
PTC UNIT - III, Part-1

Part-1:
● Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays,

Multidimensional Arrays, Programming Example

Part-2:
● Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings,

String Manipulation Functions, Programming Example

● Enumerated, Structure, and Union: The Type Definition (Type def), Enumerated
Types, Structure, Unions, and Programming Application.

Arrays

Why do we need ARRAYS?

Problem: When we have many data elements (10,20,30…n), we need many different variables
(v1,v2,v3…vn). As the number of variables increases, the complexity of the program also
increases

Solution: Arrays are used to store multiple elements in a single variable (v[100], instead of
declaring separate variables for each value.

Define an ARRAY:

Array is a collection of data elements with a similar data type. They are stored in the contiguous
memory location. In the array, the first element is stored in index 0; the second element is stored
in index 1, and so on. Arrays can be of a single dimension or multi-dimension.

An array is a special variable that is used to store multiple values of similar data types
(homogeneous) at contiguous memory locations.

In C programming language, arrays are classified into two types. They are as follows:

● Single-Dimensional Array / One-Dimensional Array

● Multi-Dimensional Array

CITY Leadertain.com Ast. Prof. M. Rahul 1

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

What are Single-Dimensional or One-Dimensional Arrays?

1. Description of Single-Dimensional Array
2. Declaration of Single Dimensional Array
3. Initialization of Single Dimensional Array
4. Accessing Elements of Single Dimensional Array
5. Example Application 1 of Single Dimensional Array - Sum & Average of n elements
6. Example Application 2 of Single Dimensional Array - Largest in n elements

1. Description of Single Dimensional Array:

Single-dimensional array or 1-D array is the simplest form of array in C. This type of array
consists of elements of similar types and these elements can be accessed through their indices
(positions).

2. Declaration of Single Dimensional Array:

In C programming language, when we want to create an array we must know

● the datatype of values to be stored in that array and

● also the number of values to be stored in that array.

Syntax1: Create 1-D array with Size:

datatype arrayName [size] ;

● datatype: data type of array, Example: int, char, float, etc.
● array_name: Name of the array.
● size: Size of each dimension of the array

Example1: Declaration of 1-D Array with Size
// declare an array by specifying size in [].
int a[3];

CITY Leadertain.com Ast. Prof. M. Rahul 2

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

Here, the compiler allocates 12 bytes of contiguous memory locations with a single name 'a' and
tells the compiler to store three different integer values (each in 4 bytes of memory) into that 12
bytes of memory. For the above declaration, the memory is organized as follows.

All three memory locations in the above memory allocation have a common name 'a'. So
accessing individual memory locations is not possible directly. Hence, the compiler assigns a
numerical reference value to every individual memory location of an array. This reference
number is called "Index" or "Subscript" or "Indices".

3. Declaration & Initialization of Single Dimensional Array:
Syntax2: Create 1-D array with Size and Initial values

datatype arrayName [size] = {value1, value2, ...} ;

Example2: Declaration of 1-D Array with Size and Initialization
// declare an array with size in [] and initial values.
int a[3] = {200, 100, 300};

In the above Syntax1 & Syntax2, the datatype specifies the type of values we store in that array
and size specifies the maximum number of values that can be stored in that array.

Syntax3: Create 1-D array without Size and with Initial values

datatype arrayName [] = {value1, value2, ...} ;

Example3: Declaration of 1-D Array without Size and with Initialization
// declare an array with size in [] and initial values.
float salary[] = {1000.25, 2500.75, 3200.77, 500.97};

4. Accessing Elements of Single Dimensional Array:

The individual elements of an array are identified using the combination of 'arrayName' and
'indexNumber'. The Rules to access (to store or to retrieve) of Single or 1-D Array are,

● array name must be followed by an INDEX number of the element to be accessed.

● index value must be enclosed in square braces [].

CITY Leadertain.com Ast. Prof. M. Rahul 3

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

● index value of an element in an array is the reference number given to each element at
the time of memory allocation.

● index value of a 1-D array starts with zero (0) for the first element and increments by one
for each element.

● index value in an array is also called a subscript or indices.

Syntax to access individual elements of a single dimensional array:

arrayName [indexNumber]

Example: Accessing 1-D array member
// declare an array with size 3
int a[3];
For this array “a”, the individual elements can be denoted as follows. Assigns a value to the 2nd
memory location.

a [1] = 100 ;
The result of the above assignment statement is as follows:

Note: The index of an array starts from 0 until it reaches the max (size – 1).

Example 1: [1-D array and “for” loop”]
/* Program to Print pre-initialized Array values

#include <stdio.h>

int main()

{ /* Array Declaration and also Initialization */

int marks[10] = { 90, 91, 99, 93, 94};

for (int i= 0; i < 5; i++)

{

printf("\n Element at position %d is %d",i, marks[i]);

}

printf("\n Element at 4th index is %d", marks[3]);

return 0;

}

CITY Leadertain.com Ast. Prof. M. Rahul 4

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

OUTPUT:
Element at position 0 is 10
Element at position 1 is 91
Element at position 2 is 99
Element at position 3 is 93
Element at position 4 is 94

Element at 4th index is 93

5. Example Application 1 of Single Dimensional Array - Sum & Average of n elements

Example 2 : [1-D Array using for loop]

// Program to Find Sum & Avg of n Elements using Loops and Variables

#include <stdio.h>

int main()

{ int n;

int sum=0;

float avg;

printf("Enter size of the array: ");

scanf("%d",&n);

//Declaring array

int arr[n];

printf("Enter array elements\n");

// Input array elements

for(int i=0;i<n;i++)

scanf("%d",&arr[i]);

// Loop to find sum

for(int i=0;i<n;i++)

sum+=arr[i];

printf("\nSum of the array is: %d",sum);

avg = sum/n;

printf("\nAverage of the array is: %.2f",avg);

return 0;

}

CITY Leadertain.com Ast. Prof. M. Rahul 5

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

Output:

Enter size of the array: 5

Enter array elements

50

100

75

100

80

Sum of the array is: 405

Average of the array is: 81.00

6. Example Application 2 of Single Dimensional Array - Largest of n elements

Example3: [1-D Array in for loop]
// Program to find the largest number in an array using loops

#include <stdio.h>

int main()

{ int size, i, largest;

printf("\n Enter the size of the array: ");

scanf("%d", &size);

int array[size]; //Declaring array

//Input array elements

printf("\n Enter %d elements of the array: \n", size);

for (i = 0; i < size; i++)

{

scanf(" %d", &array[i]);

}

//Declaring Largest element as the first element

largest = array[0];

for (i = 1; i < size; i++)

{

if (largest < array[i])

largest = array[i];

}

printf("\n Largest element in the given array is: %d", largest);

return 0;

}

CITY Leadertain.com Ast. Prof. M. Rahul 6

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

Output:

Enter the size of the array: 3

Enter 3 elements of the array:

90

155

45

Largest element in the given array is: 155

Multi-Dimensional Array

1. Description of Multi Dimensional Array
a. 2-Dimensional
b. 3-Dimensional

2. Declaration of Two-Dimensional Array
3. Initialization of Two-Dimensional Array
4. Accessing Elements of Two-Dimensional Array
5. Example Application 1 of Two-Dimensional Array
6. Example Application 2 of Two-Dimensional Array

1. Description of Multi-Dimensional Array:

An array of arrays is called a multi-dimensional array. An array created with more than one
dimension or size is called a multi-dimensional array.

A multi-dimensional array can be a two-dimensional array or three-dimensional array or
four-dimensional array or more.

2-D Array: arr[rows][cols]

CITY Leadertain.com Ast. Prof. M. Rahul 7

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

3-D Array: y[arrays][rows][cols]

y[1][2][1] => 121 y[2][1][2] => 212 y[3][3][3] => 333

The commonly used multi-dimensional array is a two-dimensional array. The 2-D arrays are
used

● to store data in the form of a table with rows and columns,

● to create mathematical matrices,

● for drawing Chess boards,

● representing structures like a spreadsheet, etc.

2. Declaration of Two-Dimensional Array

Syntax for declaring a two-dimensional array

DataType arrayName [rowIndex] [columnIndex]

Example:

int matrix_A [2][3];

The above declaration of two-dimensional array reserves 12 continuous memory locations of 4
bytes each in the form of 2 rows and 3 columns.

CITY Leadertain.com Ast. Prof. M. Rahul 8

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

3. Initialization of Two-Dimensional Array

Syntax for declaring and initializing a 2-D array with a specific number of rows and columns
with initial values.

datatype arrayName [rows][colmns] = {

{r1c1 value, r1c2 value, ...},

{r2c1 value, r2c2 value, ...}

…

};

Example: Three Methods to Initialize an array (2 x 3 = 6 values)

Method1: First set will be the row1 and next set will be the row2
int matrix_A [2][3] = { {10, 20, 30},{40, 50, 60} };
(or)
int matrix_A [2][3] = {

{10, 20, 30},
{40, 50, 60}

};

Method2: First 3 values will be the row1 and next 3 values take row2
int matrix_A [2][3] = { 10, 20, 30, 40, 50, 60 };

Method3: User inputs data elements while running the program and saves in the array
int matrix_A[2][3];

for(int i = 0; i < 2; i++){

for(int j = 0; j < 3; j++){

scanf("%d",&matrix_A[i][j]);

}

}

The above declaration methods of 2-D array reserves 6 contiguous memory locations of 4 bytes
each in the form of 2 rows and 3 columns. And the first row is initialized with values 10, 20, 30
and the second row is initialized with values 40, 50, 60.

CITY Leadertain.com Ast. Prof. M. Rahul 9

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

4. Accessing Individual Elements of Two-Dimensional Array

To access elements of a 2-D array in C, we use the ‘arrayName’ followed by the [rowIndex] and
[columnIndex] of the element that needs to be accessed. Here the row and column index numbers
must be enclosed in separate square braces. In the case of the two-dimensional array, the
compiler assigns separate index values for rows and columns.

Syntax:

arrayName [rowIndex] [columnIndex]

Example:

matrix_A [0][1] = 10;

In the above statement, the element 10 will be saved at row index 0 and column index 1 of
matrix_A array.

Note: For 1-D array, we do not always need to specify the size. But for 2D array, we must always
specify the column size.

int arr[2][2] = {1, 2, 3,4 } // Valid declaration

int arr[][2] = {1, 2, 3,4 } // Valid declaration

// Invalid declaration – column dimension is compulsory

int arr[][] = {1, 2, 3,4 }

// Invalid declaration – column dimension is compulsory

int arr[2][] = {1, 2, 3,4 }

5. Example Application 1 of Two-Dimensional Array

//Program to print a 2D Array of elements already initialized

#include<stdio.h>

int main(void)

{

// x array with 3 rows and 2 columns.

int x[3][2] = {{10,11}, {12,13}, {14,15}};

CITY Leadertain.com Ast. Prof. M. Rahul 10

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

// display each array element

for (int i = 0; i < 3; i++)

{

for (int j = 0; j < 2; j++)

{

printf("Element at x[%i][%i]: ",i, j);

printf("%d\n",x[i][j]);

}

}

return (0);

}

Output:
Element at x[0][0]: 10
Element at x[0][1]: 11
Element at x[1][0]: 12
Element at x[1][1]: 13
Element at x[2][0]: 14
Element at x[2][1]: 15

6. Example Application 2 of Two-Dimensional Array - Read & Print of m x n size

//Program to read and print a 2D Array of m rows and n columns.

#include<stdio.h>

int main()

{//2D: Input number of rows x cols for 3 square arrays

int m,n;

int arr2d[30][30];

printf("\n Enter Number of rows cols for square array: ");

scanf("%d %d",&m,&n);

for(int i=0;i<m;i++)

{

for(int j=0;j<n;j++)

{

printf("Value [%d,%d]: ",i,j);

scanf("%d",&arr2d[i][j]);

}

}

CITY Leadertain.com Ast. Prof. M. Rahul 11

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

//2D: print m x n values

printf("\n 2D array is \n");

for(int i=0; i<m; i++)

{

for(int j=0;j<n;j++)

{

printf(" %d ",arr2d[i][j]);

}

printf("\n");

}

return 0;

}

OUTPUT: Enter Number of rows cols for square array: 2 2

Value [0,0]: 10

Value [0,1]: 20

Value [1,0]: 30

Value [1,1]: 40

2D array is

10 20

30 40

7. Example Application 3 of Two-Dimensional Array - Add two 2x2
arrays and save in third array and print the result.

//Arrays 2D: Add two square arrays and svae the result in third array

#include<stdio.h>

int main()

{

//2D: read row1xcol1 values

int rows,cols;

int a1[30][30];

int a2[30][30];

int a3[30][30];

printf("\n Enter rows cols for Arrays a1 and a2: ");

scanf("%d %d",&rows,&cols);

//Read 2D Array1 values

printf("\n Input values for Array1: \n");

CITY Leadertain.com Ast. Prof. M. Rahul 12

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

for(int i=0;i<rows;i++)

{

for(int j=0;j<cols;j++)

{

printf("Value [%d,%d]: ",i,j);

scanf("%d",&a1[i][j]);

}

}

//Read 2D Array2 values

printf("\n Input values for Array2: \n");

for(int i=0;i<rows;i++)

{

for(int j=0;j<cols;j++)

{

printf("Value [%d,%d]: ",i,j);

scanf("%d",&a2[i][j]);

}

}

//2D: print Array1

printf("\n Array1: \n");

for(int i=0;i<rows;i++)

{

for(int j=0;j<cols;j++)

{

printf(" %d ",a1[i][j]);

}

printf("\n");

}

//2D: print Array2

printf("\n Array2: \n");

for(int i=0;i<rows;i++)

{

for(int j=0;j<cols;j++)

{

printf(" %d ",a2[i][j]);

}

printf("\n");

}

CITY Leadertain.com Ast. Prof. M. Rahul 13

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

//2D: Add 2 arrays and save into 3rd array

for(int i=0;i<rows;i++)

{

for(int j=0;j<cols;j++)

{

a3[i][j] = a1[i][j] + a2[i][j];

}

}

//2D: print Array3 with added values

printf("\n Added values in Array3: \n");

for(int i=0;i<rows;i++)

{

for(int j=0;j<cols;j++)

{

printf(" %d ",a3[i][j]);

}

printf("\n");

}

return 0;

}

Output:
Enter rows cols for Arrays a1 and a2: 2 2
Input values for Array1:
Value [0,0]: 10
Value [0,1]: 20
Value [1,0]: 30
Value [1,1]: 40

Input values for Array2:
Value [0,0]: 1
Value [0,1]: 2
Value [1,0]: 3
Value [1,1]: 4

Array1:
10 20
30 40

CITY Leadertain.com Ast. Prof. M. Rahul 14

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

Array2:
1 2
3 4

Added values in Array3:
11 22
33 44

CITY Leadertain.com Ast. Prof. M. Rahul 15

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

Advantages of Array in C

Arrays have a great significance in the C language.

● Arrays make the program optimized and clean

● We can store multiple elements in a single array at once; so, we do not have to write or
initialize them multiple times.

● Every element can be traversed in an array using a single loop statement.

● Easier to sort data elements with a few lines of code.

● Any array element can be accessed in any order either from the front or rear in O(1) time.

Applications of Arrays in C

In C, arrays are used in a wide range of applications.

● Arrays are used to Store List of values - Single dimensional arrays are used to store a list of
values of the same datatype in a row or in a linear form.

● Arrays are used to Perform Matrix Operations - Two-dimensional arrays are used to create
matrices. We can perform various operations on matrices using two-dimensional arrays.

● Arrays are used to implement Search Algorithms - We use single-dimensional arrays to
implement search algorithms such as

1. Linear Search
2. Binary Search

● Arrays are used to implement Sorting Algorithms - We use Single dimensional arrays to
implement sorting algorithms such as,

1. Insertion Sort
2. Bubble Sort
3. Selection Sort
4. Quick Sort
5. Merge Sort, etc.,

● Arrays are used to implement Datastructures - We use single dimensional arrays to
implement data structures such as

1. Stack Using Arrays
2. Queue Using Arrays

● Arrays are also used to implement CPU Scheduling Algorithms

CITY Leadertain.com Ast. Prof. M. Rahul 16

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

Visual Representation of Single-Dimensional and Multi-Dimensional Arrays

2-D Array 3-D Array 4-D Array
A[3][4] B[3][4][5] C[3][4][5][3]
3 Rows 3 Arrays 3 Arrays
4 Columns 4 Rows 4 Rows

5 Columns 5 Columns
3 3-D Cubes

1-D Array X[6]

1D Array Y[6]

CITY Leadertain.com Ast. Prof. M. Rahul 17

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

*** Important Characteristics of Arrays *** [EXAM Bits]

1 An array address is the address of the first element of the array itself.
Ex: int arr[3] = {100, 200, 300};

“arr” is the name of the array; it does not refer to any value
“arr” points to the memory address of 1st element
“arr” refers to the address that is same of “&arr[0]”

Ex: #include<stdio.h>
int main(void)

{ int arr[3] = {100, 200, 300};

printf("Mem Address of array : %p \n", arr);

printf("Mem Address of 1st element: %p", &arr[0]);

return 0;

}

Output:
Mem Address of array : 0061FF18
Mem Address of 1st element: 0061FF18

2 If you do not initialize an array, you must mention ARRAY SIZE.
Incorrect declaration: int arr[];
Correct declaration: int arr[] = {5, 15, 25, 35};
Note: You can skip the SIZE of an array if you initialize with values.

3 Array size is the sum of the sizes of all elements of the array.
Ex: float salaries[10]; //assuming one float value size is 4 bytes
The total size of the “salaries” array will be: 40bytes (4bytes x 10 elements)

4 Types of Arrays: int, long, float, double, struct, enum, or char
All elements in one array must be of the same data type.
Ex: char grade[5] = { ‘A’, ‘B’, ‘C’, ‘D’, ‘F’ };

7. An array’s index always starts with 0.

6 An array size can not be changed once it is created.

7 The value (element) in an Array can be changed any number of times.
Ex: int a[10] = {10, 20, 30};

a[1] = 15; //this changes the 2nd element 20 to 15.
Now, the array ‘a’ will have 10, 15, 20 elements

8 To access Nth element of an array “customers”, use customers[n-1] because the starting
index is 0.

9 arr[i] and i[arr], both notations refer to the same array element.
Ex: char arr[4] = { 'A', 'B', 'C', 'F' };

CITY Leadertain.com Ast. Prof. M. Rahul 18

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

int i = 0;

while (i<3) {

printf("%c ", arr[i]);

printf("%c", i[arr]);

printf("\n");

}

Output:
A A
B B
C C
F F

Note:

For Part-2, Refer to PTC UNIT III, Part-2 document

Part-2:
● Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings,

String Manipulation Functions, Programming Example

● Enumerated, Structure, and Union: The Type Definition (Type def), Enumerated
Types, Structure, Unions, and Programming Application.

CITY Leadertain.com Ast. Prof. M. Rahul 19

For C
IT Studen

ts
Only

PTC UNIT - III, Part-1

CITY Leadertain.com Ast. Prof. M. Rahul 20

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

Part-1:
● Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays,

Multidimensional Arrays, Programming Example

Part-2:
● Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings,

String Manipulation Functions, Programming Example

● Enumerated, Structure, and Union: The Enumerated Types, Structure, Unions, Type
Definition (Type def) and Programming Application.

STRINGS

A. What is a string in C?

A C string is a variable-length array of characters that is delimited by a \0 (null) character.

1. A string is a sequence of characters in C,
2. Every string is enclosed within double quotes “ ”,
3. The C compiler automatically adds a '\0' (null) character at the end of a string,
4. Strings are created using a one-dimensional array of ‘char’ datatype.
5. Empty String: A space in “ ” create an empty string by simply adding a \0 (null)

character to it.
6. Size: the size of a string = Number of characters in the string + 1

Note: \0 (null) character takes up 1-byte space at the end of a string. Hence, we must consider
one extra space while declaring the size of a string.

String vs Array of characters:
1. String: A string must be enclosed in “ ” and the \0 (null) character is automatically

added at the end.
2. Array: Characters in ‘ ’ create a character array with NO null character at the end. That

is NOT a string!

CITY Leadertain.com Ast. Prof. M. Rahul 1

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

Storing a string “Hello”

Storing Strings and Characters

String vs Character Array

String Constants or Literals:
A series of characters enclosed in double quotes “ ” are called string constants. The compiler
automatically adds a \0 (null) character at the end of each string. The string constants are also
called string literals.
Ex: char str[9] = “Software” OR
Ex: char str[9] = ‘S’,’o’,’f’,’t’,’w’,’a’,’r’,’e’,’\0’

Array of Character Constants or Literals:
One or a series of characters enclosed in single quotes ‘ ’ is called a character constant. It
DOES NOT add a \0 (null) character at the end. Hence, it is called an array of characters; not a
string.
Ex: ‘S’,’o’,’f’,’t’,’w’,’a’,’r’,’e’

CITY Leadertain.com Ast. Prof. M. Rahul 2

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

String Literals vs Character Literals

We can access a string literal using its index number as follows:

//Access String Literal using its

index number

#include<stdio.h>

int main(){

printf("%c", "India"[1]);

return 0;

}

"India"[0] I

"India"[1] n

"India"[2] d

"India"[3] i

"India"[4] a

"India"[5] \0

Output:

n

B. Declaration of Strings in C:
There are 3 methods to declare and create strings in C.

1. 1-D String array of character datatype (static memory allocation)
2. 2-D Strings array character datatype (static memory allocation)
3. Pointer Array of character datatype (dynamic memory allocation)

[Note: Method 1 & 2 will be explained here. Method 3 will be explained later in Pointers section]

Declaration of Strings in a 1-D array:

In C, strings are created as a one-dimensional array of character datatype. When we create a
string, the size of the array must be 1 more than the actual number of characters to be stored. The
1 extra memory block is used to store the END of the string character '\0' (null).

Syntax: Declaration

dataType StringName[size];

dataType is usually ‘char’,
StringName is any name given to the string variable,

CITY Leadertain.com Ast. Prof. M. Rahul 3

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

size is the length of the string, i.e the number of characters stored in the string.
Ex: char str[9];

str[0] str[1] str[2] str[3] str[4] str[5] str[6] str[7] str[8]

String Declaration in C

C. Initializing or Assigning a String value during Declaration of variable

A string value can be initialized or assigned in 5 ways.

1. Assigning a string without size

char str1[] = "Computer";

2. Assigning a string with size

char str2[9] = "Computer";

3. Assigning character by character without size

char str3[] = ‘C’,'o,,'m','p','u','t','e','r','\0';

4. Assigning character by character with size

char str4[9] = ‘C’,'o,,'m','p','u','t','e','r','\0';

5. Pointer String

char *ptr = ”Computer”;

Example

//String Declaration & Initialization

//5 ways to Initialize during declaration

#include<stdio.h>

int main()

{//--- 5 String Initializations during declaration ---

//String in double quotes

//Automatically appends NULL character \0 at the end

char str1[] = "Computer";

char str2[9] = "Computer";

//String in an array of chars in single quotes,

//we MUST Manually append NULL character \0 at the end

char str3[] = {'C','o','m','p','u','t','e','r','\0'};

CITY Leadertain.com Ast. Prof. M. Rahul 4

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

char str4[9] = {'C','o','m','p','u','t','e','r','\0'};

printf("\n %s",str4);

//Pointer string

char *ptr = "Computer";

printf("\n %s",ptr);

return 0;

}

Ex: char str[9] = "Computer";
Str - name of the string
9 - number of characters in the string;
"Computer" - the value of the string
0-8 - are index numbers

str[0] str[1] str[2] str[3] str[4] str[5] str[6] str[7] str[8]

C o m p u t e r \0

String Initialization in C

6. Assigning or Initialization a string value AFTER Declaration

Arrays and strings do not support the assignment operator after they are declared.
char s1[9];

s1 = "Computer"; // ERROR! array type is not assignable.

So, we must use the strcpy() function in string.h to copy a string value into a variable.
strcpy(s1, "Computer"); //copies “computer” string into s1 variable

Example:
//Assign string value by using strcpy(dest, source) function
//You must include string.h header file
#include<stdio.h>
#include<string.h>
int main()
{//Declaration
char s1[9];
//Assigning or Initialization of string values
strcpy(s1, "Computer"); //using function from string.h header file
printf("\n %s",s1);

return 0;
}

CITY Leadertain.com Ast. Prof. M. Rahul 5

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

Output:
Computer
Here, “strcpy” function copies “Compuer” string into “s1” string variable.

Note:
Strings do not need to be printed character by character like in an array.
Strings can be printed using “printf” statement using “%s” format specifier.

D. Accessing string value (Formatted & Unformatted Input/Output functions in strings)

We can read or print strings in either formatted or unformatted methods.

[formatted input/output]

1. scanf() - reads single word using%s format; printf() - prints a string using%s format

[unformatted input/output]

2. gets() - reads a line of text from stdin until new line, ex: <enter> key
3. fgets() - reads a line of text from stdin until new line, ex: <enter> key, Or reads a line of

text from a file until EOF (end of file)
4. puts() - prints a line of text or string to output stream stdout without the null character

and appends new line (\n) character.

1. scanf()
● Using scanf() method we can read only one word of the string.
● We use%s format specifier to represent a string in “scanf()” and “printf()” methods.
● No & is required before string variable in “scanf()”, Ex:

○ myName[] is a string array of characters;
○ “myName” without ‘[’ and ‘]’ will gives the base address of the string variable;
○ No need to use & before myName while inputting string values.

Example: Input string value using scanf()

#include<stdio.h>

int main(){

char myName[30];

printf("\n Enter your name : ");

scanf("%s", myName);

CITY Leadertain.com Ast. Prof. M. Rahul 6

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

printf("Hi! %s, Welcome to Software!", myName);

return 0; }

2. gets()
● We use a gets() to read multiple words or a line of text,
● Enter character terminates the stdin (input of text from keyboard),

● No need to use ‘&’ before string variable name.

Syntax: gets(varName);

varName is the name of the string variable where the string will be saved.

Example: Input string using gets() & Output string using puts()

#include<stdio.h>

int main(){

char myName[50];

printf("\n Enter your name : ");

gets(myName);
printf("Hi! ");

puts(myName);

return 0;

}

3. fgets()

● We use a fgets() to read a line of string from stdin or a file.
● Enter key terminates the stdin (input of text from keyboard),

● EOF terminates reading from a file,

● No need to use ‘&’ before string variable name.

Syntax:

char *fgets(char *str, int n, stdin or FILE *stream);

str is the name of the string variable where the string will be saved.

n - maximum number of characters

CITY Leadertain.com Ast. Prof. M. Rahul 7

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

stdin - a source from the keyboard (Or)

FILE *stream - a source from file

Example: Read string using fgets() & Output string using puts()

//Input a line of text using fgets()

#include <stdio.h>

#define MAX 100

int main()

{

char str[MAX];

//Input string from Keyboard (stdin) using "fgets"

fgets(str, MAX, stdin);

printf("Your string is: \n");

// Output string to console using "puts"

puts(str);

return 0;

}

Note:

● gets() function is removed from the C standard because it allows you to input any
length of characters. Hence, there might be a buffer overflow. So, use fgets() function.

● fgets() is the preferred method compared to gets() to input string values. fgets() function
allows specifying buffer size and input more than the buffer size.

4. puts()

Syntax: int puts(const char str[]);

● str is the string variable's name.
● Writes a string to stdout without the \0 (null) character.
● A newline character (\n) is appended to the output.

● On success a positive value is returned.

● On error EOF is returned.

CITY Leadertain.com Ast. Prof. M. Rahul 8

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

2-D Array of Strings

1. Description: Storing 2 or more strings in an array is called a 2-D Array of Strings.

2. Declaration:
char arrayName[n][m];

char: Type of values stored in the array
arrayName: Name of the 2-D array of strings
n: Max number of strings in the array
m: Max number of characters in each string

3. Initialization:
char depts[4][12] = { “Computers”, “Electronics”, “Electrical”, “Civil” };

● 4 strings are saved in the “depts” string array
● 10 characters can be saved in each of the 4 strings

Memory 0 1 2 3 4 5 6 7 8 9 10 11

95710 C o m p u t e r s \0

95720 E l e c t r o n i c s \0

95730 E l e c t r i c a l \0

95740 C i v i l \0

4. Access 2-D Array of Strings

Input
for(i=0 ; i<4 ; i++)
scanf("%s",&name[i][0]);

The second subscript is [0] because,
● before entering any string the length of

the string is 0, and

● name[i][0] points to starting address of
each string.

Output
for(i=0 ; i<4 ; i++)
printf("%s \n", name[i]);

Note: This type of code prints the strings and
eliminates any garbage values after ‘\0’.

CITY Leadertain.com Ast. Prof. M. Rahul 9

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

5. Example: Program to search a string in 2-D array of String array

//Search a string in 2-D array of strings

#include <stdio.h>

#include <string.h>

int main() {

char names[3][10]; //2-D string array

char item[10]; //1-D string array to search

int i, res, status = 0;

/* Input 3 names */

printf("Enter 3 names:\n");

for (i = 0; i < 3; i++)

scanf("%s", &names[i][0]);

/*Enter a name to search in the string array*/

printf("Enter the name to be searched:\n");

scanf("%s", &item);

/*Finding the item in the string array*/

for (i = 0; i < 5; i++)

{ res = strcmp(&names[i][0], item);

// compares the string in the array with the item and

// if match is found returns 0 and stores it in variable res

if (res == 0)

status = i;

}

if (status == 0) //match is not found

printf("Given name does not match any name in the list");

else ///match is found

printf("Found. Name in the array exists at index : %d", status);

return 0;

}

Output:
Enter 3 names:
Santosh
Vamsi
Abdulla
Enter the name to be searched:
Vamsi
Found. Name in the array exists at index - 1

CITY Leadertain.com Ast. Prof. M. Rahul 10

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

String Library Functions

String Library Functions are predefined functions in C. These functions are used to manipulate
string values. They are defined in “string.h” header file. We must include string.h to use any
string handling function.

The following table provides the most commonly used string handling function and their use.

Function Syntax Description and Example

strlen() strlen(str); Returns length of str.
char str[]= "Logic";
printf("Length of string is: %d", strlen(str));

strcpy() strcpy(dest, src); The string in src will be copied to dest.
//strcpy() copy a string
#include<stdio.h>
#include<string.h>
int main() {

char src[] = "Engineer";
char dest1[10];
char dest2[10];
strcpy(dest1, src);
strcpy(dest2, "Guntur");

printf("%s", dest1); //Engineer
printf("%s", dest2); // Guntur
return 0; }
Output: Engineer

Guntur

strncpy() strncpy(dest, src, 5) Copies first 5 characters of src into dest

strcat() strcat(dest, src) Appends src string to dest.
//strcat() string concatenation
#include<stdio.h>
#include<string.h>
int main()
{ char dest[50] = "Our";

char src[50] = " Plan";
strcat(dest, src);
printf("%s",dest) ; // Our Plan
return 0;

}
Output: Our Plan

strncat() strncpy(dest, src, 4) Appends first 4 characters of src string to dest

CITY Leadertain.com Ast. Prof. M. Rahul 11

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

strcmp() strcmp(leftStr, rightStr); strcmp() compares 2 strings.
Checks ASCII value character by character.
Returns:
0 if all chars are equal,
1 if a char in 1st string is greater,
-1 if a char in 1st string is lesser.
#include<stdio.h>
#include<string.h>
int main()
{ char str1[] = "abz";

char str2[] = "abc";
int res = strcmp(str1, str2);
if (res==0)

printf("Strings are equal");
else if (res > 0)

printf("str1 is greater than
str2");

else
printf("str1 is less than str2");

printf("\nValue returned by strcmp()
is: %d" , res);

return 0;
}
Output:
str1 is greater than str2
Value returned by strcmp() is: 1

strlwr() strlwr(string1) Converts all the characters of string1 to lower case.

strupr() strupr(string1) Converts all the characters of string1 to upper case.

strrev() strrev(string1) It reverses the value of string1.

#include<stdio.h>
#include<string.h>
int main()
{ char str1[] = "Best Engineer";
//converts string into uppercase.

printf("%s\n", strupr(str1));
//converts string into uppercase.

printf("%s\n", strlwr(str1));
//converts string into uppercase.

printf("%s\n", strrev(str1));
return 0;

}
Output:
BEST ENGINEER
best engineer
reenigne tseb

CITY Leadertain.com Ast. Prof. M. Rahul 12

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

Other String Functions

strncmp() strncmp(string1, string2, 4) Compares first 4 characters of both string1 and string2

strcmpi() strcmpi(string1,string2) Compares two strings, string1 and string2 by ignoring
case (upper or lower)

stricmp() stricmp(string1, string2) Compares two strings, string1 and string2 by ignoring
case (similar to strcmpi())

strdup() string1 = strdup(string2) Duplicated value of string2 is assigned to string1

strchr() strchr(string1, 'b') Returns a pointer to the first occurrence of character 'b' in
string1

strrchr() 'strrchr(string1, 'b') Returns a pointer to the last occurrence of character 'b' in
string1

strstr() strstr(string1, string2) Returns a pointer to the first occurrence of string2 in
string1

strset() strset(string1, 'B') Sets all the characters of string1 to given character 'B'.

strnset() strnset(string1, 'B', 5) Sets first 5 characters of string1 to given character 'B'.

atoi() int atoi(const char *string) Converts a string to an integer
Returns the integer value, if successfully.

1. Returns 0, if the string starts with an alphanumeric
character or only contains alphanumeric
characters.

2. Converted to Integer, if string starts with a
numeric character & followed by an alphabet. It
converts the number to an integer until the
occurrence of the first alphabet.

#include<stdio.h>

#include <stdlib.h>

int main() {

char str1[10] = "127";

char str2[10] = "Namaskar!";

char str3[10] = "77Hi!";

char str4[6] = "10.97";

int x1 = atoi(str1);

int x2 = atoi(str2);

CITY Leadertain.com Ast. Prof. M. Rahul 13

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

int x3 = atoi(str3);

int x4 = atoi(str4);

printf("Convert'Namaskar!': %d\n", x1);

printf("Converting '127': %d\n", x2);

printf("Converting '77Hi!': %d\n", x3);

printf("Converting '10.97': %d\n", x4);

return 0; }

Example: Program to demonstrate common String Library Functions from string.h
//gets(), strlen(), strcpy(), strcat(), strcmp(), strupr(), strlwr()
#include <stdio.h>
#include <string.h>
int main() {
// declaring string variables
char name1[20], name2[30], myname[50];
// Input 2 strings
printf("Enter 1st name: ");
gets(name1); // input 1st string
printf("Enter 2nd name: ");
gets(name2); // input 2nd string
// prints the length of the name1[] string
printf("Length of 1st name: %d\n",strlen(name1));

// concatenates the two strings and stores the result in name1[]
printf("Both names are: %s\n", strcat(name1, name2));

// copying the string in name1[] to myname[]
strcpy(myname, name1);
printf("Copied string to myname: %s\n", myname);

// compare the two strings
printf("Compare name1 & name2: %d\n", strcmp(name1, name2));
// convert the string to lowercase
printf("Lower case name1: %s\n",strlwr(name1));
// convert the string to uppercase
printf("Upper case name1: %s\n", strupr(name1));
return 0;
}
Output:
Enter 1st name: The Program
Enter 2nd name: Logic
Length of 1st name: 11
Both names are: The Program Logic
Copied string to myname: The Program Logic
Compare name1 & name2: 1
Lower case name1: the program logic
Upper case name1: THE PROGRAM LOGIC

CITY Leadertain.com Ast. Prof. M. Rahul 14

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

Example: /* Program to Reverse a string */
#include <stdio.h>

#include <string.h>

int main()

{

char ptc[100]; // to store input string

char ptcrev[100]; // to store reveresed string

int len; //to save length of the string

printf("\nEnter a string : ");

fgets(ptc, sizeof ptc, stdin);

len=strlen(ptc);

int j=0;

//len-2 will point to last character

//Ex: Hello len=6 but index is 0 1 2 3 4

for(int i=len-2;i>=0;i--)

{

ptcrev[j] = ptc[i];

//printf("ptcrev[%d]=%c", j,ptcrev[j]);

//printf(" ptc[%d]=%c\n", i,ptc[i]);

j++;

}

ptcrev[j]='\0';

puts("Reversed String: ");

puts(ptcrev);

return 0;

}

/* Output:

Enter a string : Computer

Reversed String:

retupmoC

*/

CITY Leadertain.com Ast. Prof. M. Rahul 15

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

Enumerated, Structure, and Union: The Enumerated Types, Structure, Unions, Type
Definition (Type def), and Programming Application.

What are User-Defined Data Types in C?
● The User-Defined Data Type is derived from any existing data type in C.
● We can use them for extending the pre-defined data types that are already available in C.
● We can also create various customized data types of your own.

Why do we Need User-Defined Data Types in C?

● The Pre-defined data types (int, char, cfloat etc) and Derived data types (arrays) in C may
not offer a wide variety of functions.

● The User-Defined Data Types in C help us define custom data types of our own based on
our needs. These data types offer various functions on the basis of how one define them.
Hence, these are termed as “User-Defined”.

The user-defined data types in C are
1. enum - Enumerated data type
2. struct - Structure data type
3. union - Union data type
4. typedef - Type Definition

1. Enumerated Types (enum) in C

Enumeration is the process of creating user defined datatype by assigning names to
integral constants

● enum is used to create user-defined enumeration datatypes in C.

● The enum data types allow a user to create symbolic names of their own for a list of all
integer constants that are related to each other.

● The enumeration helps to set names to integer constants.

● A program becomes more readable by using these names for integer numbers.

Syntax:

enum identifier {name1, name2, name3, ... }
Here, integer 0 will be assigned to name1, integer 1 will be assigned to name2 and so on.

We can also assign our own integral constants as follows.
enum identifier {name1 = 10, name2 = 30, name3 = 15, ... }

CITY Leadertain.com Ast. Prof. M. Rahul 16

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

Now, the integer 10 will be assigned to name1, the integer 30 will be assigned to name2 and so
on.
Example: Program for weekdays using ENUM
#include<stdio.h>

#include<conio.h>

enum day { Mon, Tue, Wed, Thu, Fri, Sat, Sun} ;

void main(){

enum day today;

today = Tue ;

printf("\nThis day is %d ", today);

}

Output:
This day is 1

Explanation:
day is a user defined datatype with 7 values as below:
Mon = 0, Tues= 1, Wed= 2, Thu= 3, Fri= 4, Sat= 5, Sun= 6
So when we display Tue, the respective integral constant '1' will be displayed.

We can also change the order of integral constants, consider the following example program.

Example: Program for weekdays using ENUM with changed integral constant values

//Changing order of the integral constants

#include<stdio.h>

#include<conio.h>

enum day { Mon=1, Tue, Wed, Thu, Fri, Sat, Sun} ;

void main(){

enum day today;

today = Tue ;

printf("\nThis day is %d ", today);

}

Output:

This day is 2

Explanation: In this program, the integral constant value starts with '1' instead of '0'. Here,
Tuesday's value is displayed as '2'.

CITY Leadertain.com Ast. Prof. M. Rahul 17

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

We may also define different integral values as we wish.

Example: Program for weekdays using ENUM with different integral constant values

//enum with defferent integral constant values

#include<stdio.h>

#include<conio.h>

enum grades {pass = 40, second = 60, first = 80, top = 100} ;

void main(){

enum grades status;

status = pass ;

printf("\nYour are at %d marks. You must study well!", status) ;

}

Example: enum declaration

enum Boolean { true=1, false=0 };

● enum is the keyword used to define user defined data type
● enum members are basically integers
● Can use expressions like integers
● Makes code easier to read
● Cannot get string equivalent
● Ex: day++ always increments its value by 1
● more than one name can have same integral constant

CITY Leadertain.com Ast. Prof. M. Rahul 18

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

2. Structures (struct) in C

● A structure is a collection of variables of different data types (non-homogenous) that are
related to each other. For example, information of a person, an account, or a part, etc.

● Every data item present in a structure is called as a member. These members are also
called fields.

● We use the struct keyword for creating a structure.

Advantages of Structures:

● Easy to access its members,

● Allocation of all the members is in a continuous memory,

● Faster to access its members

Structure is a colloction of different type of elements under a single name that acts as user
defined data type in C.

Syntax Declaration:
struct <structure_name>
{

data_type1 member1;
data_type2 member2, member3;
–
data_type_n member_n;

} ;

● struct is a keyword to declare a structure in C.
● structure_name is an identifier to use structure
● All members variables must be enclosed in curly braces
● Every structure must be terminated by a semicolon ;

Example Structure in C:
struct Student

{

char stud_name[30];

int reg_number;

float average;

} ;

CITY Leadertain.com Ast. Prof. M. Rahul 19

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

How to create & use a structure variable?
We create a structure variable in two ways.

1. while defining the structure and
2. in main() after terminating structure

How do we access a member of a structure?
To access members of a structure using structure variable, we should use dot (.) operator.

Example: Program to Create and Use structure variables in C
#include<stdio.h>

struct Student

{ char stud_name[30];

int reg_number;

float average;

char grade; //F for <40, B for 40-74, A for 75-100

} stud1;

int main(){

struct Student stud2; // using struct keyword

printf("Enter details of stud1 : \n");

printf("Name : ");

scanf("%s", stud1.stud_name);

printf("Roll Number : ");

scanf("%d", &stud1.reg_number);

printf("average : ");

scanf("%f", &stud1.average);

//Find & set grade

if(stud1.average<40)

stud1.grade='F';

else if(stud1.average>=40 && stud1.average<75)

stud1.grade='B';

else

stud1.grade='A';

printf("***** Student 1 Details *****\n");

printf("Student Name : %s\n", stud1.stud_name);

printf("Student Reg. Number : %i\n", stud1.reg_number);

printf("Student Average : %f\n", stud1.average);

printf("Student Grade : %c\n", stud1.grade);

return 0; }

CITY Leadertain.com Ast. Prof. M. Rahul 20

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

Output:

Enter details of stud1 :

Name : Lokesh

Roll Number : 20450

average : 65

***** Student 1 Details *****

Student Name : Lokesh

Student Reg. Number : 20450

Student Average : 65.000000

Student Grade : B

Explanation:
● The stucture variable "stud1” is created while defining the structure

● The structure variable "stud2” is created in main() using struct keyword.

● To access the members of a structure, we use the dot (.) operator.
How the memory is allocated for a structure?
Memory does not get allocated while declaring a structure.
Memory does get allocated when we create the variable of a structure.
Size of memory allocated is equal = Sum of memory required for each member of the structure.

In the above example program, the variables stud_1 and stud_2 are allocated with 36 bytes of
memory each.
struct Student

{

char stud_name[30]; 30 bytes

int reg_number; 4 bytes

float average; 4 bytes

char grade; 1 byte

} sum = 39 bytes

● All the members of a structure can be used simultaneously.
● Until variable of a structure is created no memory is allocated.
● Total memory of a structure variable = Sum of all the memory required by all members

of that structure.

CITY Leadertain.com Ast. Prof. M. Rahul 21

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

3. Unions in C

A union is a collection of elements of different data types (non-homogenus) that are not similar
to each other. The union allows the storage of the unrelated elements in the very same memory
location. It is also an user-defined data type.

● Unions and Structures are pretty similar to each other

● Difference between Union & Structure is that we can access just a single member of the
Union at any given time.

● It is because Union creates memory only for one member that has the biggest size (or the
highest number of bytes).

● Elements that are defined in a union are called members of union.

● We use (.) operator to access members of union.

How to create a union?
We declare the union using the “union” keyword, and we can access all the members of a Union
using the (.) dot operator.
union union_name
{ data_type variable_name1;

data_type variable_name2;
.
.
data_type variable_nameN;

};

How to create & use a union variable?
We create a union variable in two ways.

1. while defining the union and
2. in main() after terminating union

How do we access a member of a union?
To access members of a union using union variable, we should use dot (.) operator.

CITY Leadertain.com Ast. Prof. M. Rahul 22

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

Example: Program to Create and Use union variables in C
#include <stdio.h>

#include <string.h>

union Employee {

char name[32];

int age;

float salary;

};

int main(){

union Employee employee;

/* Using one member of a union at a time */

strcpy(employee.name, "Swathi");

printf("Name = %s Address = %p\n", employee.name,

&employee.name);

employee.age = 20;

printf("Age = %d Address = %p\n", employee.age,

&employee.age);

employee.salary = 1234.5;

printf("Salary = %f Address = %p\n", employee.salary,

&employee.salary);

/* Printing all member variable of Union, Only last updated

member will hold it's value remaining will contain garbage */

printf("\nName = %s\n", employee.name);

printf("Age = %d\n", employee.age);

printf("Salary = %f\n", employee.salary);

printf("\nSize of Union: %d",sizeof employee) ;

return 0;

}

Output:
Name = Swathi Address = 0061FF00
Age = 20 Address = 0061FF00
Salary = 1234.500000 Address = 0061FF00

Name =
Age = 1150963712
Salary = 1234.500000

Size of Union: 32

CITY Leadertain.com Ast. Prof. M. Rahul 23

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

How the memory is allocated for a union?
Memory does not get allocated while declaring a structure.
Memory does get allocated when we create the variable of a structure.
Size of memory allocated is equal = Size of the largest member of the union.

In the above example program, the variables stud_1 and stud_2 are allocated with 36 bytes of
memory each.
union Employee {

char name[32]; 32 bytes

int age; 04 bytes

float salary; 04 bytes

}emp; sum = 32 bytes

Here, the emp union variable has been allocated 32 bytes and all members share this
memory because same memory exists for all members.

CITY Leadertain.com Ast. Prof. M. Rahul 24

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

Difference Between Structure and Union in C

Key Structure Union

Definition Structure is the collection of
multiple variables of different data
types that are related to each
other.

Union is also the collection of
multiple variables of different data
types that are related to each
other.

Memory
Allocation

In a struct, memory is allocated
for all members.

All members are accessible in
structure.

In the union, the memory is
allocated only for its largest
member.
This single memory is shared by
all members.
Only one member is accessible in
the union at any given time.

Syntax Declaration of structure in C:

struct struct_name{
type element1;
type element2;
.
.

} variable1, variable2, ...;

Declaration of a union in C:
:
union u_name{

type element1;
type element2;
.
.

} variable1, variable2, ...;

Size Size of Structure = greater or
sum of size of all the data
members.

Size of union = Size of largest
member among all data
members.

Value storage Each member is stored in a
separate memory location.
Hence, a structure can store
separate values for different
members.

Union has only one memory
allocation of its largest member.
All other members share this
memory..
So at any given time, the union
stores a single value of one of the
members.

Initialization In Structure multiple members
can be can be initialized at same
time.

However in Union, only the first
member can get initialize at a
time.

CITY Leadertain.com Ast. Prof. M. Rahul 25

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

typedef in C

typedef is a keyword used to create alias name for the existing datatypes. Using typedef
keyword we can create a temporary name to the primitive data types int, float, char and double.

Syntax:
typedef existing-datatype alias-name

typedef with int data type:

In the following example, Number is defined as alias name for integer datatype. So, we can use
Number to declare integer variables.

#include<stdio.h>

typedef int Number;

int main(){

Number a,b,c; // Here a,b,&c are integer type of variables.

printf("Enter two integer numbers: ") ;

scanf("%d%d", &a,&b) ;

c = a + b;

printf("Sum = %d", c) ;

}

Output:
Enter two integer numbers: 2 5
Sum = 7

typedef with structure or union

#include<stdio.h>

typedef struct student

{

char stud_name[50];

int stud_rollNo;

}stud;

int main(){

stud s1;

printf("Enter the student name: ") ;

scanf("%s", s1.stud_name);

printf("Enter the student Roll Number: ");

scanf("%d", &s1.stud_rollNo);

CITY Leadertain.com Ast. Prof. M. Rahul 26

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

printf("\nStudent Information\n");

printf("Name - %s\nHallticket Number - %d", s1.stud_name,

s1.stud_rollNo);

}

Output:
Enter the student name: Gopi
Enter the student Roll Number: 553377

Student Information
Name - Gopi
Hallticket Number - 553377

Comments: In the above example program, stud is the alias name of student structure. We can
use stud as datatype to create variables of student structure. Here, s1 is a variable of student
structure datatype.

typedef with Arrays
In C programming language, typedef is also used with arrays. Consider the following example
program to understand how typedef is used with arrays.
Example Program to illustrate typedef with arrays in C.
#include<stdio.h>

void main(){

typedef int Items[50]; //Items acts like an integer array type

of size 50

Items list = {10,20,30,40,50}; //Items is an array of integer

type with size 5.

int i;

printf("list elements are : \n") ;

for(i=0; i<5; i++)

printf("%d\t", list[i]) ;

}

Output:
List elements are :
10 20 30 40 50

Comments: In this program, Items is the alias name of integer array type of size 50. Here, list is
an integer array of size 5.

CITY Leadertain.com Ast. Prof. M. Rahul 27

For C
IT Studen

ts
Only

PTC UNIT - III, Part-2 (Strings; Struct-union-enum-typedef)

typedef with Pointers

We can give a name to a pointer data type using typedef. See the following example.

#include<stdio.h>

#include<conio.h>

void main(){

typedef int* intPointer;

intPointer ptr; //ptr is a pointer variable of integer datatype.

int qty = 100;

ptr = &qty;

printf("Address of a = %u ",ptr) ;

printf("\nValue of a = %d ",*ptr);

}

CITY Leadertain.com Ast. Prof. M. Rahul 28

For C
IT Studen

ts
Only

