1.display_marksheet()

percentage = student1.calculate_percentage()

print(f"Percentage: {percentage}%")

Apply for student2 object

student1 = MarkSheet("Yashwant", 19, "22HT1A581", "Maths", 100, 87)

student1.display_marksheet()

percentage = student1.calculate_percentage()

print(f"Percentage: {percentage}%")

Output:

Name: Pras Lakshmi
Age: 19
Roll Number: 22HT1A587
Subject Name: Python
Maximum Marks: 100
Obtained Marks: 75
Percentage: 75.0%

Name: Yashwant
Age: 19
Roll Number: 22HT1A581
Subject Name: Maths
Maximum Marks: 100
Obtained Marks: 87
Percentage: 87.0%

Leadertain.com Ast. Prof. M Rahul, CIT 42

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Case Study-3: Design a Python Application for BANKING Operations using Classes
Aim: Design a Python application for basic BANKING operations such as Login, Deposit and
Withdrawal using classes.

Explanation: Design BANKING Case Study
Classes: Bank and Transactions
The Bank and Transactions classes represent customer log in, deposit, and withdraw money. These
classes consist of the following Data members and Method members.

Class: Bank

Data members Method members

● balance - data variable that holds the
available balance

● Login() - Checks for 3 tries for a correct pin;
if not then exit

Class: Transactions

Data members Method members

none ● Deposit() - Input the amount to deposit; Increase the balance accordingly
● Withdraw() - Input the amount to withdraw; Check for sufficient balance; if

so, then decrement the balance; if not, then show “Insufficient balance”
● Show_Balance() - Shows the net available balance
● Logout() - Exit from the BANKING application

Note: As of Python 3.10, the match-case statement is available, similar to the switch-case in C/C++.

Case Study-3: Design BANKING Operations using classes & math-case statement in Python

import sys

class Bank:

def __init__(self):

self.balance = 0

print("Welcome to BANKING")

def Login(self):

tries = 0

while tries <3:

ac = input("Account#(12345): ")

pin= input("PIN# (9797) : ")

Leadertain.com Ast. Prof. M Rahul, CIT 43

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

if ac=="12345" and pin == "9797":

print("\nLogged in Successfully")

return True

else:

print("\nInvalid A/C# or PIN")

tries += 1

else:

print("Too many incorrect tries")

print("Your account will be blocked for 24 hours")

sys.exit()

class Transactions(Bank):

def Menu(self):

print("___________")

print("1. Deposit")

print("2. Withdraw")

print("3. Balance")

print("4. Logout")

choice = int(input("Select Your Choice:"))

match(choice):

case 1:

self.Deposit()

self.Menu()

case 2:

self.Withdraw()

self.Menu()

case 3:

self.Show_Balance()

self.Menu()

case 4:

self.Logout()

_ is the default case if no given case is matched

case _:

print("Incorrect choice.")

self.Menu()

def Deposit(self):

Leadertain.com Ast. Prof. M Rahul, CIT 44

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

amount = float(input("Enter deposit amount: "))

self.balance += amount

print("\nDeposited amount: ",amount)

def Withdraw(self):

amount = float(input("Enter withdrawal amount: "))

if self.balance>=amount:

self.balance -= amount

print("\nWithdrawn amount: ",amount)

else:

print("\nInsufficient balance")

def Show_Balance(self):

print("\nNet available balance: ",self.balance)

def Logout(self):

print("Logged out!")

sys.exit()

customer_obj = Transactions()

customer_obj.Login()

customer_obj.Menu()

Output-1:
Welcome to BANKING
Account#(12345): 12345
PIN# (9797) : 9797
Logged in Successfully

1. Deposit
2. Withdraw
3. Balance
4. Logout
Select Your Choice:1
Enter deposit amount: 7000
Deposited amount: 7000.0

1. Deposit
2. Withdraw
3. Balance
4. Logout
Select Your Choice:2

Leadertain.com Ast. Prof. M Rahul, CIT 45

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Enter withdrawal amount: 2000
Withdrawn amount: 2000.0

1. Deposit
2. Withdraw
3. Balance
4. Logout
Select Your Choice:1
Enter deposit amount: 10000
Deposited amount: 10000.0

1. Deposit
2. Withdraw
3. Balance
4. Logout
Select Your Choice:3
Net available balance: 15000.0

1. Deposit
2. Withdraw
3. Balance
4. Logout
Select Your Choice:4
Logged out!

Output-2:
Welcome to BANKING
Account#(12345): 1234
PIN# (9797) : 6789

Invalid A/C# or PIN
Account#(12345): 3456
PIN# (9797) : 9809

Invalid A/C# or PIN
Account#(12345): 34567
PIN# (9797) : 09

Invalid A/C# or PIN
Too many incorrect tries
Your account will be blocked for 24 hours

Leadertain.com Ast. Prof. M Rahul, CIT 46

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Reference

Magic Methods in Python
The magic methods are built-in methods in Python and are used to perform operator overloading. The
below list of magic methods overloads the mathematical operators, assignment operators, and
relational operators in Python.

Operator Name Symbol Magic method

Addition + __add__(self, other)

Subtraction - __sub__(self, other)

Multiplication * __mul__(self, other)

Division / __div__(self, other)

Floor Division // __floordiv__(self,other)

Modulus % __mod__(self, other)

Power ** __pow__(self, other)

Increment += __iadd__(self, other)

Decrement -= __isub__(self, other)

Product *= __imul__(self, other)

Division /+ __idiv__(self, other)

Modulus %= __imod__(self, other)

Power **= __ipow__(self, other)

Less than < __lt__(self, other)

Greater than > __gt__(self, other)

Less than or equal to <= __le__(self, other)

Greater than or equal to >= __ge__(self, other)

Equal to == __eq__(self, other)

Not equal != __ne__(self, other)

Leadertain.com Ast. Prof. M Rahul, CIT 47

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Application: Polymorphism Operator Overloading
Using __mul__ magic method for Multiplication of objects

Operator Overload using custom objects - Polymorphism

"""

Two objects cannot be multiplied

but we can overload * operator using __mul__ magic method.

"""

class Employee:

def __init__(self, name, salary):

self.name = name

self.salary = salary

def __mul__(self, wrk):

return self.salary * wrk.days

class Work:

def __init__(self, name, days):

self.name = name

self.days = days

emp = Employee("Sowmya", 100)

wrk = Work("Sowmya", 30)

print("Total Salary: ", emp * wrk)

Output:
Total Salary: 3000

Leadertain.com Ast. Prof. M Rahul, CIT 48

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Application: Polymorphism Method Overriding - Animals

class Animals:

def Intro(self):

print("\nWe have many types of animals")

def Eat(self):

print("Some animals eat Non-Veg & some eat only Veg")

#print("Some animals are Carnivorous & some are Herbivorous")

class Tigers(Animals):

def Eat(self):

print("Tigers eat meat.")

class Cows(Animals):

def Eat(self):

print("Cows do not eat meat.")

obj_tiger = Tigers()

obj_cow = Cows()

obj_tiger.Intro()

obj_tiger.Eat()

obj_cow.Intro()

obj_cow.Eat()

Output:
We have many types of animals
Tigers eat meat.
We have many types of animals
Cows do not eat meat.

Explanation:
● Eat() method is in all base & derived classes: Animals , Tigers, Cows
● obj_tiger.Eat() executes Eat() method in Tigers class by Overriding Eat() method in Animals

class
● obj_cow.Eat() executes Eat() method in Cows class by Overriding Eat() method in Animals class

Leadertain.com Ast. Prof. M Rahul, CIT 49

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

#Application: Data Modeling using Classes

class Students:

def __init__(self, std_id, name, branch, Py, Math, DS):

self.std_id = std_id

self.name = name

self.branch = branch

self.Py = Py

self.Math = Math

self.DS = DS

def Total(self):

return (self.Py+self.Math+self.DS)

def Show(self):

print("Reg# ",self.std_id)

print("Name ",self.name)

print("Branch ", self.branch)

print("Total ",self.Total())

class Players(Students):

def __init__(self, std_id, name, branch, Py, Math, DS,sport):

super().__init__(std_id, name, branch, Py, Math, DS)

self.sport = sport

def Show(self):

super().Show()

print("Sport ",self.sport)

print("---------------")

Vobj = Players("5B6", "Vasanthi", "CSE",100,80,70, "Kabadi")

Vobj.Show()

Sobj = Players("591", "Tirupathiah", "CSE",90,70,50, "Cricket")

Sobj.Show()

Output:
Reg# 5B6
Name Vasanthi
Branch CSE

Leadertain.com Ast. Prof. M Rahul, CIT 50

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Total 250
Sport Kabadi

Reg# 411
Name Tirupathiah
Branch CSE
Total 210
Sport Cricket

Application: Added Dynamic Class Attribute & Instance Attribute to a Class

class Music:

singer = "Aniruth"

Added Dynamic Class Attribute

Music.song = "Tere Vaste"

naveen = Music()

Added Dynamic Instance Attribute

naveen.price = 100

print("naveen Object:")

print(naveen.singer, naveen.song, naveen.price)

print("raj Object:")

raj = Music()

print(raj.singer, raj.song)

print(raj.singer, raj.song, raj.price)

raj.price will show an ERROR because

"price" is an instance attribute for naveen object

Output:
naveen Object:
Aniruth Tere Vaste 100
raj Object:
Aniruth Tere Vaste

Leadertain.com Ast. Prof. M Rahul, CIT 51

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Application: Polymorphism Method Overriding - Animals Lions Rabits

class Animals:

def Introduction(self):

print("We have many types of Animals")

def Eat(self):

print("Some are Carnivorous & Some are Herbivorous")

class Lions(Animals):

def Eat(self):

print("Lions are Carnivorous")

class Rabits(Animals):

def Eat(self):

print("Rabits are Herbivorous")

l = Lions()

r = Rabits()

l.Introduction()

l.Eat()

r.Introduction()

r.Eat()

Output:
We have many types of Animals (from parent class - Animals)
Lions are Carnivorous (from child class - Lions)

We have many types of Animals (from parent class - Animals)
Rabits are Herbivorous (from child class - Rabits)

Leadertain.com Ast. Prof. M Rahul, CIT 52

CIT S
tud

en
ts

Only

C22 Python Unit-IV Study Material v4

Application: Encapsulation - Accessing Private & Protected Members

class Banking:

ac = 12345 #Public member

__bal = 3500000 #Private member

_city = "Guntur" #Protected member

def show(self):

print("Accessing Private member from Public Method")

print(self.ac,self.__bal)

class Customers(Banking):

pass

obj = Customers()

Accessing Private member using Public Method

obj.show()

Accessing Private member using Name Mangling

print("Accessing Private member using Name MANGLING")

print(obj.ac,obj._Banking__bal)

Accessing Protected member from child object

print("Access Protected member from Child Object")

print(obj._city)

Output:
Accessing Private member from Public Method
12345 3500000

Accessing Private member using Name MANGLING
12345 3500000

Access Protected member from Child Object
Guntur

Leadertain.com Ast. Prof. M Rahul, CIT 53

CIT S
tud

en
ts

Only

